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Fast Cardiac CINE MRI by Iterative 
Truncation of Small Transformed 
Coefficients

INTRODUCTION

Cardiovascular MRI with high spatial and temporal resolutions is essential to 
diagnosis; however, the collection of large data within a limited time is challenging, 
even with the latest high-end hardware (1). Many approaches have been tried to 
increase the rate of data acquisition with improved hardware, e.g., a high intensity and 
high slew-rate gradient system (2), and parallel acquisition systems with array coils (3, 4). 
Fast switching of large gradient fields, however, increases eddy currents and acoustic 
noise, and induces peripheral nerve stimulation (5, 6). Parallel imaging using the parallel 
acquisition system has been used for various clinical applications including cardiac MRI 
to increase the acquisition rate (7).

Alternatively, cardiovascular MRI with less data without much loss of image quality 
has been investigated, for example view sharing (8), to skip high spatial frequency data 
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or to have different sampling rates for high and low spatial 
frequency bands, by compromising spatial and temporal 
resolutions. The skipped data are interpolated (9) or 
substituted by the measured data at a nearby cardiac phase 
(10) or simply assumed to be zero. These approaches are 
relatively easy to implement by software, without adding 
hardware; however, aliasing artifacts are often observed in 
the reconstructed images due to the under-sampled data, 
especially when the compression factor is high (11).

Compressed sensing is another software approach (12). 
Under-sampling is similarly applied to reduce the rate 
of data acquisition. However, the sampling locations are 
random, to reduce aliasing artifacts. Reconstruction with 
compressed sensing is similar to finding a solution from 
under-sampled data, with the assumption that cardiac 
CINE images are sparse in a transformed domain (13). 
Minimization of the L1 norm is usually applied to find 
such a sparse solution (14). Minimization of weighted L2 
norm iteratively with weighs updated from the currently 
reconstructed images is tried in k-t FOCUSS (15) and k-t 
ISD (16) with iterative support detection. Motion estimation 
techniques in video compression are applied to the 
reconstruction of compressed sensing (17, 18). Combining 
the compressed sensing with parallel imaging is introduced 
to increase the acceleration rate, by merging k-t SPARSE 
technique with sensitivity encoding (SENSE) (19, 20). 

In this paper, a new compressed sensing technique 
is proposed by iterative truncating small transformed 
coefficients (ITSC). Unlike most of existing compressed 
sensing techniques to find the sparest solution among the 
candidates satisfying the data consistency, ITSC applies 
the sparseness condition and the consistency condition 
separately, to make the data sparse by truncating small 
transformed coefficients in r-f domain first, then the data 
consistency is applied by restoring the measured data in 
k-t domain iteratively, until the solution or reconstructed 
images converge (21). From simulations with in-vivo cardiac 
CINE MRI data of volunteers, the reconstructed images with 
various under-sampled data sets converge rapidly, and the 
normalized mean square errors decrease, as the number of 
iterations increases. The performance of the ITSC appears 
superior to existing methods, such as zero filling (1), view 
sharing (8), and k-t FOCUSS (15). Furthermore the proposed 
algorithm is computationally efficient and is stable without 
using matrix inversion during the reconstruction. In-vivo 
multi-slice cardiac imaging with single breath hold was 
demonstrated for various compression factors and number 
of slices for clinical applicability of the technique.

MATERIALS AND METHODS

Two-dimensional (2-D) or three-dimensional (3-D) 
cardiac CINE images have sparse frequency characteristics, 
due to the periodic motion of the heart with relative small 
motions between adjacent cardiac frames. If the signal 
is sparse, a perfect reconstruction may be achieved from 
under-sampled data (12). The amount of under-sampled or 
compressed data required for a perfect reconstruction may 
vary, depending on the sparseness of the data. In cardiac 
CINE MRI, compression factors (CF) of 2-8 have been 
reported with reasonable image qualities (3, 13, 16-18). 
Since the under-sampling with an equidistance sampling 
interval introduces aliasing error, a non-equidistance 
(random) sampling is required for compressed sensing (14).

Figure 1 shows the two test data sets used for the 
evaluation and optimization of the proposed compressed 
sensing technique. The data sets were obtained by the 
balanced steady-state free precession (SSFP) technique from 
a 1.5 Tesla whole body MRI system, using an eight-channel 
array coil. Data set A was obtained with the repetition time 
(TR) and echo time (TE) of 4.71 ms and 2.35 ms, respectively. 
Data set B was obtained with TR and TE of 4.30 ms and 
1.94 ms, respectively. The data from each array coil element 
was reconstructed separately, and then averaged with 
magnitude to improve the signal-to-noise ratio. A total of 
20 and 16 cardiac frames were contained with temporal 
resolutions of 37.7 ms and 34.4 ms in the data sets A and 
B, respectively. Full data were acquired without under-
sampling in a single breath-hold. In these experiments, a 
segmented cardiac sequence was used (22, 23), with the 
number of views per segment of 8, and the image matrix 
size of 256x256. Partial echo with an acquisition length of 
three-quarters of the full echo was acquired in the readout 
gradient direction, to reduce the echo time for data set B, 
where the partial echo reconstruction technique is applied 
with phase correction (24).

Several under-sampled data sets were generated from the 
fully acquired data sets along the phase encoding gradient 
direction, which is directly related to the measurement time 
of the MR examination. For a quantitative evaluation, the 
normalized mean square error (NMSE) is used, and is given 
by

NMSE = ∑ ∑ ∑[Î (x, y; t)-I(x, y; t)]2 / ∑ ∑ ∑[I (x, y; t)]2	 [1]

Where, Î (x,y;t) denotes reconstructed CINE images from 
the under-sampled data set, I (x,y;t) denotes reference CINE 
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images obtained from the full data set by conventional 2-D 
Fourier transform, Nx and Ny the numbers of image matrix 
sizes in the x and y directions, and Nt the number of cardiac 
frames. Although two-dimensional CINE images were used, 
the technique can easily be expanded to three-dimensional 
CINE images, without loss of generality. 

Quantitative evaluations with NMSE are performed 
for zero filling, view sharing (8), k-t FOCUSS (15), and 
ITSC. The zero filling method simply assumes zero for the 
data not acquired. For the evaluation, the technique is 
assumed to acquire lower spatial frequencies for a given 
compression factor. Reconstruction is done simply by two-
dimensional Fourier transform. The up-sampled image pixels 
are interpolated by sinc function (25). The view sharing 
technique acquires data uniformly for a given compression 
factor. The acquired phase encoding gradients at the 
current cardiac phase are one step shifted from those at the 
previous cardiac phase. The data not acquired are adopted 
or duplicated from the measured data of the same phase 
encoding gradient at the nearest cardiac phase (8). After 
filling the data, reconstruction is done by the conventional 
Fourier transform. The k-t FOCUSS is one of the compressed 
sensing techniques (15, 17). The technique is known to be a 
generalized version of k-t BLAST, and shows one of the best 
performances in the field. Reconstruction is done iteratively 
to minimize L1 norm by minimizing L2 norm, with updated 
weighting matrix by the currently reconstructed image for 

the next stage reconstruction. 

Sampling Strategies
Since most of the energy is concentrated in the lower 

spatial frequency band in general images, including 
cardiac CINE MRI, a sampling strategy that assigns 
more acquisitions on a lower spatial frequency band is 
advantageous, to reduce error due to under-sampling. The 
sampling strategy is described with a histogram function 
that is defined as the number of acquisitions for a given 
phase encoding gradient during a period of the cardiac 
cycle. Thus the function has the maximum value of the 
number of cardiac frames, in the case of full acquisitions; 
and a minimum value of zero, in the case of no acquisition. 
Three sampling strategies are considered: (a) uniform, (b) 
Gaussian, and (c) modified Gaussian histogram functions. 
For the modified Gaussian function, dc is acquired for 
every frame, and small positive and negative bands are 
acquired alternatively. For a given number of acquisitions, 
the acquired frames are chosen randomly, while the total 
number of acquisitions for each cardiac frame is maintained 
same. Examples of the acquired frames are shown in the 
white line segments in Fig. 2 (left) with corresponding 
histogram functions (right) for CF of 8.

Sparseness
Data sparseness in a transformed domain is a prerequisite 

Fig. 1. Test data sets for cardiac CINE MRI for evaluation of the compressed sensing technique with other imaging methods.

b

a
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to compressed sensing. Since cardiac CINE images are 
generally not sparse in the spatial domain as a function of 
time (cardiac phase), some transformations are necessary, 
to make the transformed coefficients sparse. Several 
transforms, such as the Fourier transform, discrete cosine 
transform (DCT), Karhunen Louve transform (KLT) (26), 
and wavelet transform (13), are known to have an “energy 
compaction” property, concentrating most of the energy 
on a small number of transformed coefficients. These 
transforms have also been widely used for image and video 
compression (27, 28). Although it’s difficult to define data 
sparseness objectively, independent from reconstruction 
algorithm, ITSC uses Fourier transform and the data 
sparseness in r-f domain, following previous explorations in 
the literature (15, 16). Best results are also obtained using 
the sparseness of r-f domain in our evaluation with the test 
data sets. Note that r denotes 2-D or 3-D spatial (image) 
domain and f denotes frequency obtained by the Fourier 
transform along the time (cardiac phase). 

Iterative Truncation of Small Transformed Coefficients
Reconstruction from under-sampled data in the 

compressed sensing is similar to finding a solution to the 
underdetermined equations. In the compressed sensing, the 
solution (reconstructed image) is assumed to be sparse in 

the transformed domain. Unlike existing approaches, the 
sparsity condition is imposed on the currently reconstructed 
images, by truncating small transformed coefficients in 
the proposed method. Since the transformed coefficients 
distributed most sparsely in the r-f domain, the truncation 
is imposed on the coefficients in the r-f domain. Measured 
data are, however, restored for data consistency. Thus the 
key components of the ITSC method are to truncate small 
transformed coefficients in the r-f domain, and to restore 
the measured data in the k-t domain iteratively, until the 
reconstructed images converge. The detailed procedures are 
described below.

Step 1: Initial estimation of the data not acquired is 
adopted from the acquired data with the same phase 
encoding gradient in the nearest cardiac frame. If there 
are multiple nearest cardiac frames, the average value of 
the data is used. If there is no measured data for a phase 
encoding gradient in the entire cardiac cycle, the data is 
assumed to be zero. This might happen for a high phase 
encoding gradient with a high compression factor.

Step 2: Using the initial estimation, cardiac CINE images 
are reconstructed in the r-t space by conventional 2-D 
Fourier transform.

Step 3: From the reconstructed CINE images, the mean 
and standard deviation are calculated for each pixel along 

a b

Fig. 2. Three sampling strategies and corresponding 
sampling locations are exemplary shown for CF of 8: (a) 
uniform sampling, (b) Gaussian sampling, and (c) modified 
Gaussian sampling. The acquired locations are shown 
with white line segments at left, where the horizontal 
axis denotes the cardiac frame (1~16), and the vertical 
axis denotes the phase encoding gradient (-128~127). 
The corresponding histogram functions are shown at 
right, where the horizontal axis denotes the number of 
acquisitions over a period of the cardiac cycle, and the 
vertical axis denotes the phase encoding gradient.c
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the cardiac phase. The pixel having a standard deviation 
below a threshold is classified as a stationary region, and 
the values in the stationary region are replaced by the mean 
value for all of the cardiac phase.

Step 4: The CINE images are transformed back to the 
k-t space by the inverse 2-D Fourier transform, and the 
measured data are restored for data consistency. Although 
the restoration may not change the data significantly 
initially, it is an important step, in conjunction with the 
truncation of small transformed coefficients.

Step 5: After restoration, the data are reconstructed 
again, and checked for whether further iteration is 
necessary. The iteration may be stopped if the reconstructed 
images converge, i.e., the changes between the currently 
reconstructed images and the previously reconstructed ones 
are below a threshold which is determined experimentally. 
From experiments, the reconstructed images converged 
rapidly in most cases. In practice, the convergence is well 
achieved after a predefined number of iterations instead of 
checking the difference.

Step 6: If further iteration is necessary, one-dimensional 
Fourier transform is applied along the cardiac phase, to 
convert the cardiac CINE images into the data in the r-f 
space. As discussed previously, the data in the r-f space 
appear most sparse.

Step 7: Small transformed coefficients are truncated 
below a threshold in the r-f space. A constant or a 
frequency-dependent threshold function may be used. In 
our application, a constant threshold is used for all the 
data in r-f space regardless of the spatial coordinate or 
frequency. The threshold was chosen by trial and error to 
make NMSE minimum for the test data sets.

Step 8: The modified data in the r-f space is reconstructed 
to CINE images. Then the process moves to Step 3 
repeatedly.

As seen the procedures, ITSC is a computationally efficient 
algorithm and is stable without using matrix inversion. The 
algorithm is adequate for parallel processing, especially 
with a graphic processing unit (GPU) with massively parallel 

processors.

RESULTS 

The performance of ITSC is evaluated under various 
conditions, with several under-sampled test data sets. Table 
1 shows the normalized mean square error evaluated for the 
three sampling strategies shown in Fig. 2. In this evaluation, 
each sampling histogram is optimized to make a minimum 
NMSE for a given compression factor. For example, the 
variances of the Gaussian and modified Gaussian histogram 
functions are optimally chosen to make minimum NMSEs. 
Table 1 shows that a lower NMSE is obtained with Gaussian 
or modified Gaussian histogram functions. From Table 1, the 
sampling histogram function plays an important role in the 
NMSE of the reconstructed images. The modified Gaussian 
histogram is chosen for the ITSC method.

Figure 3 shows the convergence of the algorithm tested 
with NMSE of the reconstructed images as a function of 
iteration number. This shows that NMSE decreases as the 
number of iterations increases, although NMSE increases 

Table 1. The Normalized Mean Square Error is Evaluated for Three Sampling Strategies

CF
Test data set A Test data set B

Uniform Gaussian Modified Gaussian Uniform Gaussian Modified Gaussian

2 3.565E-03 1.751E-03 1.105E-03 5.315E-03 2.862E-03 1.728E-03

4 7.057E-03 5.181E-03 3.340E-03 1.000E-02 7.717E-03 4.892E-03

8 9.395E-03 8.591E-03 5.680E-03 1.366E-02 1.156E-02 7.923E-03

Fig. 3. NMSE of the reconstructed images by ITSC as a 
function of the number of iterations.
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Fig. 4. Reconstructed images at a systolic phase, from the test data set A with CF of 2, 4, and 8 are shown for (a) zero filling, (b) 
view sharing, (c) k-t FOCUSS, and (d) ITSC. The conventionally reconstructed image with full data is shown at top.  Error 
images are also shown for better visualization.

a c db

Full data

CF = 2

CF = 4

CF = 8
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Fig. 5. Reconstructed images at a diastolic phase are shown for (a) zero filling, (b) view sharing, (c) k-t FOCUSS, and (d) ITSC 
with error images. 

a c db

Full data

CF = 2

CF = 4

CF = 8
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slightly after attaining a minimum point. From experiments, 
most of the reconstructed images rapidly converge, in a few 
iterations. Since the reconstructed images with full data 
are used as reference images, some noise is included in 
the reference images. Thus there may be some noise effect 
in the NMSE, especially when the signal-to-noise ratio is 
not high. A practical way is to apply the algorithms with a 
predefined number of iterations. From our experience, the 
number of iterations of 3 or 4 is a reasonable choice.

The performance of the ITSC is evaluated for three under-
sampled data sets, with CF of 2, 4, and 8. The performances 
of three other imaging methods are also evaluated for 
comparison: zero filling, view sharing, and k-t FOCUSS 
(15). Figures 4 and 5 show reconstructed images from 
the test data set A with CF of 2, 4, and 8. Error images by 

subtracting the reconstructed images from the reference 
image are also shown, with an amplification factor of 3 for 
better visualization. Only one cardiac frame is shown out of 
multiple frames, i.e., a systolic phase in Fig. 4 and a diastolic 
phase in Fig. 5. As seen in Figs. 4 and 5 all the reconstructed 
images are very close to the reference image for CF of 2. 
From the error images (c) k-t FOCUSS and (d) ITSC have 
less error than (a) zero filling and (b) view sharing. Some 
blurring and aliasing artifact are found in the reconstructed 
images with regular sampling (a, b) for CF of 4, while 
those with random sampling (c, d) show better qualities. 
Resolution degradation and aliasing artifacts are serious 
in (a, b) for CF of 8. Although edge sharpness is degraded, 
better reconstructed images are obtained in (c, d). All the 
reconstructed images by ITSC, the number of iterations was 

Table 2. Summarized NMSEs of the Reconstructed Images with Various Compression Factors

CF
Data set A Data set B

zero-filling view-sharing k-t FOCUSS ITSC zero-filling view-sharing k-t FOCUSS ITSC

2 1.232E-03 1.9916E-03 1.383E-03 1.105E-03 2.183E-03 3.0755E-03 2.196E-03 1.728E-03

4 5.295E-03 5.7966E-03 3.344E-03 3.340E-03 9.382E-03 8.4647E-03 5.119E-03 4.892E-03

8 1.432E-02 8.5897E-03 5.802E-03 5.680E-03 2.289E-02 1.2131E-02 8.571E-03 7.923E-03

Fig. 6. The temporal profiles of the 
reconstructed images are shown 
right, for the test set A with CF of 
4 (top) and for the test set B with 
CF of 8 (bottom). 
The horizontal axis is time, and the 
vertical axis is the broken line shown 
in the reconstructed images left 
corresponding to the phase encoding 
gradient direction for (a) reference 
with full data, (b) zero filling, (c) 
view sharing, (d) k-t FOCUSS, and (e) 
ITSC.

a c d eb
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set 3. Similar results are obtained with the test data set B 
(see Table 2).

The temporal profiles of the reconstructed images are 
shown in Fig. 6 for the test set A with CF=4 (top) and for 
the test set B with CF of 8 (bottom), where the horizontal 
axis denotes time, and the vertical axis the distance along 

the phase encoding gradient direction. As seen in the 
profiles resolution degradation is found in the zero filling 
(a), edge degradation in view sharing (b). Better profiles 
are obtained for the compressed sensing (c and d). More 
detailed profiles are obtained in ITSC method as shown in 
the white arrows. 

a

b

c

d

e
Fig. 7. In-vivo applications of ITSC for multi-slice cardiac CINE MRI. The reconstructed images are shown for (a) without 
compression, and with CF of (b) 2, (c) 3, (d) 4, and (e) 8. Note the number of slices obtained in single breath-hold is identical 
to the compression factor. 
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Table 2 summarizes the NMSEs of the reconstructed 
images. Note the performances are dependent on the 
statistics of the test data sets, e.g., degree of sparseness and 
signal-to-noise ratio. Table 2 indicates that NMSEs by the 
compressed sensing techniques (k-t FOCUSS and ITSC) are 
much lower than those by the zero filling or view sharing 
techniques. The NMSEs by k-t FOCUSS are similar to those 
by ITSC. The NMSEs by ITSC are the lowest among the four 
techniques. 

In-vivo multi-slice cardiac CINE imaging is tried by 
ITSC for real application of the technique. Since full data 
was not acquired, the quantitative evaluation with NMSE 
cannot be made. Each row (a ~ e) in Figure 7 corresponds 
to one cardiac CINE experiment with a single breath-
hold. For example, the top row corresponds to a single-
slice CINE experiment without compression, while the third 
row corresponds to three-slice cardiac CINE experiment 
with CF of 3. Locations of slices are chosen similarly to 
make comparisons between experiments easily. Each 
slice consists of 16 cardiac frames. Figure 7 shows that 
reasonable image qualities are obtained, even with a 8-slice 
experiment (CF=8), which improves diagnosis substantially. 
Since all the slices are obtained in one experiment in a 
single breath-hold, they have higher accuracy compared to 
multiple experiments by changing slice locations without 
compression, due to limited accuracy in registration of the 
moving heart with longer measurement time.

DISCUSSION

The compressed sensing technique tries to make perfect 
or near perfect reconstruction from under-sampled data, by 
utilizing sparse distribution of the transformed coefficients. 
The under-sampling reduces measurement time, while 
the near perfect reconstruction guarantees diagnostic 
image quality. A primary question in compressed sensing is 
whether the transformed coefficients of cardiac CINE MRI 
are sparsely distributed. The coefficients in a transformed 
domain have very small magnitudes in most of the high 
frequencies, and have large values only in a small number 
of the lower frequencies; thus cardiac CINE MRI may be 
sparse, if small coefficients are assumed to be zero. The 
high frequencies, although they are small, contribute to 
the sharpness of the images in either spatial or temporal 
domains. Thus some degradation of image quality is 
inevitable with higher compression factors, and the qualities 
of the reconstructed images are directly related to the 

degrees of sparsity of the data.
Reconstruction from under-sampled data is equivalent to 

finding a solution from underdetermined equations. Thus a 
priori knowledge is necessary to find such a solution. The 
solution having a minimum L2 norm is analytically known; 
however, it is not suitable for cardiac CINE MRI, since the 
reconstructed images do not usually show sharp edges. 
The solution having minimum L0 norm (minimum number 
of nonzero coefficients) agrees well with the definition 
of sparseness; however, it is difficult to obtain even 
numerically. The solution having a minimum L1 norm may 
be the next best choice in most cases.

Unlike existing approaches to find a solution with 
minimum L1 norm, data sparseness is imposed on the 
solution, without interference with the measured data. 
Initial estimation of the solution in ITSC is similar to the 
view sharing technique, by sharing measured data in 
near frames. Good initial estimation makes the solution 
converge rapidly. Data sparseness is imposed by truncating 
small transformed coefficients in the r-f domain, while the 
measured data in the k-t space are restored. As truncation 
and restoration are applied iteratively, the reconstructed 
images converge to a desirable solution that has sparse 
distribution in the transformed domain. Since the data in 
the transformed domain are only approximately sparse, 
there are limitations in perfect reconstruction, which 
restricts application of the compressed sensing with high 
compression factors. From our study, compression factors of 
3-4 are reasonable choices for most cases.

The compressed sensing technique may be an inevitable 
choice to find an optimal solution under various 
technical constraints (i.e., gradient system, SNR, etc.), and 
physiological constraints (peripheral nerve stimulation). 
The technique is often compared to video and image 
compression. International standards, such as MPEG and 
JPEG, are widely used in communication and broadcasting. 
Since full image or video data are available at the 
encoding end, encoding can be done more effectively. On 
the other hand, full data are not available in compressed 
sensing; thus the performance is limited. The main issue 
in compressed sensing is effective measurement and 
reconstruction, rather than encoding and decoding. The 
level of error tolerance in medical imaging may be different 
from those in broadcasting and multimedia applications. 
However, there are similarities in utilizing data sparseness; 
compressed sensing utilizes data sparseness during data 
acquisition and reconstruction, while video compression 
utilizes data sparseness during the encoding and decoding 
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processes. There have been many ongoing discussions on to 
what degree compression factors are permissible for clinical 
applications (29) and (30). The popularity of MP3, JPEG and 
MPEG in modern multimedia archiving and communication 
and broadcasting fields suggests a prospective future for 
compressed sensing techniques in cardiac MRI.

In conclusion, the proposed iterative truncation of small 
transformed coefficients method was successfully applied 
to multi-slice cardiac CINE MRI in a single breath-hold. To 
obtain 2-8 slices of CINE images using the method improves 
the diagnosis substantially with corresponding compression 
factor of 2-8 (same as the acquired number of slices).
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