
I. Introduction

Atherosclerosis is a common condition characterized by the 
buildup of plaque in the arteries [1]. This accumulation can 
obstruct blood flow throughout the body. Consequently, 
when atherosclerosis affects the heart’s blood vessels, it can 
lead to coronary heart disease and heart attacks [1]. Car-
diovascular disease (CVD) is the primary cause of death 
globally, accounting for approximately 17.9 million fatalities 
annually [2]. The Sample Registration System (SRS) 2019 
report from the Ministry of Health Republic of Indonesia 
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ranked heart disease as the second leading cause of death, 
following stroke. Notably, heart disease is a preventable 
condition [3]. Early detection and prediction, coupled with 
the ongoing analysis of Electronic Health Records (EHRs) 
by computational agents and machine learning (ML), are 
likely to become essential components in the management of 
patients with atherosclerotic heart disease (AHD) [4]. ML, 
a subset of artificial intelligence (AI), employs data analysis 
techniques to discern patterns and predict behaviors [5,6]. 
Predictive models developed using ML algorithms can assist 
in identifying patients with AHD and uncover previously 
unrecognized patterns of risk factors [7]. 
	 Numerous researchers have utilized a variety of ML meth-
ods to predict cardiovascular disease. One study [8] applied 
a random forest (RF) algorithm to predict atherosclerosis 
in China, using data from a retrospective study and statisti-
cal analysis. Park et al. [9] developed several ML models, 
including a classification and regression tree (CART) deci-
sion tree and RF, to predict the presence of coronary artery 
calcification. This was based on retrospective data from 3,302 
Korean patients. Fan et al. [10] built ML models, specifically 
RF, decision tree, and eXtreme Gradient Boosting (XGBoost), 
to predict asymptomatic carotid atherosclerosis. This was 
done using EHRs from 6,553 patients in China. Ward et al. 
[11] employed logistic regression (LR), RF, gradient boosting 
(GB), and XGBoost algorithms to predict the risk of athero-
sclerotic CVD in a diverse patient cohort. Lastly, Terrada 
et al. [12] developed a medical diagnosis method to aid in 
predicting atherosclerosis in patients, using medical records 
from 835 patients.
	 Most previous studies have concentrated on the perfor-
mance of ML models or the importance of features, with 
minimal focus on thoroughly understanding and explaining 
predictions using interpretable methods [8-13]. However, in 
clinical environments, models that are interpretable are gen-
erally favored over black box models [14,15]. Consequently, 
ML methods that are model-agnostic have been developed 
to identify informative features and interpret them. A mod-
el-agnostic interpretation method, such as Shapley Additive 
exPlanations (SHAP) framework, uses a dataset and vari-
ous prediction models as inputs, applies these models to the 
data, and then identifies the characteristics of data features 
within each prediction model [16].
	 The objectives of this study were as follows: (1) to develop 
a predictive model for AHD using an ML approach and 
hematology EHR data, (2) to interpret the results of this pre-
dictive model using the ML approach, and (3) to construct 
model-agnostic ML methods for identifying informative 

features and interpreting them. In order to create a predic-
tive model for AHD, we assessed the effectiveness of RF, 
XGBoost, and AdaBoost models, utilizing hematology EHR 
data. We chose to investigate RF, XGBoost, and AdaBoost as 
these algorithms have previously demonstrated potential in 
predicting CVD [8-10,12,13]. Subsequently, we evaluated the 
performance of each model to determine which one was su-
perior (H1). Given that ML models are often seen as a black 
box, and that interpretable models are generally preferred 
in clinical settings, we incorporated interpretability into our 
ML model. This allowed us to calculate and examine the in-
fluence of features on individual and overall predictions, as 
well as to evaluate informative features and investigate their 
interpretability and characteristics. To address the hypothesis 
regarding how to interpret the predictive model and evaluate 
informative features (H2), we utilized the SHAP framework. 
This enabled us to further investigate their interpretability 
and characteristics.
	 Few studies have sought to answer the same questions 
posed in our report. We expect that our methodology will 
establish a foundation for future advancements by offering 
evidence and setting the stage for subsequent research on 
computational agents and ML. These tools are capable of de-
tecting, predicting, and interpreting prediction models using 
EHRs.

II. Methods

1. Ethics and Data Use Agreement 
We obtained EHR data for patients with heart disease from 
the Indonesia National Heart Center Harapan Kita EHR, 
under the ethical clearance number LB.02.01/VII/520/
KEP014/2021. This data spans from 2016 to 2021. It was 
unclear when the predictors for each patient were extracted 
from the EHR (i.e., whether it was on the day the patient was 
initially diagnosed with AHD or on subsequent days).

2. Data Preprocessing
The EHR system houses both clinical and hematological test 
data for patients. It has stored records for 6,837 patients who 
have been diagnosed with heart disease by a physician using 
International Classification of Diseases 9th or 10th revision 
(ICD-9/ICD-10) codes. Subsequently, we identified the re-
cords of patients with AHD using the ICD-9/ICD-10 diag-
nosis code I25.1, which indicates AHD including coronary 
artery disease and coronary artery atheroma. We received 
4,702 records from patients with AHD and 2,135 records 
from patients with no AHD. Patients with no AHD were 
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those who did not have an AHD diagnosis. 
	 The data preprocessing phase encompassed data cleaning, 
data integration, data transformation, and data reduction 
[17]. The EHR medical record table included several attri-
butes: (1) patient information, which includes registration 
date, return date, patient name, medical record code, age, 
room code, laboratory test code, and doctor name; (2) the 
ICD code and its description; (3) hematology test attributes, 
which include erythrocytes, hematocrit, hemoglobin, mean 
corpuscular hemoglobin, mean corpuscular hemoglobin 
concentration, leukocytes, thrombocyte, age, and sex. Unfor-
tunately, we were unable to include total cholesterol, triglyc-
erides, high-density lipoprotein (HDL), low-density lipopro-
tein (LDL), complete blood count with differential (CBC), 
and lipoprotein in our dataset as these were not recorded in 
our EHR. Data cleaning was the subsequent step, which in-
volved identifying and rectifying errors or inconsistencies in 
the data, such as missing values and duplicates. In our datas-
et, we did not find any duplicate values, and we removed the 
row that contained missing values. After the data cleaning 
process, we retained 10 features as input variables. We iden-
tified eight numerical attributes: erythrocytes, hematocrit, 
hemoglobin, mean corpuscular hemoglobin, mean corpus-
cular hemoglobin concentration, leukocytes, thrombocyte, 
and age, along with two categorical attributes—sex and di-
agnosis code (ICD code). Data transformation is the process 
of converting the data into a format suitable for analysis. For 
the categorical attribute of sex, we converted “female” to 0 
and “male” to 1; for the diagnosis code, we converted “patient 
with AHD” to 1 and “patient with no AHD” to 0. We utilized 
the EHR diagnosis column as the data class label to identify 
and predict AHD patients. Table 1 displays all predictor at-
tributes and their categorical values. All categorical values 
were established based on Indonesian medical laboratory 
testing standards for adults.

3. Machine Learning Algorithms for Detection and Prediction
The prediction experiments utilized RF, XGBoost, and Ada-
Boost algorithms. RF is an ensemble of high-performing 
trees that are amalgamated into a single model. Notably, 
this algorithm surpasses the performance of the decision 
tree algorithm [18]. XGBoost, meanwhile, is an optimized 
distributed gradient boosting library, designed to be highly 
efficient, flexible, and portable [14]. AdaBoost is an ML ap-
proach that was originally developed as an ensemble method 
to enhance the performance of binary classifiers [19]. A va-
riety of ML techniques used in heart disease prediction are 
outlined in Table 2 [9,15,19,20-23]. The parameter tuning 

for RF, XGBoost, and AdaBoost is presented in Table 3.

4. Performance Measures
We used a confusion matrix to evaluate the models by deriv-
ing the following metrics: true positives, true negatives, false 
positives, and false negatives [24]. We calculated accuracy, 
precision, F1-score, and recall. We also calculated the area 
under the receiver operating characteristic curve (AUC) 
value. The receiver operating characteristic (ROC) curve is 
a measure of the predictive quality of a classifier. The opti-
mum position is thus in the plot’s upper left corner, where 
false positives equal 1 and true positives equal 0. The AUC 
denotes the degree or measure of separability. This shows 
how well the model can differentiate among classes. A higher 
AUC means that the model better predicts class 0 as 0 and 
class 1 as 1 [25].

5. Model-Agnostic Interpretation
ML models are often perceived as black boxes, accepting 
specific features, and producing predictions. Generally, in 
clinical scenarios, models that are interpretable are favored 
over black box models. In a computerized environment, an 
agnostic approach is one that can operate across various 
platforms [26].

Table 1. Predictor attributes and their baseline characteristics in 
the dataset (n = 6,837)

Predictor attribute
Valuea

Male Female

Sex 5,505 1,332
Age (yr) 58.18 61.27
Erythrocytes (million cells/μL) 4.3–5.6 3.9–5.1
Hematocrit (%) 41–50 36–44
Hemoglobin (g/dL) 13–17 12–15
MCH (pg) 27.5–33.2
MCHC (g/dL) 32–36
Leukocytes (103/µL) 3.5–10.5
Thrombocyte (103/µL) 135–317 157–371
Diagnosis code
   Number of patients with AHD 4,702
   Number of patients with no AHD 2,135
MCH: mean corpuscular hemoglobin, MCHC: mean corpus-
cular hemoglobin concentration, AHD: atherosclerotic heart 
disease.
aBased on Indonesian medical laboratory testing standards for 
adults.
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	 SHAP is a game-theoretic approach used to interpret the 
output of ML models. This method ranks attributes based on 
their contribution to the model, and it can visually display 
the relationship between these attributes and the results. The 
absolute value of an attribute signifies its influence, while 
its positive or negative value indicates the attribute’s predic-
tive power for atherosclerotic heart disease. SHAP allows for 
the calculation of a feature’s impact on both individual and 
global predictions [27]. The model’s g value is calculated us-
ing the following formula (1), where p is the number of attri-

butes, z = [z1, z2,…, zp] is a simplification in the input, where z 
represents the data prediction attributes and is 1, and the un-
used attribute has a z value of 0. Furthermore, ϕi ∈ ℝ reflects 
each attribute’s contribution to the model [27].

          

 

𝑔𝑔�𝑍𝑍� = 𝜙𝜙� ��𝜙𝜙�𝑍𝑍�
�

���
 

(1)

 

 

 

	 (1)

Table 3. Parameter tuning for the algorithm

Algorithm Parameter tuning Definition

Random forest n_estimators =100 The number of trees in the forest
Criterion = entropy The function to measure the quality of a split
max_depth = none The maximum depth of the tree
min_samples_split = 2 The minimum number of samples required to split an internal node
min_samples_leaf = 1 The minimum number of samples required to be at a leaf node
min_weight_fraction_leaf =  

0.0
The minimum weighted fraction of the sum total of weights (of all the input 

samples) required to be at a leaf node
max_features = “sqrt” The number of features to consider when looking for the best split

XGBoost loss = ‘log_loss’ The loss function to be optimized. ‘log_loss’ refers to binomial and multino-
mial deviance

learning_rate = 0.1 Learning rate shrinks the contribution of each tree by learning_rate
n_estimators = 100 The number of boosting stages to perform
subsample = 1.0 The fraction of samples to be used for fitting the individual base learners
criterion = ‘friedman_mse’ The function to measure the quality of a split
min_samples_split = 2 The minimum number of samples required to split an internal node
min_samples_leaf = 1 The minimum number of samples required to be at a leaf node
min_weight_fraction_leaf =  

0.0
The minimum weighted fraction of the sum total of weights (of all the input 

samples) required to be at a leaf node
max_depth = 3 Maximum depth of the individual regression estimators
min_impurity_decrease = 0.0 A node will be split if this split induces a decrease of the impurity greater 

than or equal to this value
Init estimator = none An estimator object that is used to compute the initial predictions
RandomState instance or  

None = None
Controls the random seed given to each Tree estimator at each boosting 

iteration
max_features = none The number of features to consider when looking for the best split. If None, 

then max_features=n_features
AdaBoost estimator object = none The base estimator from which the boosted ensemble is built.

n_estimators = 50 The maximum number of estimators at which boosting is terminated
learning_rate = 1.0 Weight applied to each classifier at each boosting iteration
algorithm = ’SAMME.R’ If ‘SAMME.R’ then use the SAMME.R real boosting algorithm
RandomState instance = none Controls the random seed given at each estimator at each boosting iteration
base_estimatorobject = none The base estimator from which the boosted ensemble is built
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	 The higher the SHAP value, the greater the positive contri-
bution of the attributes, and vice versa [28]. 
	 In our study, we utilized the SHAP model to generate 
SHAP values for our test dataset. Subsequently, we created 
a SHAP summary bar plot for global interpretability and a 
separate bar plot for local interpretability, both pertaining 
to the prediction model. The steps of our proposed research 
study are depicted in Figure 1.

III. Results

1. �Machine Learning Algorithm’s Performance for Detection 
and Prediction

We utilized 6,837 patient records in our study. The diagnosis 
code was employed as the label in our model. For the ML 
model to be trained, the dataset needs to be divided into 
training and testing data [16]. We randomly split the dataset 
into two parts using the hold-out method, allocating 80% of 
the data for training (n = 5,470) and the remaining 20% for 
testing (n = 1,367). Figure 2 presents the confusion matrix 
of the training and testing data for each algorithm. Table 4 
illustrates the performance of RF, XGBoost, and AdaBoost 
when applied to the test set. Accuracy is a measure of how 
many positive and negative observations were correctly clas-
sified. Precision addresses the question of what percentage of 

positive identifications were indeed correct. The F1-score is 
the harmonic mean of precision and recall, and it is not sole-
ly based on the accuracy value. Recall addresses the question 
of what percentage of actual positives were correctly identi-
fied [24,25]. Figure 3 showcases the ROC-AUC curve for RF, 
XGBoost, and AdaBoost. A ROC curve plots the true posi-
tive rate on the Y-axis and the false positive rate on the X-
axis, both globally and on a per-class basis. The ideal point 
is located in the upper left corner of the plot, where false 
positives are 0 and true positives are 1. The AUC quantifies 

Machine learning algorithms for detection and prediction

Construct prediction model
(RF, XGBoost, AdaBoost)

Evaluate prediction
model performance

based on
confusion matrix

Calculate accuracy
Precision

F-measure
Recall

ROC AUC curve

Model-agnostic machine learning interpretation

Global interpretability:
investigate feature

importance using SHAP
summary_plot plot_type

bar

Local interpretability:
investigate how the

features contribute to
that single prediction.
using SHAP bar plot

Data collection and pre-processing

Her data from 2016 to 2021 for heart disease
patients (n = 6,837 records). 4,702 records from
patients with AHD diagnosis and 2,135 records

form patients with no AHD diagnosis

Feature selection based on medical doctor
supervision (hematology test attribute for AHD

detection and prediction, n = 10 attributes)

Encoding categorical data.
For gender, female convert to 1, male convert to
1 for diagnosis code, 125.1 (AHD) convert to 1,

no AHD diagnosis convert to 0

Data splitting
(use hold out method)

Training set (80% of n, n = 5,470)
Testing set (20% of n, n = 1,367)

Figure 1. ‌�Steps of the proposed re­
search study. EHR: Electronic 
Health Record, AHD: athero­
sclerotic heart disease, ROC- 
AUC: ROC-AUC: receiver 
operating characteristic-area 
under the curve, SHAP: Shap­
ley Additive exPlanations.
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Figure 2. ‌�Confusion matrix for the training data (top) and testing 
data (bottom).

Table 4. Predictive model performance for the test set

Algorithm Accuracy Precision F1-score recall ROC-AUC

Random forest 0.77 0.81 0.83 0.86 0.82
XGBoost 0.75 0.80 0.82 0.85 0.80
AdaBoost 0.78 0.82 0.85 0.88 0.81

ROC-AUC: receiver operating characteristic-area under the curve.
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the relationship between false positives and true positives. A 
higher AUC indicates a better overall model [15].

2. Model-Agnostic Interpretation
Given that AdaBoost surpassed nearly all other classification 
and prediction metrics, we employed SHAP to elucidate the 
predictions of a single instance (a patient’s record), by deter-
mining the contribution of each feature to the predictions. 
The SHAP Python library was utilized to compute SHAP 
values and generate charts. We applied both global and lo-
cal SHAP interpretability to demonstrate the comprehensive 
contribution of the feature to both global and local interpret-
ability.
	 A global feature significance plot was generated by input-
ting a matrix of SHAP values into the bar plot function. 
This process assigned the global importance of each feature 
to correspond with the mean absolute value of that feature 
across all samples. The x-axis represents the average abso-
lute SHAP value of each feature. The features are organized 
in descending order based on their impact on the model’s 
prediction. This arrangement takes into account the absolute 

SHAP value, meaning it is irrelevant whether the feature 
positively or negatively influences the prediction. Figure 4 
presents a global feature importance plot for the AdaBoost 
algorithm, which was used to detect and predict AHD. This 
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Figure 4. ‌�Global interpretability: feature importance for the Ada­
Boost algorithm to detect and predict atherosclerotic 
heart disease (as visualized by summary_plot method 
with plot type bar in the Python library). MCH: mean cor­
puscular hemoglobin, MCHC: mean corpuscular hemoglo­
bin concentration, SHAP: Shapley Additive exPlanations.
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plot was created using a bar type in the Python library. He-
moglobin was the most significant attribute for detecting 
and predicting arteriosclerotic heart disease in patients, fol-
lowed by leukocytes, hematocrit, sex, thrombocytes, mean 
corpuscular hemoglobin, age, mean corpuscular hemoglobin 
concentration, and erythrocytes.
	 Next, we used the plots of individual data points to evalu-
ate the implications on a case-by-case basis. These plots 
illustrate the primary features that influence the prediction 
of a single observation, along with the magnitude of the 
SHAP value for each feature. The bar plot is zero-centered to 
emphasize the contributions of different variables. Each bar 
corresponds to the SHAP value of a particular feature. Posi-
tive shifts are represented by red bars, while blue bars denote 
negative shifts. Figure 5 provides a local interpretation of the 
AdaBoost algorithm’s ability to identify and predict AHD, 
using a bar plot from the Python library. Hemoglobin and 
mean corpuscular hemoglobin concentration are indicated 
by red bars, signifying positive shifts, while leukocyte, he-
matocrit, sex, thrombocyte, mean corpuscular hemoglobin, 
age, and erythrocyte are represented by blue bars, indicating 
negative shifts that affect the prediction of a single observa-
tion.

IV. Discussion

1. Findings
In this study, we developed a ML model to predict AHD us-
ing EHR hematology data. We evaluated three models: RF, 
XGboost, and AdaBoost. Our experiment demonstrated that 

AdaBoost outperformed the other models in nearly all clas-
sification and prediction measures (accuracy, precision, F1-
score, recall), with the exception of AUC, where it ranked 
second, slightly below the AUC value of RF (H1). Given that 
AdaBoost surpassed RF and XGBoost in almost all classifi-
cation and prediction measures, we employed SHAP analysis 
to uncover insights and patterns that were not readily dis-
cernible from the initial AdaBoost features. A global inter-
pretability analysis using the SHAP summary_plot method 
with a bar plot type revealed that hemoglobin is the most 
critical attribute for detecting and predicting AHD patients. 
This was followed by leukocyte, hematocrit, sex, thrombo-
cytes, mean corpuscular hemoglobin, age, mean corpuscular 
hemoglobin concentration, and erythrocytes (H2). In ad-
dition to examining the global trends in feature impact, we 
also used the local interpretability SHAP bar plot method 
to explore the contribution of individual features to indi-
vidual predictions. In this context, hemoglobin and mean 
corpuscular hemoglobin concentration (represented by the 
red bar) had a positive impact, while leukocytes, hematocrit, 
sex, thrombocytes, mean corpuscular hemoglobin, age, and 
erythrocytes (represented by the blue bar) had a negative 
impact on the AHD prediction of a single observation (H2).
	 The clinical implications of our research are as follows: (1) 
For interpretation and prediction, we processed complex, 
heterogeneous data from EHR to predict patients with AHD. 
This enhances our understanding of the patient’s condi-
tion. (2) For comprehension, we interpreted the prediction 
model and evaluated informative features. We also inves-
tigated their interpretability and characteristics with the 
aim of explaining the predictions of an instance (patient’s 
record). This was achieved by calculating the contribution 
and impact of each attribute to the predictions. (3) For deci-
sion support, we utilized the previous steps to predict clini-
cal outcomes. Our findings indicated that hemoglobin was 
the most crucial feature for detecting and predicting AHD 
patients, as evidenced by the SHAP value. Both hemoglobin 
and mean corpuscular hemoglobin concentration demon-
strated positive shifts in predicting a single observation. 
Previous research has corroborated some of our findings, 
thus validating our approach to evaluating informative fea-
tures of the ML prediction model and investigating their 
interpretability and contributions to prediction. Lee et al. 
[29] and Goel et al. [30] concluded that both low and high 
hemoglobin concentrations were associated with increased 
cardiovascular and all-cause mortality. This aligns with our 
finding that hemoglobin has a positive impact on individual 
predictions of AHD. 
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	 The technical implication of our research is that we uncov-
ered trends that have seldom been investigated before. Most 
prior studies have concentrated on the performance of ML 
models or the importance of features, with little focus on ful-
ly understanding and explaining predictions using interpre-
table methods. In clinical settings, interpretable models are 
often favored over black box models [26]. Previous research 
has explored RF, XGBoost, and AdaBoost for heart disease 
prediction, yielding better results than ours. A previous 
study [21] utilized RF and achieved ROC-AUC of 0.802, but 
it involved a small sample size of 498 subjects. Another study 
[15] employed XGBoost and achieved a prediction accuracy 
of 91.8%. Furthermore, yet another study [19] used Ada-
Boost and achieved a prediction accuracy of 100%. However, 
these studies did not employ interpretable methods for ML 
to understand and explain prediction results, an aspect that 
was addressed in our study.
	 Finally, our proposed ML model, along with the interpret-
ability model, holds promise as tools for detecting and pre-
dicting AHD patients, as well as elucidating the prediction 
results. Our study was not designed as a prospective inves-
tigation observing disease progression over time. Instead, 
our proposed methodology involved a post-hoc analysis of 
hematological EHR data, from which we sought to extract 
valuable information. Utilizing this information, we con-
structed a prediction model for arteriosclerotic heart dis-
ease, in addition to a machine-learning agnostic model, both 
based on ML techniques.

2. Limitations
This preliminary study aimed to understand and explain 
predictions made by ML models using an interpretable 
method. Our research indicates that ML has significant po-
tential to enhance clinical investigation. One of the primary 
challenges for ML approaches in interpreting results is the 
extraction of meaningful concepts and attributes from raw 
data and datasets. This includes building prediction mod-
els, understanding and evaluating the performance of these 
predictions, and interpreting the results of these predictions. 
At present, our study only utilized structured data from he-
matology EHRs and excluded information from a variety of 
tests used in diagnosing heart conditions. Blood tests that 
record characteristics such as total cholesterol, triglycerides, 
HDL, LDL, CBC, and lipoprotein could be considered com-
prehensive attributes for model prediction in future studies. 
These tests are used to determine the risk of CAD. In future 
research, we need to expand the ML model used in this 
study and acquire different comprehensive attributes. These 

attributes should contain additional information about the 
patient’s medical tests that may contribute to AHD. This will 
enhance the performance of our proposed prediction model. 
Furthermore, the impact of the directionality of the features 
that demonstrated the significance of a feature, and whether 
it has a positive or negative impact on prediction, should be 
validated with future medical research.
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