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Silica nanoparticles, which are applicable in many industrial 
fields, have been reported to induce cellular changes such as 
cytotoxicity in various cells and fibrosis in lungs. Because the 
immune system is the primary targeting organ reacting to in-
ternalized exogenous nanoparticles, we tried to figure out 
the immunostimulatory effect of silica nanoparticles in mac-
rophages using differently sized silica nanoparticles. Using 
U937 cells we assessed cytotoxicity by CCK-8 assay, ROS 
generation by CM-H2DCFDA, intracellular Ca＋＋ levels by 
staining with Fluo4-AM and IL-8 production by ELISA. At 
non-toxic concentration, the intracellular Ca＋＋ level has in-
creased immediately after exposure to 15 nm particles, not 
to larger particles. ROS generation was detected signifi-
cantly in response to 15 nm particles. However, all three dif-
ferent sizes of silica nanoparticles induced IL-8 production. 
15 nm silica nanoparticles are more stimulatory than larger 
particles in cytotoxicity, intracellular Ca＋＋ increase and ROS 
generation. But IL-8 production was induced to same levels 
with 50 or 100 nm particles. Therefore, IL-8 production in-
duced by silica nanoparticles may be dependent on other 
mechanisms rather than intracellular Ca＋＋ increase and 
ROS generation.
[Immune Network 2012;12(6):296-300]

The application of nanomaterials is becoming more popular 

in various fields of industry. Among nanomaterials with differ-

ent chemical natures, silica nanoparticles are widely appli-

cable nanomaterial. They can be used in chemical mechanical 

polishing, as additives, and recently in some medical applica-

tions (1-4). However, when applying as industrial products, 

the toxicity of each nanoparticle should be analyzed carefully 

based on their physical and chemical characteristics. Our 

group has studied the immunotoxicity or inflammatory effect 

of silver nanoparticles intensively and published papers re-

porting internalization mechanisms (5), inflammasome in-

duction and further IL-1 production (6) in human blood mon-

ocytes after treatment with silver nanoparticles. Also the re-

sults of cDNA microarray analysis and protein analysis by en-

zyme-linked immunosorbent assay (ELISA) or western blot 

suggested that some stress genes, heme oxygenase-1, heat 

shock proteins and superoxide dismutase, have increased 2 h 

after exposure to silver nanoparticles in macrophages after 

exposure to silver nanoparticles (7). Interestingly, among in-

flammatory cytokines, IL-8, the neutrophil chemokine, is the 

earliest inducible gene (7,8). This immunostimulatory effect 

of silver nanoparticles was dependent on particle size and the 

production of reactive oxygen species (ROS). The smaller sil-

ver nanoparticles, for example, 5 nm particles showed more 

stimulatory effects than 20 nm or 100 nm particles did (7,8).

　Silica nanoparticles have been reported to increase fibri-

nogen concentration and blood viscosity (9). The exposure 

of silica nanoparticles also resulted in DNA damage, which 

was size-dependent and free hydroxyl radical-mediated 

(10-12). In vivo study revealed that lung fibrosis was induced 

in rats (13). Therefore, we tried to figure out the immuno-

stimulatory effect of silica nanoparticles and the early cellular 

changes when macrophages are exposed to silica nano-

particles. In detail, we assessed ROS generation, intracellular 
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(A) TEM analysis

(B) DLS analysis by number

Figure 1. Characterization of silica nanoparticles. (A) TEM images of 
silica nanoparticles show 15 nm, 50 nm or 100 nm particles are 
relatively uniform in sizes. (B) DLS analysis shows that the mean size
is 15.2 nm for 15 nm silica nanoparticles, 62.9 nm for 50 nm particles
and 101.4 nm for 100 nm particles by number. Silica nanoparticles 
dispersed in RPMI 1640 medium containing 10% FBS for DLS analy-
sis. Images shown are representatives of three independent trials.

Ca＋＋ levels and IL-8 release using differently sized silica 

nanoparticles and speculated their relationship with the re-

sponses of macrophage cells.

In our study 15 nm silica oxide particles used were silica 

oxide (99.5% purity), purchased from Sigma-Aldrich (St. 

Louis, MO, USA), and 50 nm or 100 nm silica oxide nano-

particles in water suspension were synthesized in the labo-

ratory of Professor K. Lee (Department of Chemical and 

Biomolecular Engineering, Yonsei University). 15 nm particles 

were suspended in water, vortexed for 5 min, and then soni-

cated for 10 min in ice. Particle diameter was determined by 

transmission electron microscopy (TEM, model JEM-1011, 

JEOL, Tokyo, Japan). Agglomeration states of nanoparticles 

in 10% FBS RPMI 1640 medium at 1, 5, and 15 mg/ml con-

centrations were analyzed using DLS (Novato, CA, USA) be-

fore each experiment. 

Human macrophage cells (U937) were cultured in RPMI 

1640 medium containing 10% FBS and streptomycin/penicillin 

(each 100 IU/ml) at 37
o
C in a moisturized 5% CO2 incubator. 

Fresh culture media was changed every two to three days to 

maintain cell density at approximately 2×10
6
 cells/ml. Cell 

viability was assessed using the colorimetric cell counting kit-8 

(CCK-8) (Dojindo laboratories, Kyoto, Japan). CCK-8 is based on 

a colorimetric assay utilizing a highly water soluble tetrazolium 

salt, WST-8[2-(2-methyxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2, 

4-disulfophenyl)-2H-tetrazolium, monosodium salt]. To assess 

viability cells they were plated in 24-well plates at a density 

of 1×105 cells in 200μl growth medium per well. The wells 

were then treated with 200μl of silica oxide nanoparticles 

solutions diluted in growth medium. After 24 h, 15μl of 

CCK-8 reagent was added to each well and incubated at 

37
o
C for 2 h. After centrifugation, 100μl of supernatant was 

transferred to 96-well microtiter plates and optical densities 

(O.D) were measured at 450 nm. N-acetyl cysteine (NAC, 

Sigma-Aldrich) was pre-treated at 1 mM 30 min before nano-

particle treatment. 

IL-8 levels in culture supernatant were determined by 

ELISA. Macrophage cells were plated in 24-well plates at 

2×10
5
 cells per well in 200μl of 10% FBS RPMI 1640 medi-

um. Silica nanoparticles in cell culture media were added to 

each well, making a final volume of 400μl per well. After 

6 h, the cell culture supernatants were collected and stored 

at −80oC. A human cytokine IL-8 assay kit (BD Biosciences, 

San Jose, CA, USA) was used and the O.D. was read at 450 

nm.

To assess ROS generation, macrophage cells were treated 

with silica nanoparticles (32.5-500μg/ml) for 30 min. After 

treatment with nanoparticles, cells were stained with CM- 

H2DCFDA for 30 min at 37
o
C in the dark. VICTOR X4 multi 

label plate reader (Perkin-Elmer, Norwalk, CT, USA) analysis 

was performed at 530 nm. Intracellular Ca
＋＋

 level was esti-

mated as following. Cells were stained with fluorescent dyes 

Fluo4-AM (Invitrogen, CA, USA) for 30 min and diluted in 

Hank’s balanced salt solution at 37oC in the dark. After treat-

ment with fluorescent dyes, cells were treated with silica 

nanoparticles (32.5-250μg/ml). After treatment with nano-

particle, cells were monitored using a Victor X4 multi label 

plate reader (Perkin-Elmer, Norwalk, CT, USA) set at a con-

stant temperature of 36
o
C and measured every 5 sec over a 

time course of 600 sec.

All data were expressed as the mean±SD. Statistical com-

parisons of the means were performed using two-way analy-

sis of variance (ANOVA) with Bonferroni post-tests. Statistical 

analyses were performed using the software GraphPad Prism 

5. The differences were considered to be significant when the 
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Figure 2. Cytotoxicity of silica nanoparticles. U937 cells were treated
with different sizes of silica nanoparticles for 24 h and cytotoxicity 
was determined by CCK-8 assay. Student’s t-test was used for 
statistical analysis. **p＜0.01, ***p＜0.001.

   

Figure 3. U937 cells were treated with silica nanoparticles and supernatant levels of IL-8 were assessed by ELISA. Data represent means±S.D.
of three independent experiments. Student’s t-test was used for statistical analysis. *p＜0.05, ***p＜0.001.

p-value was less than 0.05.

Fig. 1 shows the results of analysis by TEM and DLS. The 

size of silica nanoparticles are uniform (Fig. 1A) and DLS re-

sults showed that mean size is 15.2 nm in 15 nm particles, 

62.9 nm in 50 nm particles and 101.4 nm in 100 nm particles 

(Fig. 1B). Aggregation or agglomeration was not detected 

(Fig. 1B). As shown in Fig. 2, cell viability was dependent 

on the particles size. Up to 125μg/ml, the cells were rela-

tively viable after treatment with 15 nm, 50 nm or 100 nm 

silica particles. From 250μg/ml cell death was induced and 

15 nm particles triggered cell death more significantly than 

50 nm or 100 nm particles did. The LD50 of 15 nm particles 

was 1.29 mg/ml and that of 50 nm particles was 1.5 mg/ml. 

Cell death was inhibited by treatment of NAC, which suggest 

that ROS involves in cell death after silica nanoparticle ex-

posure.

The production of IL-8 was induced at similar levels in re-

sponse to three different sizes of silica nanoparticles (Fig. 3A 

and B). The IL-8 production was moderate when compared 

to the results of silver nanoparticles, in which the treatment 

of 12.5μg/ml of 4 nm silver nanoparticles elicit 1,200 pg/ml 

of IL-8 production as reported in our previous paper (8). 

Against our expectation, the size effect could not be shown 

in IL-8 induction. This finding is quite different compared to 

the results of silver nanoparticles, in which small particles in-

duced higher levels of IL-8 production significantly. 

The levels of intracellular Ca＋＋ showed interesting find-

ings. In medium with Ca
＋＋

 the level of intracellular Ca
＋＋

 

has increased immediately after exposure to only 15 nm silica 

nanoparticles, which was dose-dependent (Fig. 4A). 50 nm 

or 100 nm particles did not elicit Ca
＋＋

 intracellular Ca
＋＋

 

increase. Intracellular Ca
＋＋

 levels could be increased by in-

flux of medium Ca＋＋ through disrupted cell membrane or 

by release from intracellular endoplasmic reticulum compar-

tments. Therefore, we assessed intracellular Ca
＋＋

 levels in 

Ca＋＋-free medium. The treatment with 15 nm particle did 

not trigger a significant intracellular Ca
＋＋

 increase when cells 

were treated in Ca
＋＋

-free medium. These results suggest that 

cell membrane damage rather than endoplasmic reticulum 

disturbance is responsible for the increase of Ca
＋＋

.

Finally, ROS generation was detected after treatment with 

silica nanoparticles. Fig. 5 shows that 15 nm particles induced 

significantly more ROS than 50 nm or 100 nm particles. This 

ROS generation was inhibited to control levels by NAC 

treatment.
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Figure 4. Detection of intracellular Ca＋＋ level. U937 cells were pre-stained with Fluo4-AM for 30 min and treated with silica nanoparticles. 
Cells were monitored using a Victor X4 multi label plate reader and measured every 5 sec. Data shown here are representative results from
two independent experiments. (A) HBSS with Ca＋＋, (B) HBSS without Ca＋＋.

Our results showed that silica nanoparticles elicit intra-

cellular Ca
＋＋

 increase and ROS generation, which is size- 

dependent. However, the IL-8 production was not dependent 

on particle size. All three different sizes of silica nanoparticles 

induced IL-8 production although the levels of IL-8 pro-

duction were not strong as silver nanoparticles. Taken togeth-

er, we suggest that the immunostimulatory effect of nano-

particles may differ from nanoparticles with different chemical 

backgrounds although small nanoparticles are more stim-

ulatory or toxic in general.
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Figure 5. Production of ROS. U937 cells were treated with silica 
nanoparticles for 30 min. Cells were stained with CM-H2DCFDA for 
30 min and analyzed by fluorometry. Data represent means±S.D. of 
three independent experiments. Student’s t-test was used for statistical
analysis. ***p＜0.001.
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