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How Th2 immunity develops in vivo remains obscure. 
Basophils have been considered key innate cells producing 
IL-4, a cytokine essential for Th2 immunity. Increasing evi-
dence suggests that basophils are dispensable for the ini-
tiation of Th2 immunity. In this study, we revisited the role of 
basophils in Th2 immune responses induced by various types 
of adjuvants. Mice deficient in IL-3 or IL-3 receptor, in which 
basophil lymph node recruitment is completely abolished, 
fully developed wild type level Th2 CD4 T cell responses in 
response to parasite antigen or papain immunization. Similar 
finding was also observed in mice where basophils are in-
ducibly ablated. Interestingly, IL-4-derived from non-T cells 
appeared to be critical for the generation of IL-4-producing 
CD4 T cells. Other Th2 promoting factors including IL-25 and 
thymic stromal lymphopoietin (TSLP) were dispensable. 
Therefore, our results suggest that IL-3- and basophil-in-
dependent in vivo Th2 immunity develops with the help of 
non-T cell-derived IL-4, offering an additional mechanism by 
which Th2 type immune responses arise in vivo.
[Immune Network 2013;13(6):249-256]
 
 
INTRODUCTION

Basophils are considered one of the major cell types asso-

ciated with Th2 immunity (1-4). Basophils exert immunomod-

ulatory roles mainly by producing IL-4 and by functioning as 

professional Ag presenting cells (3-5), although the latter pos-

sibility was recently challenged by others (6-9). It was re-

cently proposed that a subset of dendritic cells (DC) express-

ing IgE receptor (FcεRI) is highly specialized in generating 

Th2 type effector cells (7,9). In addition, recent identification 

of innate type 2 cells and Th2-inducing cytokines adds addi-

tional complexity to in vivo Th2 immunity. For example, epi-

thelial cell-derived cytokines such as IL-25 induces Th2 im-

mune responses especially at the mucosal surface following 

helminth infections (10,11). IL-25 also promotes accumulation 

of multi-potent progenitor (MPP) type 2 cells in the gut asso-

ciated lymphoid tissues (12). Adoptive transfer of MPP type 

2 cells was sufficient to induce type 2 cytokine production 

and to confer protection in response to helminth infection 

(13). IL-25, together with IL-33, also induces expansion of 

nuocytes, primary source of IL-13 during helminth infection 

(14). Another epithelial cell-derived cytokine, thymic stromal 

lymphopoietin (TSLP) activates DC to drive Th2 immune re-

sponses (15). TSLP was recently reported to induce Th2 im-

munity by augmenting basophili production independently of 

IL-3 (16). Therefore, pathways toward Th2 immunity in vivo 

appear to be manifold.

  We previously demonstrated that basophils are rapidly 

(and transiently) mobilized into the draining LN following 

Nippostrongylus brasiliensis (Nb) infection and that this re-
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cruitment requires IL-3 or IL-3Rβ (8). Yet, Nb specific Th2 

immunity was efficiently induced in these mice, suggesting 

a basophil-independent Th2 response (8). Consistent with 

this, Th2 immune responses induced by primary Nb infection, 

papain immunization, passive immunoglobulin-mediated sys-

temic anaphylaxis, and acute allergic lung inflammation were 

successfully induced without basophils, although basophils 

were found to be essential for protective memory responses 

against secondary Nb or tick infection, and chronic allergic 

skin inflammation (17-19). Therefore, mechanisms involved 

in Th2 immunity and basophils may be dependent on model 

systems used.

  In this study, we report that papain-mediated basophil re-

cruitment, similar to that mediated by Nb infection, is also 

IL-3-dependent and that the papain-induced Ag specific Th2 

immune responses are not affected by the lack of IL-3 or 

IL-3Rβ, suggesting that basophils are dispensable for this 

process. Immunizing mice with nonviable parasites also in-

duced IL-3-dependent basophil LN recruitment. Interestingly, 

Th2 responses induced by dead parasites were substantially 

greater than those induced by papain. Basophils recruited in-

to the draining LN expressed little or no MHC II molecules 

compared to CD11c
＋

 DC, and did not uptake Ag. In agree-

ment with a recent report (7), FcεRI
＋

 CD11c
＋

 DC efficiently 

did uptake Ag. Furthermore, inducible basophil ablation did 

not affect Th2 immune responses. Unexpectedly, IL-4 pro-

duced by non-T cells was required for Th2 CD4 T cell re-

sponses to develop, whereas other innate type Th2 cytokines 

including IL-25 and TSLP were dispensable for the Th2 im-

mune responses. Taken together, these results suggest a com-

plexity of in vivo Th2 immunity that can arise without baso-

phils or other innate type 2 cytokines.

METHODS

Mice
BALB/c wild type (WT), BALB/c IL-3−/−, and BALB/c 

DO11.10 TCR Tg mice were purchased from the Jackson 

Laboratory (Bar Harbor, ME). IL-3
−/−

 mice and IL-3Rβ
−/−

 

mice, deficient in both βc and βIL-3 and G4 knock-in mice 

expressing GFP under the IL-4 promoter were previously de-

scribed (20-22). IL-25R (IL-17RB)
−/−

 mice were provided 

from Dr. Wenjun Ouyang (Genentech). Mcpt8
DTR

 mice were 

previously reported (18). All experimental procedures were 

conducted according to the guidelines of the Institutional 

Animal Care and Use Committee.

Immunization
Mice were injected into the ear pinna with 100μg chicken 

ovalbumin protein (Sigma, St. Louis, MO) plus 50μg papain 

(Sigma) or 500 dead Nb parasites in a 10μl volume. Seven 

days later, draining cervical LN was harvested and ex vivo 

restimulated with OVA323-339 peptide for 24 hours. IL-4 pro-

duction was measured by ELISA or ELISPOT assay as de-

scribed below. In some experiments, 250μg anti-TSLP mAb 

(R and D system, Minneapolis, MN) was injected at days 0 

and 3 post injection. For basophil depletion, mcpt8
DTR

 or con-

trol mice were intravenously injected with diphtheria toxin 

(750 ng/20 g body weight; Sigma) prior to immunization.

Flow cytometry
Draining cervical LN cells and blood were examined for 

basophils. In brief, cells were stained with anti-FcγR (clone 

93) and anti-CD45 (30-F11). Cells were ex vivo stimulated 

with PMA (CalBiochem, San Diego, CA) and Ionomycin 

(CalBiochem) for 4 hours. Monensin was added in the culture 

for the last 2 hours of stimulation. Cells were stained for intra-

cellular IL-4 expression. Samples were acquired using a 

FACSCalibur or a LSRII (Becton Dickinson, Franklin Lakes, 

NJ) cytometer and analyzed using FlowJo (Treestar, Ashland, 

OR). All antibodies used were purchased from eBioscience 

(San Diego, CA).

ELISPOT and ELISA analysis
To measure T cell cytokine production harvested cells were 

stimulated with 10μg OVA peptide for 24 hours. IL-4 pro-

duction in the culture supernatant was measured by ELISA. 

In some experiment, IL-4 producing cells were determined 

by IL-4 ELISPOT assay. Abs used for both assays were puri-

fied anti-IL-4 (11B11) and biotinylated anti-IL-4 (BVD6-24G2). 

These Abs were purchased from eBioscience. 

Data analysis
Statistical significance was determined by the Student’s t-test 
using the Prism software (GraphPad Software, La Jolla, CA). 

p＜0.05 was considered to indicate a significant difference.

RESULTS

Papain immunization recruits circulating basophils 
to the draining LN via IL-3
In response to Th2-inducing allergen challenges or to parasite 

infections, circulating basophils are transiently recruited into 
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Figure 1. Papain immunization-mediated basophil LN recruitment 
requires IL-3. Groups of BALB/c and IL-3−/− mice were immunized 
with 100μg OVA protein plus 50μg papain. Draining cervical LN 
was collected 4 days post immunization. LN cells were examined for 
the existence of FcεRhigh CD45intermediate basophils. WT mice without 
immunization were included as negative controls. Data shown are 
representative of three repeated experiments.

Figure 2. Roles of IL-3 and IL-3R during papain-induced Th2 immunity. (A, B) CD4 T cells were isolated from WT, IL-3−/−, and IL-3Rβ−/−
DO11.10 mice, labeled with CFSE, and transferred into BALB/c recipients (3×106 cells per recipients). The recipients were then immunized 
with 100μg OVA protein plus 50μg papain into the ear pinnae. (A) Seven days post immunization, draining cervical LN cells were harvested. 
Total KJ1.26＋ CD4 T cells were enumerated by FACS analysis. (B) CFSE dilution of KJ1.26＋ CD4 T cells was also examined. (C∼E) CD4 T 
cells were isolated from WT DO11.10 mice, labeled with CFSE, and transferred into WT, IL-3−/−, and IL-3Rβ−/− recipients (3×106 cells per 
recipients). (C) Total KL1.26＋ CD4 T cells were enumerated as described above. (D) CFSE dilution was determined as described above. (E) 
Cervical LN cells were restimulated with OVA323-339 peptide for 24 hours and IL-4 production was determined by ELISA. Filled symbols are 
without peptide stimulation. Each symbol represents individually tested mouse. Similar results were obtained from two independent experiments. 
*p＜0.05; **p＜0.01.

the draining LN, where they are believed to play a key role 

in supporting the development of antigen specific Th2 type 

CD4 T cell responses (2). We previously reported that LN re-

cruitment of circulating basophils after helminth infection was 

completely abolished in IL-3- or IL-3Rβ-deficient mice, in-

dicating an IL-3-dependent process (8). First, we examined 

whether IL-3 also mediates basophil recruitment after immuni-

zation of papain, a prototype allergen shown to recruit baso-

phils to the draining LN and induce an antigen specific Th2 

immunity when coimmunized with the antigen (23). Groups 

of WT and IL-3-deficient mice were immunized with OVA 

plus papain and basophil recruitment in the draining LN was 

subsequently examined. Consistent with a previous report 

(23), injection of OVA protein plus papain induced a transient 

recruitment of FcγR
high

 CD45
intermediate

 basophils into the drain-

ing cervical LN of WT mice (Fig. 1). By contrast, such recruit-

ment was completely absent in IL-3-deficient mice (Fig. 1). 

Therefore, papain-induced basophil LN recruitment also re-

quires IL-3.

IL-3 plays no role in papain-induced Th2 immune 
responses
Helminth-induced Th2 immunity normally develops in the ab-

sence of IL-3 or IL-3Rβ (i.e., in the absence of basophil re-

cruitment into the draining LN) (8). In case of papain-induced 

Th2 immunity, however, the question of whether basophils 

are critical for the resulting Th2 immune responses remains 

unresolved. Since basophil LN recruitment was found to be 

absent in IL-3-deficient mice immunized with papain, we 

therefore examined OVA specific CD4 T cell responses in 
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Figure 3. Nonviable N. brasiliensis immunization induces Th2 
immunity. (A) WT or IL-3−/− mice were immunized with 100μg 
OVA protein plus 500 dead L3 Nb parasites into the ear pinnae. Four 
days post injection, cervical draining LN was harvested and basophil 
recruitment was examined by FACS analysis. (B) Seven days post 
injection, cervical LN cells were harvested and in vitro stimulated 
with OVA peptide for 24 hours. IL-4-producing cells were determined 
by ELISPOT analysis as described in Materials and Methods. (C) 
Draining LN cells were in vitro stimulated with OVA peptide for 48 
hours. Cells were stained for KJ1.26, CD4, and IL-4. DO11.10 CD4 
T cell expression of intracellular IL-4 was determined by intracellular 
cytokine staining as described in Materials and Methods. *p＜0.05; 
**p＜0.01.

IL-3- or IL-3Rβ-deficient mice after immunization with OVA 

protein plus papain. First, OVA-specific DO11.10 TCR Tg CD4 

T cells that are WT, IL-3-, or IL-3Rβ-deficient were adoptively 

transferred into WT recipients, and the recipients were sub-

sequently immunized with OVA plus papain. As shown in 

Fig. 2A, comparable numbers of KJ1.26
＋

 CD4 T cells were 

found in the draining LN following immunization regardless 

of the phenotypes of CD4 T cells. When proliferation was 

examined by CFSE dilution, the pattern of CFSE dilution was 

indistinguishable between WT, IL-3−/−, and IL-3Rβ−/− 

DO11.10 CD4 T cells (Fig. 2B). Therefore, the production of 

IL-3 or IL-3 responsiveness of CD4 T cells plays little or no 

role in Ag-induced T cell proliferation/expansion in vivo. 

  Since recipient cells are fully capable of producing IL-3 in 

the experiments described above, we next transferred WT 

DO11.10 CD4 T cells into different types of recipients (WT, 

IL-3
−/−

, and IL-3Rβ
−/−

) to test whether IL-3 production or 

IL-3Rβ expression by the recipient cells plays any role in this 

process. As shown in Fig. 2C, DO11.10 CD4 T cells efficiently 

expanded in WT and IL-3
−/−

 recipients. Interestingly, in 

IL-3Rβ
−/−

 recipients the expansion was significantly re-

duced, which may be attributed to the defects in the expan-

sion and maturation of antigen presenting cells in IL-3Rβ
−/−

 

mice (20). Nevertheless, CFSE dilution profiles of Ag specific 

T cells in all tested recipients was not significantly different 

(Fig. 2D), indicating that IL-3 production or IL-3Rβ ex-

pression of the endogenous recipient cells does not play a 

role in activating T cells, although IL-3Rβ expression of the 

recipients may contribute to the expansion of Ag specific T 

cells.

  We then examined whether the inactivation of IL-3 or IL-3Rβ 

on the recipient derived cells including basophils affects pa-

pain-induced Th2 immune responses. Draining LN cells from 

immunized recipients were restimulated ex vivo with OVA 

peptide and IL-4 secretion was measured by ELISA. As shown 

in Fig. 2E, OVA-specific IL-4 secretion was similar regardless 

of the IL-3 (or IL-3Rβ) deficiency in the recipient cells. 

Likewise, IL-3
−/−

 and IL-3Rβ
−/−

 DO11.10 CD4 T cells trans-

ferred into WT recipients and immunized with OVA plus pa-

pain also secreted similar levels of IL-4 after OVA restim-

ulation (data not shown). Therefore, basophils (or IL-3) seem 

to be dispensable in papain-induced Th2 immunity.

IL-3-independent Th2 immune responses after non-
viable parasite Ag injection
We recently reported that injection of nonviable Nb larvae 

similarly induces basophil LN recruitment and robust Th2 re-

sponses and that basophil depletion using anti-FcεRI (MAR-1) 

mAb did not alter the responses (24). Similar to papain im-

munization or live helminth infection, dead Nb injection failed 

to recruit basophils into the draining LN in IL-3
−/−

 mice (Fig. 

3A). Interestingly, the magnitude of basophil recruitment by 

dead parasites was substantially greater than that induced by 

papain (Fig. 1 and 3A). Dead parasite immunization also in-

duced stronger CD4 T cell IL-4 responses when compared to 

that induced by OVA/papain immunization (Fig. 3B and 3C). 

No IL-4 production was observed without restimulation or 

with irrelevant peptide stimulation (data not shown). 

Likewise, the lack of IL-3 from either transferred DO11.10 

CD4 T cells and/or endogenous cells did not affect the gen-

eration of OVA-specific IL-4-producing T cells (data not 

shown). Therefore, these results suggest that in vivo Th2 im-

munity can arise without IL-3 (i.e., basophils).

Basophil depletion did not affect Th2 immune re-
sponses
To ensure the dispensable role for basophils we utilized 

Mcpt8
DTR

 mice in which basophils can be selectively depleted 

by DT administration (18). WT and Mcpt8DTR mice were trans-

ferred with DO11.10 CD4 T cells, injected with DT, and then 

immunized with OVA plus dead Nb. Basophil depletion was 

achieved by DT injection as measured by blood basophils 

(Fig. 4A). Consistent with earlier findings, basophil depletion 

by DT did not affect the development of IL-4-producing Ag 
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Figure 4. Th2 immune responses after basophil depletion. DO11.10 
CD4 T cells were transferred into either WT or Mcpt8DTR mice. The 
recipients were injected with DT and immunized with OVA plus 
dead Nb. (A) Circulating basophils in the blood of the recipients were 
examined 7 days post immunization. (B) OVA specific IL-4-production 
was determined using draining LN cells harvested 7 days post 
immunization followed by in vitro 48 hours stimulation with OVA 
peptide. The proportion of IL-4 producing DO11.10 T cells was 
determined by FACS analysis. Each symbol represents individually 
tested mouse. WT, wild type; ns, not significant.

Figure 5. MHC II expression and Ag uptake of LN cells. (A) BALB/c 
mice were immunized with OVA plus papain or OVA plus dead Nb 
as indicated. Four days post immunization, draining LN cells were 
harvested, and stained for FcγR and CD45. MHC II expression on 
basophils (population II), FcγR/CD45high cells (population I) and 
non-lymphoid parenchymal cells (population III) were then examined. 
Shown are the proportions of MHC IIhigh cells among the indicated 
populations. (B) BALB/c mice were immunized with allophycocyanin 
(APC)-conjugated OVA protein plus papain or dead Nb as described 
above. Four days later draining LN cells were harvested, and stained 
for CD11c and FcεRI. Ag uptake of conventional CD11c＋ DC 
(population I), FcεRI/CD11c＋ inflammatory DC (population II), and 
FcεRI＋ CD11c− basophils (population III) was examined by FACS 
analysis. The experiments were repeated twice with similar results.

specific CD4 T cell responses (Fig. 4B). Therefore, basophils 

are not critical for in vivo Th2 immunity.

Basophils are not major antigen presenting cells in 
the draining LN
Whether basophils function as professional antigen presenting 

cells in the draining LN to induce Th2 immunity has been 

the matter of debate. Since a stronger Th2 immunity develops 

after immunization of dead Nb than of papain, we exploited 

this model system to compare cell types responsible for anti-

gen presentation. Mice were immunized with OVA/papain or 

OVA/Nb, and MHC II expression of recruited basophils 

(CD45
intermediate

 FcγR
high

, population II) and conventional anti-

gen presenting cells (CD45high FcγRhigh, population I) was 

compared. As shown in Fig. 5A, MHC II expression of FcγR 

bearing antigen presenting cells (I) was very high; ＞90% of 

them were MHC II
bright

. Moreover, no obvious difference was 

noticed between papain or dead Nb immunization. By con-

trast, MHC II
bright

 population was dramatically lower (∼10%) 

in basophils (Fig. 5A) and most of the basophils did not ex-

press MHC II, similar to negative control CD45
neg

 LN cells 

(population III). Therefore, basophils are not the major MHC 

II-expressing cells in the draining LN.

  It was demonstrated that endocytosis of soluble proteins by 

basophils is crucial for antigen presentation (3). In fact, ∼15% 

of basophils are MHC II
bright

 in OVA/papain immunized mice, 

thus they may still be involved in antigen presentation to na-

ïve T cells and in Th2 immunity. Alternatively, FcεRI-ex-

pressing ‘inflammatory DC’ subsets may function as key 
Th2-inducing antigen presenting cells (7,9). To address this 

possibility, mice were immunized with allophycocyanin 

(APC)-conjugated OVA plus papain or dead Nb. Fluorescent 

APC uptake of CD11c
＋

 (I), FcεRI
＋

 CD11c
＋

 (II), and FcεRI
＋

 

CD11c− (III) cells was next analyzed. We found that APC- 

OVA uptake was predominantly found in FcεRI
＋

 CD11c
＋

 

cells (Fig. 5B). By contrast, FcεRI
＋

 CD11c
−

 cells (III), which 

primarily include basophils, were not OVA-APC＋ (Fig. 5B), 

strongly indicating that basophils are unable to uptake in-

jected antigens. Importantly, OVA-APC uptake by FcεRI
＋

 

CD11c＋ cells was dramatically enhanced when dead Nb was 

used instead of papain (Fig. 5B), which may result in a stron-

ger Th2 immunity (Fig. 3B and 3C). OVA-APC uptake of con-

ventional CD11c＋ DC was substantially lower, although it 

was higher upon dead Nb injection (from 1.6% to 6.9%). 

Overall, these results provide strong evidence that dead Nb- 

and possibly papain-induced Th2 immunity is likely to be in-

duced by antigen presentation of ‘inflammatory DC’ subsets 

that express FcεRI rather than basophils.

IL-4 but not IL-25 or TSLP is essential to generate 
dead Nb-induced Th2 immunity
To further investigate a mechanism(s) of how IL-3- and baso-
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Figure 6. Roles of cytokine in dead Nb induced Th2 immunity. 
DO11.10 CD4 T cells were transferred into WT or IL-4−/− G4/G4 
(A) or IL-25R-deficient (B) recipients. The recipients were immunized 
with OVA plus dead Nb as described above and IL-4-producing CD4 
T cells were enumerated by ELISPOT assay as described above. (C) 
WT recipients of DO11.10 CD4 T cells were injected with neu-
tralizing anti-TSLP mAb at days 0 and 4 of immunization. IL-4 
production was examined as described above. Shown are the mean±
STD of 3∼4 individually tested recipients.

phil-independent Th2 immunity develops we first tested the 

contribution of IL-4. WT DO11.10 CD4 T cells were trans-

ferred into WT and IL-4-deficient G4/G4 recipients. The recip-

ients were then immunized with OVA plus dead Nb, and ex-

amined the development of OVA specific Th2 immune 

responses. Surprisingly, IL-4 production of OVA specific CD4 

T cells was completely abolished in IL-4-deficient recipients, 

while robust Th2 immune responses were observed in WT 

recipients (Fig. 6A). Given that naïve CD4 T cells are capable 

of producing IL-4 sufficient for Th2 differentiation (25), these 

results strongly suggest that IL-4 produced by recipient non-T 

cells but not by Ag specific CD4 T cells in response to 

Nb/OVA immunization is required for the development of 

Th2 immune responses. Recently, innate type 2 cells such as 

nuocytes, MPP
type2

, and NBNT cells have been implicated to 

play crucial roles in developing in vivo Th2 type immune re-

sponses particularly in the gut associated tissues (13,14,26). 

IL-25 and TSLP are candidate cytokines that activate those in-

nate type 2 cells to promote Th2 immunity. In order to exam-

ine the contribution of innate type 2 immune components, 

we first used mice deficient in IL-25R (IL-17RB)−/− as recipi-

ents of DO11.10 CD4 T cells. The recipients were immunized 

with OVA plus dead Nb, and subsequent OVA-specific IL-4 

responses were determined. As shown in Fig. 6B, the lack 

of IL-25R by recipient cells played no roles in generating 

IL-4-producing cells, indicating that IL-25-responsive innate 

Th2 cells may not be involved in this process. In addition, 

a potential role of TSLP was examined by treating WT recipi-

ents of DO11.10 CD4 T cells with neutralizing anti-TSLP mAb 

after immunization of OVA/Nb as previously reported (23). 

TSLP neutralization did not affect the generation of OVA-spe-

cific IL-4 responses (Fig. 6C). Therefore, neither IL-25 nor 

TSLP plays a role in the generation of IL-4-producing CD4 

T cells in vivo and that IL-4 produced by recipient derived 

cells plays an essential role in promoting antigen specific Th2 

immunity.

DISCUSSION

Earlier findings that basophils are the major IL-4-producing 

innate cells have proposed an attractive hypothesis that they 

are the initiators of type 2 immune responses in vivo (23), 

which was further supported by several reports showing that 

basophils can function as both professional Ag presenting 

cells and the potent source of IL-4 (3-5). The model Ags used 

in these studies include: papain, the protease activity of 

which was critical for the Th2 induction (3), intestinal parasite 

Trichuris muris (27), and IgE-Ag complexes (28). This hy-

pothesis has been challenged by several recent studies that 

provided compelling evidence that DCs rather than basophils 

play an indispensable role for the induction of Th2 immune 

responses in the model of Schistosoma mansonii infection 

and house dust mite Ag immunization (7,9). It was thus con-

cluded that basophils are generally dispensable for the devel-

opment of Th2 immunity in vivo, although they may still be 

the key effector cells mediating protection against certain 

pathogen infection (6,19).

  Consistent with recent reports, the current study demon-

strates that basophils are not necessary for papain-mediated 

Th2 immune responses as IL-4-producing CD4 T cells equiv-

alently develop in the absence of IL-3 or IL-3Rβ, without 

which basophil LN recruitment is completely abolished (8). 

These findings strongly suggest that the entry of circulating 

basophils into the draining LN is not a requirement for the 

subsequent Th2 immunity to develop. Furthermore, relatively 

low expression of MHC II molecules as well as poor Ag up-

take by basophils compared to those by FcεRI
＋

 DCs further 

support the possibility that basophils are not involved in proc-

essing Ag and presenting it to naïve CD4 T cells. Likewise, 

inducible ablation of basophils did not affect the generation 

of IL-4-producing Ag specific CD4 T cells. Because very few 

basophils might still be found in the draining LN of IL-3- or 

IL-3Rβ-deficient recipients or even after basophil depletion, 

one might still argue that those few cells may be sufficient 

to function as Th2 inducers by presenting Ag and/or secreting 

IL-4. However, a recent study using IL-4:eGFP-KN2 transgenic 

mice in which IL-4 secretion can be traced by transgenic CD2 

expression found that LN recruited basophils do not secrete 
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IL-4 (6).

  It is interesting to note that dead parasite-induced Th2 im-

mune responses are completely abolished in IL-4-deficient re-

cipients, because activated naïve CD4 T cells can produce 

IL-4 that can induce Th2 differentiation in an autocrine man-

ner (25). However, our results clearly demonstrate that T cells 

are not the source of IL-4 at least in this system. Other innate 

type 2 cytokines such as TSLP and IL-25 can promote the de-

velopment of Th2 immune responses particularly in the mu-

cosal tissues through the induction of IL-4-producing innate 

type 2 cells. For example, IL-25 has been shown to induce 

IL-4 production in NKT cells, non-B/non-T (NBNT) c-kit
pos

 

cells, and MPP
type2

 cells (11,12,29). However, we were unable 

to find Linneg c-kitpos IL-4 (GFP)-expressing innate type 2 cells 

within the draining LN (data not shown). Consistent with this, 

IL-4-producing CD4 T cell responses were efficiently gen-

erated in immunized IL-25R-deficient mice, suggesting that 

IL-25-responsive innate cells are not involved in this process. 

TSLP can promote Th2 immune responses (30); however, 

TSLP neutralization did not affect the generation of IL-4-pro-

ducing CD4 T cells. IL-33 is an IL-1-related cytokine that is 

implicated in Th2-associated allergic inflammation (31). IL-33 

is another cytokine that can stimulate various target cells in-

cluding Th2 cells, mast cells, basophils, natural helper cells, 

and NKT cells (10). IL-33 primarily induces IL-5 and IL-13 ex-

pression (31). In the mediastinal LN of IL-33R-deficient mice 

induced for lung inflammation, CD4 T cell IL-4 expression 

was found reduced (32). It will be interesting to find if IL-33 

is selectively expressed in the draining LN following papain 

or dead Nb immunization. However, dead Nb-induced Th2 

immune responses were found unaltered in MyD88−/− recipi-

ents (data not shown), suggesting that IL-33 may not be in-

volved in this process.

  DC depletion severely disrupts the induction of Th2 im-

munity after Schistosoma egg Ag immunization or live 

Schistosoma mansonii infection (9). Consistent with this find-

ing, in the model of house dust mite allergen challenge, baso-

phil depletion only partially reduced allergen-induced Th2 

immunity, while a novel DC subset that expresses the FcεRI 

was found to be essential for the induction of Th2 responses 

(7). Because IL-4 treated DC were shown to induce IL-4 pro-

duction in DCs (33), it is possible that DC may produce small 

amount of IL-4 that acts on activated CD4 T cells to trigger 

Th2 differentiation. However, how DCs are induced to ex-

press IL-4 remains to be determined. Dead Nb associated 

molecules may induce IL-4 production in DCs. In conclusion, 

elucidating Th2 immunity generated through a basophil-in-

dependent pathway that requires IL-4 derived from non-T 

cells will add an additional complexity involved in the gen-

eration of type 2 immunity in vivo.
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