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Previously we showed that biodegradable nanoparticles con-
taining poly-IC or CpG oligodeoxynucleotide (ODN) togeth-
er with ovalbumin (OVA) were efficient at inducing MHC-re-
stricted presentation of OVA peptides in dendritic cells. The 
CTL-inducing activities of the nanoparticles were examined 
in the present study. Nanoparticles containing poly-IC or 
CpG ODN together with OVA were prepared using bio-
degradable polymer poly(D,L-lactic acid-co-glycolic acid), 
and then were opsonized with mouse IgG. The nanoparticles 
were injected into the tail vein of mice, and 7 days later the 
OVA-specific CTL activities were measured using an in vivo 
CTL assay. Immunization of mice with the nanoparticles con-
taining poly-IC or CpG ODN together with OVA elicited po-
tent OVA-specific CTL activity compared to those containing 
OVA only. In accordance with these results, nanoparticles 
containing poly-IC or CpG ODN together with OVA exerted 
potent antitumor activity in mice that were subcutaneously 
implanted with EG7.OVA tumor cells. These results show 
that encapsulation of poly-IC or CpG ODN together with an-
tigen in biodegradable nanoparticles is an effective approach 
for the induction of potent antigen-specific CTL responses in 
vivo.
[Immune Network 2013;13(1):30-33]

Induction of robust cytotoxic T lymphocyte (CTL) responses 

is essential for the immunotherapy against cancers or viral 

infections. Naïve CD8 T cells become activated when their 

receptors recognize antigens presented by professional anti-

gen presenting cells in the context of MHC-I molecules (1). 

The cross-presentation pathway, which allows MHC-I-re-

stricted presentation of exogenous antigen, appears to be an 

obligatory mechanism for the generation of CTL responses to 

antigens that are expressed only in nonprofessional antigen 

presenting cells (APCs) (2-6). In the absence of such a mech-

anism, viral or tumor antigens expressed in nonprofessional 

APCs could escape immunosurveilance because CTL respon-

ses can only be induced efficiently for the antigens presented 

via class I MHC molecules on professional APCs (2-6).

  Delivery of antigens using nanoparticles prepared from bio-

degradable polymers such as poly(D, L-lactic acid-co-glycolic 

acid) (PLGA) into professional APCs is an efficient method 

for the induction of potent CTL responses. We and others 

have also shown that PLGA particle-mediated antigen delivery 

enhances and prolongs the MHC class I-restricted pre-

sentation of the exogenous antigens (cross-presentation) in 

dendritic cells (DCs) (7-10). PLGA-nanoparticles have also 

been shown to deliver antigens to APCs efficiently and gen-

erate Th1-type immune responses even against poor immu-

nogens (11,12). In our hand, antigens encapsulated with 

PLGA were at least 100 times more effective in inducing 

MHC-I-restricted presentation of exogenous antigen in DCs 

(13). Another advantage of nanoencapsulation would also be 

the protection of the encapsulated antigens and the im-

munomodulators from degradation by serum enzymes (14). 

  Recently, we showed that nanoparticles containing poly-IC 

or CpG ODN together with ovalbumin (OVA) increases and 

prolongs both MHC class I- and class II-restricted presentation 
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Figure 1. The CTL inducing activi-
ties of the nanoparticles. The nano-
particles containing OVA only (NP 
[OVA]), both OVA and poly-IC (NP 
[OVA＋I：C], or both OVA and 
CpG ODN (NP[OVA＋CpG]) were 
injected intravenously into tail veins
of mice. Seven days later, an in vivo
CTL assay was performed in the 
mice using CFSE-labeled syngeneic 
target cells. (A) Representative histo-
grams of the slpeen cells of indivi-
dual mice were shown. The percen-
tages of specific killing of OVA[257-
264] peptide-pulsed target cells in 
the spleens (B) and lymph nodes (C)
were graphically represented.

of OVA peptides in DCs (9). In the present study, we exam-

ined the capability of the nanoparticles to induced OVA-spe-

cific CTL responses in mice.

  Nanoparticles containing poly-IC or CpG ODN together 

with OVA were prepared using a biocompatible/biodegrad-

able polymer, PLGA, as described earlier (9). The poly-IC 

used in the present study was purchased from Invivogen (San 

Diego, CA, USA). Unmethylated CpG oligodeoxynucleotide 

(ODN), 5'-TCC ATG ACG TTC CTG ATG CT-3', was synthe-

sized by the Bionics Co. Ltd (Seoul, Korea). The amounts of 

poly-IC and CpG DNA contained in the nanoparticles were 

1.40 and 2.01μg/mg nanoparticles, respectively. The average 

content of OVA was 21.68μg/mg nanoparticles. For opsoni-

zation, OVA-specific mouse IgG (mIgG) or was attached co-

valently to the nanoparticles using (1-ethyl-3-(3-dimethylami-

nopropyl)-carbodiimide) (EDC, Pierce, Rockford, IL, USA) as 

previously described (9).

  The CTL inducing activities of the nanoparticles containing 

OVA only (NP[OVA]), both OVA and poly-IC (NP[OVA＋I：

C], or both OVA and CpG ODN (NP[OVA＋CpG]) were com-

pared in mice. In this experiment, the nanoparticles were in-

jected intravenously into tail veins of mice (100μg as 

OVA/mouse). Seven days later, an in vivo CTL assay was per-

formed in the mice using CFSE-labeled syngeneic target cells, 

as described in detail in the earlier paper (9). Fig. 1A shows 

representative histograms of the cells isolated from the 

spleens. Addition of poly-IC or CpG to OVA-nanoparticles 

significantly increased their ability to induce OVA-specific 

CTLs in the spleens (Fig. 1B) and lymph nodes (Fig. 1C). 

Immunization of mice with both NP[OVA＋I：C] and NP[OVA

＋CpG] further increased OVA-specific CTLs in the spleens 

and lymph nodes.

  To confirm that the induction of OVA-specific CTL activity 

is sufficient to engender antitumor activity, mice were immu-

nized with the nanoparticles containing bovine serum albu-

min (BSA) only (NP[BSA]), OVA only (NP[OVA]), both OVA 
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Figure 2. The antitumor activities of the nanoparticles. (A) Mice were
immunized with the nanoparticles containing bovine serum albumin 
(BSA) only (NP[BSA]), OVA only (NP[OVA]), both OVA and poly-IC
(NP[OVA＋I：C], or both OVA and CpG ODN (NP[OVA＋CpG]), 
intravenously into tail veins of the mice. Seven days later, the mice 
were subcutaneously implanted with EG7.OVA tumor cells (5×105/ 
mouse). Two days later, the mice were again immunized with the 
same nanoparticles intravenously into tail veins of the mice. The 
tumor size was measured with a slide caliper and expressed as a 
tumor index, determined as the square root of (major axis×minor
axis). (B) Mice were subcutaneously implanted with the tumor cells,
and then mixtures of NP[OVA＋I：C] and NP[OVA＋CpG] were 
injected into the tumor mass on 10, 12 and 14 days after the tumor 
implantation.

and poly-IC (NP[OVA＋I：C], or both OVA and CpG ODN 

(NP[OVA＋CpG]), intravenously into tail veins of the mice (10

μg as OVA or BSA/mouse). Seven days later, the mice were 

subcutaneously implanted with EG7.OVA tumor cells (5×10
5
/ 

mouse), which is a mouse lymphoma expressing OVA. Two 

days later, the mice were immunized with the same nano-

particles intravenously into tail veins of the mice. The tumor 

size was measured with a slide caliper and expressed as a 

tumor index, determined as the square root of (major ax-

is×minor axis). As shown in Fig. 2A, the growth of tumors 

was obvious from day 14 after tumor cell implantation, and 

reached to average size of 3.76 cm
3
 at day 25 in the mice 

that were immunized with the nanoparticles containing an ir-

relevant protein, BSA. Immunization of the mice with 

NP[OVA] significantly reduced the size of the tumors. The 

average size of the tumors was 2.92 cm3 at day 25 in the 

mice that were immunized with the NP[OVA]. Addition of 

poly-IC or CpG to OVA-nanoparticles significantly reduced 

the size of the tumors. Immunization of mice with both 

NP[OVA＋I：C] and NP[OVA＋CpG] almost completely re-

duced the development of the tumors.

  The antitumor efficacy of the combined use of NP[OVA＋

I：C] and NP[OVA＋CpG] was further confirmed in mice im-

planted with EG7.OVA tumor cells. In this experiment, mice 

were subcutaneously implanted with the tumor cells, and 

then both types of the nanoparticles were mixed in a 1：1 

ratio, and injected into the tumor mass on 10, 12 and 14 days 

after the tumor implantation (20μg as OVA/mouse). As 

shown in Fig. 2B. intratumoral injection of both NP[OVA＋

I：C] and NP[OVA＋CpG] completely inhibited the formation 

of tumor mass.

  Because the EG7.OVA cells express only MHC-I molecules 

and not MHC-II molecules, it is reasonable to speculate that 

the antitumor activity shown by the nanoparticles is the re-

flection of the OVA-specific CTL activity (15). In addition, it 

is noteworthy to note that the TLR agonists, poly-IC and CpG, 

were entrapped inside the PLGA-nanoparticles. Encapsulation 

prevents not only the systemic effects of the TLR agonists, 

but also the enzymatic degradation of the TLR agonists 

(9,14-18).

  Robust induction of CTL activity is important in the im-

munotherapy of tumors and viral infections. Recently, our 

laboratory has been involved in the development of strategies 

to enhance the MHC-I-restricted antigen presentation of exog-

enous antigen (8,9,19,20). We showed that nanoencapsul-

ation of poly-IC or CpG together with OVA is an efficient ap-

proach to increase and prolong the MHC-restricted pre-

sentation of OVA peptides in dendritic cells (9). We also 

showed that IgG-opsonized PLGA-nanoparticles with a mean 

size of 1.1μm would be the choice of biodegradable carriers 

for the targeted-delivery of protein antigens for cross-priming 

in vivo (20). The present study confirms that nanoparticles 

containing poly-IC or CpG ODN together with OVA induce 

potent antitumor CTL activities in mice, and the OVA-specific 
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CTL activity is sufficient to inhibit the growth of EG7.OVA 

tumor cells in mice. Our study also shows that encapsulation 

of poly-IC or CpG ODN together with antigen in biodegrad-

able nanoparticles is an effective approach for the induction 

of potent antigen-specific CTL responses.
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