
I. Introduction

It is widely accepted that digital mammograms or tomosyn-
thesis mammograms [1-3] are associated with quite limited 
use in cases of small breast masses within dense breast tis-
sues owing to the obscure visualization of small masses when 
using this method, whereas ultrasonography (US) [4-6] has 
been clinically proven to be capable of detecting masses even 
in dense breasts and is widely used in Asia for the detection 
as well as the classification of breast masses. Typically, hand-
held probes for US scanners have been used for breast can-
cer screening with conventional US imaging devices having 
disadvantages such as operator dependence and poor image 
quality levels. It should also be noted that it usually takes a 
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long time to perform conventional breast ultrasonography 
for breast cancer screening with some breast regions still left 
unscanned; thus, recently various studies have been reported 
regarding the development of the three-dimensional (3D) 
breast scanning devices to overcome these shortcomings 
[7,8].
	 With 3D US scanners, the entire breast image volume can 
be acquired easily and repeatedly in a relatively short time 
practically without non-scanning breast regions [8,9-11]. 
However, it should be noted that a considerable amount of 
US image data upon each screening can exhaust radiologists 
when faced with the diagnosis of even one case. To reduce 
the required diagnostic effort using 3D US scanning devices, 
a computer-aided detection (CAD) system can suggest mass 
candidates to enhance radiologists’ screening speed and ac-
curacy as a preliminary step in the diagnosis process [12-18].
	 Recently, various studies have been reported regarding 
computer-assisted detection and classification using various 
methods. Ikedo et al. [4] reported a fully automatic lesion 
detection technique using the Canny edge detector [19]. Kim 
et al. [14] reported a computer-aided detection algorithm 
using the adjusted Otsu threshold and a support vector ma-
chine classifier. Yap et al. [20] reported a lesion detection 
algorithm which uses hybrid filtering, multifractal process-
ing, and a thresholding segmentation method. Moon and his 
colleagues reported many successful works using textural, 
speckle and morphological features with ultrasound elastic-
ity images [18] and automated 3D breast ultrasound (ABUS) 
images [15,17].

II. Methods

In this paper, we propose an automatic mass detection algo-
rithm using the Hough transform technique.

1. Data Acquisition
The 3D US volumetric images were acquired using an ultra-
sound scanner (Voluson 530D; Madison, Seoul, Korea) by 
Seoul National University Hospital, Seoul, Korea, and were 
diagnosed by an experienced radiologist. Images were col-
lected for various patient ages, types of mass lesions, shapes, 
and positions, and converted into a standardized 3D multi-
planar format that simultaneously displays coronal, sagittal, 
and axial views of the breast masses. The volume of interest 
(VOI) regions around pixel dimensions of 125 × 125 × 125 
including the specified breast masses were cropped for ana-
lytical use. Finally, 68 benign and 60 malignant masses from 
125 patients were confirmed with histopathological exami-

nations.

2. Mass Lesion Detection Algorithm
The detection algorithms presented in this paper were writ-
ten with Visual C++ using the Visualization Toolkit (VTK) 
library for the visualization of a US image volume and the 
National Library of Medicine Insight Segmentation and 
Registration Toolkit (ITK) library for general image segmen-
tation. ITK is an open-source library consisting of imple-
mentations for a variety of segmentation and registration 
algorithms. We used the ITK and VTK open-source software 
toolkits as a basis for the implementation of the mass lesion 
detection processes. We developed automatic mass detection 
algorithms for 3D image data.
	 It is well-known that most breast masses are observed to 
circular on the 2D US plane, with the inside darker than 
the surrounding regions. To extract the spherical feature 
from the 3D US image volume easily, as preprocessing steps 
before the Hough transform, 3D US images were masked, 
subsampled, contrast-adjusted, and median-filtered [4]. The 
overall pre-processing method applied to each 3D US image 
outlined in Figure 1 and is briefly described below.
	 First, voxels not belonging to the scanned image volume 
or showing grey level values outside the dynamic range of 
actual 3D US data are masked out in order to reduce the 
computing overhead and avoid undesirable results from the 
masked voxels.
	 It is often advantageous to apply a subsampling process to 
remove the sharp edges from speckle noise in order to en-
hance the accuracy of edge detection using the Canny edge 
detection algorithm [4,19]. In this paper, we subsampled 
each 3D US image by 1/2.
	 To perform the Hough transform independent of the indi-
vidual scanning condition, we normalize the dynamic range 
of the grey-level distributions of the subsampled 3D US im-
ages to ensure that the mean and standard deviation values 
of each US image were 128 and 55, respectively.
	 A median filter with a window of 5 × 5 × 5 pixels is again 
applied to reduce the remnant speckle noise from the image 
while preserving the edge patterns.
	 Thereafter, the 3D Hough transform is utilized to find 
spherical shape, and finally the mass position is located. The 
Hough transform is widely used for the detection of various 
types of figures, such as curves, by exploiting the duality be-
tween points on a curve and its parameters. Duda and Hart 
[21] proposed this concept in 1972 to detect lines and curves 
in pictures, and Ballard [22] generalized the concept to de-
tect an arbitrary shape. 
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	 In this paper, the 3D Hough transform is adopted to detect 
spherical figures in breast image volumes. Hough spheres 
are generated and sorted in the order of votes. In our study, 
16 Hough spheres after the Hough transform were selected 
and converted into circumscribing parallelepiped cubes for 
each 3D US image volume as breast mass lesion candidates. 
In order to reduce the false positive rate of the breast mass 
detection algorithm, Hough spheres with means or grey level 
values of their centroids higher than the mean of VOI were 
excluded.
	 The Hough cubes were then compared with each other if 
two of them were geometrically overlapped. If this was not 

the case, we compute their weight functions {Ωi} with the 
formula below.

		  ∆mi = ∑j≠i |mi – mj|, 	 (1)
		  cmij = 1/Lij∑rє(r(i),r(j)) GL(r), 	 (2)
		  ∆cmi = ∑j≠icmij, 	 (3)
		  ∆cσ2

ij = 1/Lij∑rє(r(i),r(j)) [GL(r) – cmij]
2, 	 (4)

		  ∆cσi = ∑j≠i SQRT(∆cσ2
ij), 	 (5)

		  Ωi = ∆mi ∙ ∆cmi ∙ ∆cσi, 	 (6)

	 Here, mi denotes the mean grey level value of voxels within 
the i-th Hough cube, cmij is the mean grey level value of vox-

A B

C D

E

Figure 1. Illustration of pre-process-
ing steps on 3D US images. 
(A) The original image. (B) 
RDCA is applied on (A).
(C) Then, median filter is 
applied on (B). (D) Then, 
Canny edge is detected. (E) 
Finally, 3D Hough trans-
form is performed on (D).
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els on line (lij) between the center points of the i-th and j-th 
Hough cubes, Lij is the length of lij described above, and ∆cσi 
is the standard deviation of the grey level values of voxels 
on lij. Subsequently, we select and combine the two low-
est weight values of the Hough cubes. The resulting Hough 
cubes are suggested for the detected breast mass candidates 
[20].

III. Results

The detection results using the Hough transform technique 
are shown in Table 1. The proposed detection scheme for 
breast masses using 3D US images was evaluated using our 
database. In this paper, to estimate the sensitivity (Sens) of 
the proposed algorithm, the detected region is considered 
to be a true positive if the overlapped voxel volume between 
the detected mass candidate and the clinical gold standard 
exceeds ∆Vc. If we consider the automated breast mass detec-
tion results as a second observer, it is often reasonable that 
the suggestion of some overlapped mass candidates to a cli-
nician is sufficient to help with the early screening of breast 
cancer by focusing his attention on a region in close proxim-
ity to the actual breast mass.
	 Among 69 benign and 60 malignant breast masses, 64 be-
nign and 60 malignant masses were successfully detected 
using the criterion of ∆Vc = 590, and the detection sensitivity 
and specificity were found to be 96.1% and 90.3% at a false 
positive rate of 0.84, comparable to the results in other stud-
ies [4,14,20]. 
	 In this paper, we suggest a parallelepiped-type cube as a 
candidate for breast mass lesions and obtain a FP candidate 
of a single large cube instead of many FP candidates at the 
limit of specificity approaches zero. Therefore, the conven-
tional definition of specificity is not appropriate for our mass 

detection algorithm. To estimate the specificity and detection 
efficiency of the proposed algorithm using an ROC analysis, 
we newly define the volumetric specificity (SpecV) as 

	 vcandidate-gold_standard = ∑i (Vi
candidate – Vi

gold_standard) 	 (7)
	 vwhole-gold_standard = ∑i (Vi

whole – Vi
gold_standard) 	 (8)

	 SpecV = 1 – vcandidate-gold_standard/vwhole-gold_standard, 	 (9)

where vcandidate-gold_standard is defined as the sum of the mass can-
didate’s voxels not belonging to the gold standard and vwhole-

gold_standard is the sum of the voxels of the entire volume not be-
longing to the gold standard. Using the alternative definition 
of specificity, we obtain the entire voxel set filled with TP/FP 
voxels without any TN/FN voxels in the limited case of infi-
nitely many candidates, implying that we identify all of the 
gold standards of the breast masses. However, it is important 
to note breast masses clearly regardless of the possibility of 
the absence of a breast mass, giving the asymptotic results of 
SpecV = 0.
	 By increasing the number of Hough cubes as mass candi-
dates, we obtain the ROC curve for the proposed mass de-
tection algorithm using the 3D Hough transform. As shown 
in Figure 2, the value of the area (Az) under the ROC curve 
is 0.971 with ∆Vc = 590, quite comparable to the results in 
previous studies [4] and indicating that the proposed algo-
rithm is promising for rapid and efficient breast mass screen-
ing. In order to examine the ∆Vc dependence of the ROC 
curve analysis, we increased ∆Vc to 4720, finding that Az is 
not greatly reduced, still showing sensitivity of 100% with 
regard to malignant breast mass detection.
	 It is especially notable that the sensitivity of malignant 
breast mass detection is fairly well enhanced to 100% at 

Table 1. Sens, SpecV, FPR, and Az values for the proposed breast 
mass detection algorithm

Benign Malignant Total

∆Vc = 590 Sens 0.928 (64/69) 1.000 (60/60) 0.961
SpecV 0.879 0.929 0.903
FPR 1.05 (68/65) 0.62 (37/60) 0.840
Az 0.946 0.997 0.971

∆Vc = 4720 Sens 0.899 (62/69) 1.000 (60/60) 0.946
SpecV 0.879 0.929 0.903
FPR 1.15 (75/65) 0.72 (43/60) 0.940
Az 0.938 0.997 0.967

FPR: false positive rate.

Figure 2. ROC curve of the breast mass detection algorithm us-
ing the 3D Hough transform. Solid line is for the ROC 
using ∆Vc = 590 and dotted line for the ROC using ∆Vc 
= 4720.
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0.62 false positives per case [14,20]. This may indicate that 
an ultrasound volume scanner such as an automated breast 
ultrasound system using the proposed detection algorithm 
can provide sufficiently accurate and economically efficient 
annual breast cancer screening with enhanced detection sen-
sitivity for malignant breast masses.

IV. Discussion

It is well-known that the US images are associated with sub-
jective interpretations even when experienced radiologists 
are involved, as well as inconsistent image quality levels and 
user-dependent reproducibility. An automatic breast mass 
detection algorithm can help radiologists to enhance their 
diagnostic accuracy for breast cancer screening. It should be 
noted that further research regarding the validation with a 
larger data set is necessary. This will be discussed later in a 
future study.
	 In conclusion, an automatic breast mass detection algo-
rithm using the Hough transform technique is proposed 
for 3D US images and its mass detection efficiency is in-
vestigated by conducting a ROC analysis. The algorithm 
includes masking, subsampling, contrast-adjustment, and 
median-filter steps as preprocessing steps in order to detect 
spherical edges using the 3D Hough transform effectively. 
The 3D Hough transform is very simple, fast, and quite ac-
curate when used to detect well-defined geometric shapes 
from images compared to the other complicated detection 
algorithms used elsewhere. The proposed algorithm provides 
mass detection sensitivity of 96.1% at a rate of 0.84 false pos-
itives per case, quite comparable to the outcomes in previous 
studies, with malignant masses detected with a false positive 
rate of 0.62.
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