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ABSTRACT
Tuberculosis (TB) is a contagious disease that has been responsible for the death of one 
billion people in the last 200 years. Until now, the only vaccine approved for the prevention of 
TB is Bacillus Calmette-Guérin (BCG), which is prepared by attenuating Mycobacterium bovis. 
However, one of the limitations of BCG is that its preventive effect against pulmonary TB 
varies from person to person. Therefore, there arises a need for a new TB vaccine to replace 
or supplement BCG. In this review, we have summarized the findings of current clinical 
trials on preventive and therapeutic TB vaccine candidates. In addition, we have discussed a 
novel vaccination approach using the cell-based vaccine presenting early secretory antigenic 
target-6 (ESAT-6), which is a potent immunogenic antigen. The role of ESAT-6 in hosts has 
also been described.
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INTRODUCTION

Tuberculosis (TB) is an infectious disease generally transmitted through aerosols containing 
Mycobacterium tuberculosis. TB has been responsible for the death of one billion people in the 
last 200 years (1) and is one of the 10 leading causes of death in the world (including people 
infected with human immunodeficiency virus [HIV]) (2). In 2015, approximately 10.4 million 
people worldwide had TB and 1.8 million people died of TB (2). Key risk factors for TB 
include poverty, overcrowding, malnutrition, alcohol abuse, and HIV infection (3-5). Most 
infections caused by M. tuberculosis are latent TB without symptoms; however, approximately 
12% of these cases develop into active TB (2,6). Prior to 2001, the tuberculin skin test was the 
only diagnostic test for TB; however, in the 2000s, 2 interferon (IFN)-γ release assays (IGRAs) 
were approved by the Food and Drug Administration (FDA). In IGRA, the concentration 
of IFN-γ secreted by T lymphocytes in patients exposed to M. tuberculosis is measured after 
stimulation with early secretory antigenic target-6 (ESAT-6), which is the main antigen 
produced by M. tuberculosis (7). The first licensed IGRA was the QuantiFERON-TB Gold In-
Tube test. This method measures the concentration of IFN-γ secreted into the peripheral 
blood of a patient after exposure to ESAT-6, CFP-10, and TB7.7. The second licensed IGRA was 
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the T-SPOT.TB test, which is performed on whole blood. First, peripheral mononuclear cells 
are extracted from the collected blood sample and exposed to ESAT-6 and CFP-10, after which 
the concentration of secreted IFN-γ is measured. According to FDA-approved indications, 
diagnostic tests use different antigens; therefore, test results may be different. Consequently, 
it is recommended that these assays are considered indirect tests and are performed together 
with radiology or other medical evaluations (7).

Typical anti-TB drugs such as isoniazid, also known as isonicotinylhydrazide, and rifampicin 
are not effective against multi-drug resistant tuberculosis (MDR-TB) (8). Research on new 
anti-TB drugs is ongoing. Currently, bedaquiline (Sirturo®; Janssen Therapeutics, Titusville, 
NJ, USA) and delamanid (Deltyba®; Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan) 
are being developed as treatments for MDR-TB (9). Other possible treatments include 
repurposed drugs such as linezolid, imatinib, and metformin (10-14).

Currently, the only licensed vaccine for TB is the Bacillus Calmette-Guérin (BCG) vaccine, 
which is made by attenuating Mycobacterium bovis (15). Although vaccination with BCG 
prevents against tuberculous meningitis and disseminated TB in children, it does not prevent 
the development of a primary infection. Furthermore, it is not effective in preventing the 
reactivation of latent pulmonary infection. The efficacy of BCG vaccination is reported to vary 
between 0% and 80% for the prevention of pulmonary TB. In addition, it has limited efficacy 
in adults (16,17). Therefore, the development of new TB vaccines is necessary. In this review, 
we have summarized the findings of studies on newly developed TB vaccines, the status of 
adjuvant research, and novel approaches for developing new TB vaccines.

EPIDEMIOLOGY

According to data from the World Health Organization (WHO), there were 10.4 million TB 
cases globally in 2015, which indicated an incidence of 142 cases per 100,000 people (2). The 
number of annual TB cases per country in 2015 was less than 10 per 100,000 in high-income 
countries and 150–300 per 100,000 in 30 countries considered as high-TB burden countries 
by WHO. Countries with an incidence rate of more than 500 per 100,000 people include 
Lesotho, Mozambique, and South Africa (2). The Republic of Korea ranks first in terms 
of TB incidence (80 persons per 100,000 people) and mortality (5.1 persons per 100,000 
people) among the member countries of the Organization for Economic Cooperation 
and Development (OECD) (Fig. 1, Tables 1 and 2). These are above the OECD average TB 
incidence of 11.4 (per 100,000 population) and the average TB mortality of 1.0 (per 100,000 
population) (Table 3). To solve this problem, the Korean government is conducting a national 
project to reduce TB incidence to 50 per 100,000 people by the year 2020.

Democratic People's Republic of Korea (DPR Korea) is a high-risk country for TB; therefore, 
it is included in the 30 high-MDR-TB burden countries and 30 high-TB burden countries. 
It is also among ‘The three TB-high-burden country lists’ (Fig. 2, Table 3) (2). In 2015, TB 
incidence in DPR Korea was 561 per 100,000 individuals, which was the third highest in 
the world (1st: South Africa [834 per 100,000 individuals], 2nd: Lesotho [788 per 100,000 
individuals]). Based on the 2016 Global Summary reported by WHO, the national BCG 
vaccine coverage for newborns in DPR Korea was 98% from 2010 to 2014 and 97% in 2015. 
These data are not completely reliable because these were not directly examined by WHO.
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Figure 1. Total TB cases and new TB cases from 2001 to 2016 in the Republic of Korea. The total cases and new cases of TB patients from 2001 to 2016 in the 
Republic of Korea are shown as the number per 100,000 individuals. The data are obtained from National Tuberculosis Management Guidelines (The Korea 
Centers for Disease Control and Prevention, 2017).

Table 1. Number of total TB cases and new TB cases in Republic of Korea (2007–2016)
Year Total TB cases New TB cases
2007 45,597 34,710
2008 44,174 34,157
2009 47,302 35,845
2010 48,101 36,305
2011 50,491 39,557
2012 49,532 39,545
2013 45,292 36,089
2014 43,088 34,869
2015 40,847 32,181
2016 39,245 39,245

Source from the National Tuberculosis Management Guidelines (The Korea Centers for Disease Control and 
Prevention, 2017).

Table 2. Number of deaths by TB in Republic of Korea (2006–2015)
Year Deaths
2006 2,726
2007 2,376
2008 2,323
2009 2,292
2010 2,365
2011 2,364
2012 2,466
2013 2,230
2014 2,305
2015 2,209

Source from Statistics Korean, Korean Statistical Information Service (KOSIS) (http://kosis.kr).
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DEVELOPMENT OF NEW PREVENTIVE TB VACCINES

There are 2 types of TB vaccines: preventive and therapeutic (Fig. 3). The preventive vaccines 
include priming vaccines and boosting vaccines.

Priming vaccines
The priming vaccine is typically administered to newborns, prior to the first exposure 
to M. tuberculosis. Several priming vaccines, including VPM1002 and MTBVAC, are under 
development.
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Table 3. Prevalence, incidence, mortality of TB in some OECD countries (2012–2014) (per 100,000 population)
Country 2012 2013 2014

Prevalence Incidence Mortality Prevalence Incidence Mortality Prevalence Incidence Mortality
Chile 20.0 16.0 1.6 20.0 16.0 1.6 20.0 16.0 1.6
Estonia 27.0 24.0 2.4 26.0 22.0 2.3 25.0 20.0 2.1
Japan 24.0 19.0 1.8 24.0 19.0 1.8 23.0 18.0 1.8
Republic of Korea 118.0 96.0 5.5 106.0 90.0 4.0 101.0 86.0 3.8
US 4.5 3.7 0.2 4.1 3.4 0.2 3.8 3.1 0.1
Latvia 60.0 50.0 2.8 60.0 50.0 3.1 57.0 49.0 2.7
Mexico 27.0 21.0 1.8 26.0 21.0 1.7 27.0 21.0 1.7
Poland 27.0 21.0 1.7 26.0 21.0 1.5 26.0 21.0 1.4
Portugal 31.0 26.0 1.4 30.0 25.0 1.2 29.0 25.0 1.2
DPR Korea 521.0 417.0 30.0 536.0 429.0 25.0 552.0 442.0 20.0
DPR Korea is not OECD member countries, but is listed for comparative analysis with Republic of Korea (source from Estimated tuberculosis cases and deaths 
[WHO, 2016]).
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Figure 2. Countries with high burden of TB, MDR-TB, and TB/HIV. Countries with TB, MDR-TB, and HIV-related TB 
are shown as modified from the WHO Global Tuberculosis Report 2016. DPR Korea is included in both TB and MDR-
TB sectors in the WHO TB high-burden country lists. 
DR Congo, Democratic Republic of the Congo; UR Tanzania, United Republic of Tanzania.
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VPM1002 (rBCGΔureC∷HLY) is a recombinant BCG mutant that expresses listeriolysin O 
and a hygromycin resistance marker with a deficiency of urease C (18,19). Listeriolysin O is a 
cytolytic, pore-forming toxin protein produced by Listeria monocytogenes (20,21). It increases 
the exposure of rBCG in the cytosol, thereby enhancing the T cell immune response through 
the major histocompatibility complex (MHC) class I pathway. Secreted listeriolysin O is 
rapidly degraded in the cytosol because of its proline, glutamic acid, serine, and threonine 
sequences (22). Listeriolysin O is activated at a low pH; therefore, it is designed to be 
deficient in urease C to guarantee an optimal pH for its activity (23). VPM1002 is being 
evaluated as a vaccine to replace BCG for newborns and prevent TB recurrence in adults 
with active pulmonary TB (24). Two phase I clinical trials (ClinicalTrials.gov identifier: 
NCT00749034 and NCT01113281) conducted in Germany revealed that recombinant BCG 
is safe for use in healthy adults of European descent (25). In addition, the stability and 
immunogenicity of the vaccine were confirmed (ClinicalTrials.gov identifier: NCT01113281) 
in 24 adults in South Africa (25). In ‘Study to Evaluate Safety and Immunogenicity of 
VPM1002 in Comparison With BCG in Newborn Infants in South Africa’ (ClinicalTrials.
gov identifier: NCT01479972), it was discovered that VPM1002 is safe, well-tolerated, and 
immunogenic in comparison to the BCG vaccine for newborn infants in South Africa (25). 
Furthermore, a phase II clinical study titled ‘Study to Evaluate the Safety and Immunogenicity 
of VPM1002 in Comparison With BCG in HIV-exposed/-Unexposed Newborn Infants in South 
Africa’ (ClinicalTrials.gov identifier: NCT02391415) is currently underway. Phase III trials will 
begin in India following the phase II clinical trials in South Africa (26).

MTBVAC (ΔPhoPΔfadD26) is a live attenuated M. tuberculosis cell vaccine deficient in 
virulence-related genes of M. tuberculosis. The 2 deficient genes are PhoP/PhoR gene, which 
is involved the transcription system, and fadD26 gene, which is involved in the synthesis 
of phthiocerol dimycoserosate, a lipid in the bacterial cell wall. Removal of PhoP/PhoR gene 
leads to blockade of the ESX-1 secretion system and inhibition of the secretion of ESAT-
6. Consequently, pathogenicity decreases and an immune response is induced. FadD26 
is an important enzyme for glycolipid cell wall synthesis (27). The efficacy of MTBVAC is 
due to increased antigenicity, which is the result of increased secretion of Ag85 protein 
due to silencing of noncoding RNA Mcr7 (28,29). There are ongoing phase II clinical trials 
on MTBVAC (24). Preclinical tests in rats and guinea pigs have shown that MTBVAC is a 
safe and immunogenic vaccine (30). A phase I dose-escalation study (ClinicalTrials.gov 
identifier: NCT02013245) that compared the safety and immunogenicity of MTBVAC with 
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Figure 3. Classification of TB vaccines. TB vaccines were divided into preventive and therapeutic vaccines. Priming vaccines induce immune responses prior to 
Mycobacterium tuberculosis infection. Boosting vaccines are applied to reinforce immune responses elicited after priming. Therapeutic vaccines are used to cure 
TB or its symptoms with anti-mycobacterial medications.
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those of BCG vaccine was completed in February 2017. A phase Ib study (ClinicalTrials.
gov identifier: NCT02729571) sponsored by Biofabri, S.L. in collaboration with the South 
African Tuberculosis Vaccine Initiative, Tuberculosis Vaccine Initiative, Triclinium Clinical 
Trial Project Management (Pty) Ltd., and Universidad de Zaragoza is yet to be conducted on 
MTBVAC and BCG.

Boosting vaccines
A boosting vaccine is used to enhance the immune response after a latent TB infection or a 
previous vaccination. It is mainly administered to adults and adolescents. Boosting vaccines 
may be subunit vaccines, viral-vectored vaccines, or whole-cell vaccines.

Several subunit vaccines with adjuvants such as Hybrid 1-IC31, Hybrid 1-CAF01, H56:IC31, H4 
(HyVac4), M72, and ID93 (Table 4) are under development.

Hybrid 1-IC31, which contains antigen 85B (Ag85B) and ESAT-6, is used together with IC31 
as an adjuvant. It induces long-lived CD4 T cell responses, resulting in the production of 
tumor necrosis factor (TNF)-α and IL-2 in children, regardless of M. tuberculosis infection (31). 
Ag85B, also known as α-antigen, is a 30-kDa mycolyl transferase protein. A hase I clinical 
trial (ClinicalTrials.gov identifier: NCT01049282) has been conducted to verify its safety and 
immunogenicity in BCG-unvaccinated volunteers with no history of TB exposure or infection. 
Hybrid 1-IC31 was found to be well-tolerated and safe for use in HIV-infected adults with a 
CD4+ lymphocyte count greater than 350 cells/mm3 in a phase II study (Pan African Clinical 
Trials Registry [PACTR]: PACTR201105000289276) (32). Additionally, in a phase II study 
recorded in the South African National Clinical Trials Register (DoH-27-0612-3947; PACTR, 
PACTR201403000464306), it was proven to be stable and immunogenic in individuals, 
irrespective of infection with M. tuberculosis. In the study, the effects of the vaccine were compared 
between non-infected people (QFT-negative [QuantiFERON was used to detect TB infection or 
latent TB infection]) and 240 QFT-positive adolescents infected with M. tuberculosis (31).

Hybrid 1-CAF01, composed of Ag85B and ESAT-6, is used together with CAF01 as an 
adjuvant. It increases the long-lasting T cell response (lasting 3 years), as observed by using 
the IFN-γ ELISpot kit. It also increases the expression of biomarkers associated with type 
1 T helper (Th1) cell response, such as IFN-γ, TNF-α, IFN-γ-induced protein 10, monokine 
induced by IFN-γ, macrophage inflammatory protein-1β, and granulocyte-macrophage 
colony-stimulating factor (33).

A phase I clinical trial on Ag85B-ESAT-6 alone and a dose-escalation study on Ag85B-ESAT-6 
and CAF01 in healthy adult volunteers have been completed (ClinicalTrials.gov identifier: 
NCT00922363). The results of the studies showed that the new liposomal adjuvant CAF01 is 
safe and well-tolerated (33).
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Table 4. Summary of the subunit vaccines with adjuvants
Vaccine Adjuvant Component Clinical phase
Hybrid1 IC31 Ag85B, ESAT-6 Phase IIa
Hybrid1 CAF01 Ag85B, ESAT-6 Phase I
H56 IC31 Ag85B, ESAT-6, and Rv2660c Phase IIa
H4 IC31 Ag85B, TB10.4 Phase IIa
M72 AS01E MTB32A, MTB39A Phase IIb
ID93 GLA-SE Rv2608, Rv3619, Rv3620, and Rv1813 Phase IIa
IC, intercell.

http://clinicaltrials.gov/ct2/show/NCT02729571
http://clinicaltrials.gov/ct2/show/NCT01049282
http://clinicaltrials.gov/ct2/show/NCT00922363
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H56:IC31, developed in partnership with Aeras (Rockville, MD, USA), is used for adolescents 
and adults. It is composed of a fusion protein comprising Ag85B, ESAT-6, and Rv2660c 
antigens, which are considered essential for the survival of M. tuberculosis. H56:IC31 is designed 
as a post-exposure vaccine that specifically targets M. tuberculosis. An open-label, dose-
escalation, Phase I clinical trial (ClinicalTrials.gov identifier: NCT01967134) on AERAS-456 
vaccine has been completed in 24 HIV-negative patients. This was the first-in-human clinical 
trial that reported no serious adverse effects, regardless of the vaccine dose administered. 
In addition, the vaccine was found to be safe and well-tolerated (34). Furthermore, a phase 
Ib clinical trial on BCG revaccination, H4:IC31, and H56:IC31 (ClinicalTrials.gov identifier: 
NCT02378207) has been completed in healthy HIV-1-infected adolescents.

HyVac4 (H4) was developed by the Statens Serum Institut (Copenhagen, Denmark) by 
using AG85B and TB10.4 as antigens, and has been combined with the adjuvant IC31 by 
Valneva (Lyon, France). TB10.4 is one of the ESAT-6-like proteins. In BCG-vaccinated 
mice, TB10.4 induces the expression of TB10.4-specific IFN-γ+ TNF-α+ IL-2+ or TNF-α+ IL-2+ 
CD4+ T cells (35). It is reported that, using the prime/boost regimen, HyVac4:IC31 is more 
immunogenic than BCG monotherapy in guinea pigs (36). Related phase I clinical trials have 
been completed in Europe and South Africa. Furthermore, 2 phase I dose-escalation trials 
(ClinicalTrials.gov identifiers: NCT02066428 and NCT02074956) on stability and immunity 
have been completed in BCG-vaccinated adults. Additionally, a phase II clinical trial in South 
Africa on the induction of polyfunctional CD4+ T cell responses and stability is underway 
(ClinicalTrials.gov identifier: NCT02075203).

M72 is a 72-kDa polyprotein developed by GlaxoSmithKline (Brentford, UK) and Aeras. It is 
a fusion protein of MTB32A and MTB39A, which are antigens of M. tuberculosis. AS01E is the 
adjuvant used with M72. Currently, a phase IIb efficacy study (TB-018) on M72 is scheduled to 
be conducted in 3,573 adult patients in 3 African countries (South Africa, Zambia, and Kenya) 
(ClinicalTrials.gov identifier: NCT01755598).

ID93 is a recombinant fusion protein composed of 4 MTB antigens: Rv2608, Rv3619, Rv3620, 
and latency-associated Rv1813 (37). Glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE) 
acts as a Toll-like receptor (TLR) and helps to induce significant Th1 immune responses. 
It generates multifunctional IFN-γ+ TNF-α+ IL-2+ CD4+ T cells in both BCG-vaccinated 
and non-BCG-vaccinated mice and guinea pigs. A pre-clinical study that compared the 
effects of rifampicin or isoniazid with ID93 showed that ID93 induces pluripotent antigen-
specific Th1 immune responses and inhibits M. tuberculosis-induced lung pathology in 
mice and cynomolgus monkeys (38). Phase IIa of the clinical trial was sponsored by the 
Infectious Diseases Research Institute (ClinicalTrials.gov identifier: NCT02465216). 
Furthermore, randomized, double-blind, and placebo-controlled clinical trials on the safety 
and immunogenicity of ID93 have been completed in adult TB patients who have been 
successfully treated with confirmed bacteriologic agents.

In addition to subunit vaccines, viral-vectored vaccines, such as MVA85A, Crucell Ad35/Aeras 
402, Ad5-Ag85A, and VV-tPA-85B, have been developed as boosting vaccines.

MVA85A is a modified vaccinia Ankara (MVA) virus that expresses Ag85A. In early clinical 
trials on MVA85A, no significant results were observed when BCG-infected South African 
children (in 2013) and HIV-infected adult subjects (in 2015) were administered the vaccine 
as a booster (39). Moreover, a phase IIb clinical trial revealed no significant efficacy of the 
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vaccine against M. tuberculosis infection (40) and was therefore discontinued. A phase I 
clinical trial (sponsored by the University of Oxford, Oxford, UK) on intradermal and aerosol 
formulations of the vaccine is in progress (ClinicalTrials.gov identifier: NCT02532036).

The Crucell Ad35/AERAS-402 vaccine uses a replication-defective serotype 35 adenovirus, 
which expresses Ag85A, Ag85B, and TB10.4. An Aeras-sponsored phase II clinical trial 
(Clinicaltrials.gov identifier: NCT02414828) was conducted, in which the participants were 
induced with a robust immune response to current or past pulmonary TB. Results of the 
trial revealed that treatment with the AERAS-402 vaccine is not associated with pulmonary 
complications (41).

The Ad5-Ag85A vaccine is formulated based on non-replicating adenovirus serotype 5 and 
is designed to express the M. tuberculosis antigen Ag85A. In a pre-clinical study, the vaccine 
was shown to improve the long-term survival of BCG-primed guinea pigs with pulmonary 
M. tuberculosis infection (42). Furthermore, in a McMaster University-sponsored phase I 
trial (ClinicalTrials.gov identifier: NCT00800670), the vaccine was found to be safe and 
immunogenic (43). Viral-vectored vaccines are still under development; however, recent 
studies have reported few drawbacks. It is reported that the prevalence of the anti-adenovirus 
antibody is high. Additionally, adenovirus-5-based vaccines against HIV have the potential to 
increase the risk of developing acquired immunodeficiency syndrome (44).

VV-tPA-85B is formulated using KVAC103, which is an attenuated vaccinia virus vector 
system developed at the Korea Centers for Disease Control and Prevention. It contains 
the Ag85B gene of M. tuberculosis H37Rv with a secretory signal peptide tPA gene. KVAC103 
is the third generation of the attenuated vaccinia virus, which limits its pathogenicity. 
The immunogenicity and protective activity of VV-tPA-85B against M. tuberculosis has been 
confirmed in mice (Korea Patent Application No. 10-1749993).

Whole-cell vaccines have also been developed to boost immune responses against M. tuberculosis.

DAR-901 is a whole-cell vaccine developed at the University of Dartmouth in the United 
States. It is a heat-inactivated vaccine based on Mycobacterium obuense, which shares multiple 
antigens with M. tuberculosis for a cross-protective effect. It was developed as a booster vaccine 
for both HIV-infected and HIV-uninfected children and adolescents who have received 
BCG immunization (29). A phase I study (ClinicalTrials.gov identifier: NCT02063555) 
conducted in 77 HIV-negative and HIV-positive adults who had received BCG proved the 
safety, tolerability, and immunogenicity of the vaccine. A phase II clinical trial sponsored 
by Dartmouth-Hitchcock Medical Center is scheduled to be conducted on the vaccine. 
Participants are currently being recruited to determine if the risk of TB infection is reduced 
in the experimental group, which will be composed of Tanzanian adolescents who will 
receive BCG (ClinicalTrials.gov identifier: NCT02712424). The protective effect of the vaccine 
was shown to be statistically significant in a phase III clinical trial in which HIV-positive TB 
patients were administered multiple doses of the vaccine (45).

DEVELOPMENT OF NEW THERAPEUTIC TB VACCINES

Therapeutic TB vaccines are vaccines that are administered along with the existing drug 
therapy (Fig. 3) to shorten the treatment period.
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RUTI, a TB vaccine candidate, is based on detoxified liposomal fragments of M. tuberculosis. 
It is used in addition to chemotherapy for treating latent TB infection. It was developed as an 
immunotherapeutic agent to reduce the amount and duration of drug therapy in patients with 
active TB. A phase II trial on the RUTI vaccine has been recently completed in TB patients 
with HIV infection (44).

Vaccae (SRL-172) is a vaccine developed by Biologic Pharmacy Co., Ltd (Longcom; Hefei City, 
China). It is composed of whole heat-killed Mycobacterium vaccae and has already been approved 
for use as a therapeutic adjuvant for patients infected with M. tuberculosis (46). A phase III 
clinical trial has been completed in HIV-coinfected patients. Vaccae is currently undergoing 
clinical trials for stability and efficacy in people with high-risk TB who are positive for the 
purified protein derivative skin test (ClinicalTrials.gov identifier: NCT01979900). Mycobacterium 
indicus pranii, formally known as Mycobacterium w, is used to prepare a whole-cell vaccine that is 
currently undergoing a phase III clinical trial. M. indicus pranii is a cultivable, non-pathogenic, 
and killed Mycobacterium species that contains antigens similar to Mycobacterium leprae (47).

ADJUVANTS FOR TB VACCINE DEVELOPMENT

Here, we briefly describe the adjuvants that have been recently used for TB vaccine 
development (Table 5). IC31 is an adjuvant consisting of the immunostimulatory TLR9 ligand 
ODN1a, an oligodeoxynucleotide, and the synthetic antimicrobial peptide H-KLKL5KLK-
OH. It is used in H4 and H56 vaccines (48). AS01 contains the TLR4 ligand 3-O-desacyl-4′-
monophosphoryl lipid A (MPL) and the saponin derivative QS-21 as a liposomal formulation 
(49,50). AS01E is an adjuvant that reduces the capacity of AS01 for pediatric use. It is being 
used for M72 vaccine candidates. AS02 is also composed of MPL and QS-21; however, it is 
an o/w emulsion formulation rather than a liposomal formulation (51). CAF01 is formulated 
with an N,N′-dimethyl-N,N′-dioctadecylammonium (DDA) liposome and the synthetic 
mycobacterial immunomodulator α.α′-trehalose 6,6′-dibehenate (TDB) in a 5:1 ratio (52). It is 
used in H1 vaccines. GLA-SE is a stable emulsion of the synthetic TLR4 ligand glucopyranosyl 
lipid adjuvant, and is used in ID93 (37).

NEW APPROACHES FOR TB VACCINE DEVELOPMENT

The effect of BCG may differ depending on the route of administration. Thus, changes and 
improvement in the administration route must be considered in vaccine development. In 
animals challenged with M. tuberculosis after vaccination with BCG, the colony-forming units 
of M. tuberculosis in the lungs vary according to the route of administration. Aerosolized BCG 
administered through the nasal cavity shows the best inhibitory effect, which may be because 
it activates both mucosal and systemic immunity. However, it is associated with side effects, 
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Table 5. Overview of major adjuvants
Adjuvant

AS01 CAF01 GLA-SE IC31
Vaccine M72 H1 ID93 H4/56
Signaling pathway TLR4 Mincle TLR4 TLR9
Delivery Liposomes Liposomes Emulsion Polypeptides
Immunomodulator MPL TDB GLA ODN1a
TDB, trehalose 6,6′-dibehenate; GLA, glucopyranosyl lipid adjuvant; ODN1a, oligodeoxynucleotide.
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including pulmonary inflammation, which causes lung tissue damage. Oral administration of 
a lipid-microencapsulated vaccine formulation to mice and guinea pigs resulted in improved 
outcomes by inducing the production of diverse and prolonged CD4+ T cell responses. The 
formulation was also associated with decreased side effects. Subcutaneous injection of the 
vaccine stimulated delayed hypersensitivity and cytokine production by Th cells (23).

VPM1002 (rBCGΔureC∷hly) is being developed as a priming vaccine. A study of VPM1002 
has been conducted in a cell model lacking a virulence gene called nuoG, which is 
responsible for inhibiting the apoptosis of infected host cells (53). It has been reported that 
BCGΔureC::hlyΔunoG shows a higher immune response and stability than BCGΔureC::hly in 
mice; therefore, the former may be useful as a next-generation candidate (54).

Ag85B antigen is a mycolyl transferase that is conserved in mycobacterial species such as 
M. tuberculosis and BCG (55). Ag85B is involved in lipid accumulation and storage, which 
are important processes during dormancy in M. tuberculosis. It is also used in many vaccine 
candidates because it induces a strong Th1 immune response. However, 8 out of the 13 
vaccine candidates are subunit vaccines, and 6 of them use Ag85 antigens (Ag85A, Ag85B). 
Therefore, it is necessary to find novel antigens that can be used as vaccines.

ESAT-6 is a protein encoded by a gene located in the region of difference 1, which is 
expressed in M. tuberculosis but is not found in BCG. It has sufficient immunogenicity in 
mice and humans after M. tuberculosis infection. However, inducing an immune response for 
the prophylactic vaccine using ESAT-6 protein requires the use of an additional adjuvant to 
increase the protective or vaccination effect. In a previous study, ESAT-6 showed a potent 
immune response when it was combined with adjuvants such as dimethyl dioctadecyl 
ammonium bromide and MPL (56). Furthermore, a recombinant adenovirus expressing 
ESAT-6 with calreticulin showed an increased immune response to ESAT-6 by secreting more 
IFN-γ and TNF-α; however, it could not decrease M. tuberculosis burden in the lungs (57). In 
addition, DNA-based vaccines prepared using the T cell epitope of M. tuberculosis are known 
to induce immune responses with high safety and stability (58). However, ESAT-6 itself 
could pose a hurdle in the process of antigen presentation. Thus, for a protective effect, 
modified DNA vaccines have been prepared using nano-chitosan. A previous study showed 
that nano-Esat-6/3eFL (nano-chitosan-based DNA vaccine prepared using fms-like tyrosine 
kinase 3 ligand) induced a strong immune response and exhibited a protective effect by 
upregulating Th1 and cytolytic T cell (CTL) responses against M. tuberculosis (59). In contrast, 
the Ag85A/ESAT-6 chimeric DNA vaccine induced a hypersensitivity response and worsened 
the severity of M. tuberculosis infection in mice (60). Recently, it was suggested that novel cell-
based vaccine candidates prepared using antigen-presenting cells (APCs) such as dendritic 
cells and B cells can induce strong antigen-specific T cell immunity (61,62). Furthermore, 
ESAT-6-expressing adenovirus or vaccinia virus can deliver ESAT-6 antigen to APCs, which 
consequently upregulate the expression of MHC and co-stimulatory molecules. However, 
antigen delivery using a viral vector showed dominant expression of MHC class I, and its 
potency of vaccine efficacy might be CD8+ T cell-dependent. Thus, an alternative method 
to increase MHC class II expression is required (63). Activated natural killer T (NKT) cells 
can increase the immunogenicity, including CD4+ T cell responses, of cell-based vaccines 
when α-galactosylceramide (α-GalCer) is added as a ligand (61,64-66). Thus, using recent 
approaches for the development of TB vaccines, an APC-based cell vaccine expressing ESAT-6 
and loaded with α-GalCer could be formulated as a novel vaccine candidate for the prevention 
and treatment of M. tuberculosis infection (Fig. 4).
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ADVANTAGES AND DISADVANTAGES OF ESAT-6 AS A 
VACCINE ANTIGEN
ESAT-6 forms a heterodimeric complex with CFP-10 in the phagosome lumen and is 
secreted through the ESX-1 secretion system (67). The heterodimer inhibits the intracellular 
antimicrobial response by inducing oxidative burst by downregulating the level of inducible 
nitric oxide synthase, which decreases the levels of nitric oxide and reactive oxygen species 
(68). ESAT-6 also suppresses T cell function and inhibits the intracellular defense system. 
In mouse neutrophils, ESAT-6 acts as a leukocidin, a bacterial enzyme that kills neutrophils 
and increases calcium ion influx (69). It has been suggested that a high burden of ESAT-
6-expressing M. tuberculosis leads to macrophage necrosis via caspase-1- and cathepsin-B-
independent pathways (70). In addition, ESAT-6 inhibits autophagy through mechanistic 
target of rapamycin activation, suggesting that vaccination with BCG together with ESAT-6 
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may increase BCG survival (71,72). ESAT-6 expression is rapidly increased in host cells infected 
with M. tuberculosis. Furthermore, it triggers phagosomal rupture since it forms a membrane-
spanning channel. ESAT-6 consists of an N-terminal, C-terminal, helix1, and helix2. The 
N-terminal and C-terminal are involved in cell membrane interactions, whereas helix1 and 2 
are involved in membrane-spanning channel formation (73). ESAT-6 may disrupt the artificial 
bilayer (74) and plasma membrane of red blood cells, and play a role in the lysis of liposomes 
(75). In addition to causing phagosomal rupture through the formation of phagosomal 
membrane-spanning channels, ESAT-6 also interacts with beta 2 microglobulin (β2M), a 
constituent of the MHC class I molecule in all nucleated cells. ESAT-6 and ESAT-6:CFP-10 are 
secreted through the ESX-1 secretion system, after which they migrate to the endoplasmic 
reticulum in the host cell to form a complex with β2M. Consequently, cell surface expression 
of the MHC class I-β2M complex is inhibited and MHC-I-dependent antigen presentation 
is downregulated (76). M. tuberculosis infection also causes the downregulation of class II 
transactivator and MHC II by inducing hypermethylation of histone H3 lysine9 (H3K9me2/3). 
This is mediated by EsxL, one of the 23 ESAT-6 family proteins in M. tuberculosis (77).

The M. tuberculosis DNA that is exposed to the cytoplasm after phagosomal rupture is recognized 
by cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase 
(cGAS), which induces the synthesis of cyclic GMP-AMP (cGAMP) as a cellular secondary 
messenger. cGAMP moves to the cytosol and activates the stimulator of interferon genes 
(STING) to activate TANK-binding kinase (TBK) 1 (a serine/threonine-protein kinase)-
interferon regulatory factor 3 (IRF3) (Fig. 5) (78,79). The activated cGAS/STING pathway finally 
triggers the expression of type I interferons such as IFN-α to suppress M. tuberculosis in the 
infected cells (80,81). Additionally, TBK-1 activity and bacterial ubiquitination lead to selective 
autophagy of the pathogen (Fig. 5). The lipidated isoform of the microtubule-associated protein 
1 light chain is involved in the ubiquitination of mycobacterial and/or phagosomal membrane 
fragments (82). In addition, mycobacterial DNA is recognized by absent in melanoma 2 
(AIM2) and cGAS; however, NLRP3 and caspase-1 may not be involved in this process (83). 
It has been suggested that intracellular M. tuberculosis DNA sufficiently activates the AIM2 
inflammasome, which releases IL-1β and IL-18 (84). However, another study has shown that M. 
tuberculosis inhibits IL-1β secretion via the ESX-1 secretion system (81). Furthermore, until date, 
the relationship between the cGAS and AIM2 pathways is not clear. However, it appears that 
components derived from M. tuberculosis, especially bacterial DNA, might play a critical role in 
host defense mechanisms. This consequently induces the activation of inflammasomes and the 
cGAS/STING pathway at the infection site to help reduce M. tuberculosis burden.

ESAT-6 downregulates the expression of MHC molecules and induces the migration of M. 
tuberculosis to the cytoplasm through host cell phagosomal rupture, which may be an adverse 
effect of using ESAT-6 as a vaccine. However, phagosomal rupture by ESAT-6 also induces the 
activation of the AIM2 inflammasome and the STING-TBK-1-IRF3 pathway, which triggers 
strong immune activation to eliminate M. tuberculosis infection.

CONCLUSION

In this review, we discuss the current progress in TB vaccine development. Despite the 
limitations of BCG, a novel TB vaccine that can replace it has not yet been developed. 
However, efforts to develop new TB vaccines have resulted in the production of a number of 
TB vaccine candidates. Here, we summarize the data on vaccine candidates that have been 
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studied or are being investigated in clinical trials so that researchers can easily understand 
the current status of TB vaccine development.

We also discuss the role of ESAT-6, which is widely used as a target antigen in TB vaccine 
development, and question whether developing a TB vaccine with ESAT-6 is an effective 
strategy. ESAT-6 induces phagosome rupture in cells, which results in regulation of the 
migration of M. tuberculosis to the cytoplasm and is associated with the inhibition of MHC 
I and II. These characteristics of ESAT-6 are considered inappropriate for a TB vaccine to 
induce an immune response. In fact, many TB vaccine candidates that are formulated based 
on ESAT-6 induction have not progressed in clinical trials. In addition, problems arise 
when performing IGRA diagnostic tests using ESAT-6, as the results of the test cannot be 
attributed to the effects of the ESAT-6-based TB vaccine. To solve this problem, a study on 
ESAT-6-free IGRA assays is underway. In this study, EspC, EspF, and Rv2348c were screened 

13/19https://doi.org/10.4110/in.2018.18.e17

New Preventive and Therapeutic Vaccines for Tuberculosis

https://immunenetwork.org

M. tuberculosis

Autophagosomal
membrane

Phagosomal rupture
by ESX-1

Procaspase-1

Mycobacterial DNA

M. tb

AIM2

cGAS

TBK1

LC3-II Ub

STING
ER

Nucleus

?

IRF3

IFNβ

Pro-IL-1β IL-1β
IL-1βcGAMP

cGAMP

ATP
GTP

ESX-1
ESAT-6-CFP-10
heterodimer

P P

P P

NLRP3

Activated caspase 1

Neighboring
host cell

Inflammasome
activation (?)

Figure 5. Mechanism of inflammatory responses in Mycobacterium tuberculosis-infected cells. In M. tuberculosis-infected host cells, the bacterium is 
internalized through phagocytosis. M. tuberculosis replicates and secretes its own peptides that induce pathogenic effects in the phagosome/endosome. 
During the life cycle of M. tuberculosis, the bacteria escape the phagosome and reach the cytosol; this process is dependent on ESAT-6, which is secreted 
by the ESX-1 excretion system. Cytosolic mycobacterial DNA produced by the defense mechanisms of the host cell is sensed by cGAS and AIM2. Activated 
cGAS uses adenosine triphosphate (ATP) and GTP to synthesize cGAMP, which acts as a secondary messenger in the host cell. cGAMP activates STING, 
which phosphorylates TBK-1. TBK-1 phosphorylates IRF3 and induces ubiquitination to bacteria, thus triggering autophagy. Consequently, the dimerization 
of phosphorylated IRF3 activates IFN-β, which suppresses the M. tuberculosis burden. On the other hand, cytosolic mycobacterial DNA is also sensed by an 
AIM2 DNA sensor, one of the components of the inflammasome. Activated AIM2 protein induces the protease effect of the AIM2 inflammasome, which cleaves 
procaspase-1 to caspase-1. Cleaved caspase-1, in turn, cleaves pro-IL-1β to IL-1β to be secreted into the extracellular space.

https://immunenetwork.org


as potent antigens and mixed with CFP-10 to produce a cocktail, which showed a diagnostic 
performance similar to that of QuantiFERON. As the development of vaccines using ESAT-6 
proceeds, it is necessary to continue research and development in diagnosis of TB (85).

Despite the abovementioned limitations of ESAT-6, it presents several benefits as a vaccine 
antigen. According to previous reports on the development of ESAT-6 as a vaccine antigen, 
ESAT-6 is highly potent and can induce good CD4+ T cell and CTL responses to protect hosts 
against TB. The difficulty associated with the use of ESAT-6 appears to be the possibility of 
toxicity due to the immunization method. We propose the development of a novel cell-based 
vaccine that can overcome the low immunogenicity of ESAT-6. It appears that it is better to 
use a viral vector to deliver ESAT-6 antigen to APCs since ESAT-6 can suppress APC function.

Although dendritic-cell-based vaccines are well-known, we suggest the development of 
B-cell-based vaccines because they can sufficiently activate CD4+ T cell and CTL responses. 
Moreover, it is reported that an α-GalCer-loaded B cell-based vaccine induced NKT cell 
activation to boost immune responses elicited by a B-cell-based vaccine. Thus, a cell-based 
vaccine containing ESAT-6 could be a novel prophylactic and therapeutic vaccine that can 
enhance protection against M. tuberculosis infection.
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