
I. Introduction

Kidney disease is one of the most common causes of early 
death worldwide. The number of patients with chronic kid-
ney disease (CKD) totaled 700 million in 2017. Around 1.2 
million patients have died globally from it, a number expect-
ed to increase by 2.2–4.2 million by 2040 [1]. According to 
the Emirates Nephrology Society, more than 520 individuals 
per million in the United Arab Emirates (UAE) general pop-
ulation have CKD. Among the available treatment options, 
dialysis is the most common. The drawbacks of dialysis in-
clude its discomfort and cost. Patients must visit a healthcare 
facility weekly for two to four dialysis sessions, according to 
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their physician’s recommendations. Dialysis sessions cost be-
tween USD 175 and USD 275 per session [2]. Furthermore, 
dialysis prescription and therapy are often complicated and 
rely primarily on patient data, where several attributes may 
affect the survival rate and treatment quality. 
	 At the present time, machine learning (ML) and big data 
analytics have been integrated into the healthcare field to 
diagnose and treat long-term patients. Several studies have 
utilized big data for dialysis care. One such study, by Barbieri 
et al. [3], analyzed data from 766,000 patients across several 
years and developed a patient- and session-specific artificial 
neural network (ANN) model comprising 60 attributes. The 
model was used to predict risks from intradialytic hypoten-
sive periods before each hemodialysis session from the heart 
rate and systolic blood pressure (SBP) profiles, dialysis dose 
(Kt/V), and post-dialysis body weight predictions. 
	 Moreover, Dr. Brendan Bowman utilized big data from 
dialysis dosing records of about 3,000 patients over several 
months [4]. The study aimed to develop a model that helped 
clinicians accurately predict and control dialysis patients’ 
red blood cell (RBC) counts, which modeled treatment 
outcomes to reduce treatment costs. Several dialysis dosing 
studies, such as the HEMO trial study [5], asserted that pro-
viding a higher dialysis dose has benefits for the RBC count 
stability of only some dialysis patients, not all. The HEMO 
trial study did not demonstrate an improved survival rate or 
lower morbidity when a high-flux membrane was used. This 
proved that larger datasets yield reliable results; however, not 
all problems can be addressed and deciphered by the dataset 
size [6]. On this note, Perl et al. [7] acknowledged a need for 
further research on big data analysis, which would validate 
the application of multidimensional measures and compute 
adequate dialysis dosing levels for each patient’s treatment.
	 The number of kidney disease patients on dialysis is in-
creasing, and their well-being relies on medical technology, 
which includes the necessity of proper dialysis dosing levels 
to ensure that patients receive the right dialysis treatment 
at the right time. Earlier studies offered little information 
regarding predictive models for treating kidney disease pa-
tients that could provide adequate dialysis dosage levels [8]. 
Hence, there is a need to develop a model that aids physi-
cians and clinicians in delivering precise, optimized dialysis 
treatments through big data analytics. 
	 For data modeling and analysis of dialysis patients, from a 
medical viewpoint, blood electrolytes are the most critical 
parameters and must be controlled. Understanding electro-
lyte parameters and predicting their outcomes to deliver the 
optimal dialysis dosing for each patient is a challenge [9,10]. 

Therefore, it is essential to understand the parameters that 
correlate with electrolyte levels before determining and pre-
scribing improved dialysis dosing to patients. To understand 
a patient’s electrolyte levels, data analytics tools may provide 
some insights and help interpret the significance of trends 
[11,12]. Furthermore, it is possible to build predictive mod-
els that determine the most significant attributes for elec-
trolyte level prediction, which may aid in decision-making 
to prescribe and improve the dialysis dosing for patients 
[13-16]. Hence, this study aimed to analyze and predict pa-
tients’ electrolyte levels to improve dialysis dosing guidance, 
with the ultimate goal of bringing about positive effects for 
patients’ quality of life and well-being, hospitals, and the 
healthcare field.

II. Methods

The proposed approach for analyzing and predicting pa-
tients’ electrolyte levels to improve patients’ dialysis dosing 
levels is outlined in this section. The proposed ML predictive 
model types for this research are also presented, with a brief 
description of each.

1. Data Collection and Pre-processing
A single-site retrospective study was conducted, and all 
available patients treated with kidney dialysis at Univer-
sity Hospital Sharjah gave consent to participate in the 
study. Patients were in the dialysis unit for 1–5 years. The 
Institutional Review Board (IRB) of University Hospital 
Sharjah approval was approved for this study (No. UHS-
HERC-012-10062019). The established records of 45 patients 
undergoing several months of dialysis for kidney malfunc-
tion were obtained through the hospital’s Electronic Medical 
Record (EMR) system. The EMR data were categorized into 
117 attributes, which were converted to a format suitable 
for further processing by the predictive models. Data pre-
processing was carried out using RapidMiner Studio 9.1 
(RapidMiner, Boston, MA, USA), a data science platform 
that supports several artificial intelligence (AI) tools. This 
step involved four stages, explained below. 

1) Data integration and cleaning
Data integration allows predictive models to run efficiently. 
It was implemented herein by consolidating data from 45 
dialysis patients, with each having multiple dialysis data 
entries across several months. Attributes lacking more than 
90% of their values were dropped from the analysis; further-
more, missing numeric values were supplied by the average 
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attribute value, while categorical attributes were supplied by 
the most frequently occurring value. Further cleaning of the 
dataset involved manually replacing errors with a defined 
value as partial offset for the dataset’s “noise.”

2) Data transformation and reduction
This stage went hand-in-hand with the data-cleaning stage. 
Per-patient averages were calculated for attributes that were 
missing from some patients’ records. Several other attributes 
with missing values were replaced by means of proper nomi-
nal values or function expressions. If the values were missing 
for all months for a particular attribute in a patient’s record, 
then the entire row of missing values was deleted from the 
dataset. That is, the missing values were not input by any 
other means because doing so would have violated data in-
tegrity.

2. Exploratory Data Analysis and Data Algorithms
Exploratory data analysis (EDA) incorporates data knowl-
edge and visualization tools to understand the relationships 
among significant patient attributes. To implement the EDA 
step, RapidMiner Studio 9.1 and Minitab (minitab.com) 
were used to create scatterplots and boxplots, which enabled 

visualizing vital blood electrolyte levels per patient and ana-
lyzing their trends in the dataset. A time-lapse view of vital 
electrolytes was also obtained to generate further insights 
from the dialysis sessions on a monthly basis. 
	 ML algorithms were utilized to predict patient electrolyte 
levels from the selected attributes. The chosen algorithms 
were decision tree (DT), neural network (NN), linear regres-
sion (LR), and support vector machine (SVM) [17,18]. Each 
technique was selected for its popularity in the data science 
field, reported accuracy in previous research, and ease of 
use.

3. �Data Prediction, Interpretation, and Predictive Model 
Performance

Predictive models were then built to select several electro-
lytes from the big data for analysis of precise dialysis dosing. 
The information obtained from the EDA step was taken, fol-
lowing patient privacy policies of not including any personal 
information, and was used to build the algorithmic models. 
The models were trained and validated using 80% of the 
available data, and the remaining 20% was used for testing 
the models. 
	 Each trained predictive model was then tested with the 
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Figure 1. ‌�Definitions of categories and dialysis patients’ attributes. The figure represents the 14 categories that comprised 117 at-
tributes, respectively. The most significant categories used for exploratory data analysis or data prediction were the demo-
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final testing dataset to predict the output attributes, which 
were displayed as tables, charts, and reports. The predictive 
models identified the most significant predictive attributes 
for electrolyte concentrations, which could be used to pre-
scribe precise dialysis dosing for each dialysis patient. 
	 Finally, the four predictive techniques were compared to 
evaluate the performance of each model in terms of the root 

squared correlation (R2) and root mean square error (RMSE). 
The comparisons indicated which of the models would gen-
erate the best predictive results, with fewer errors and uncer-
tainties.
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III. Results

With the collection of big data, the datasets were restruc-
tured. Figure 1 shows the 14 categories and their 117 attri-
butes. 
	 Data for potassium, calcium, plasma sodium, magnesium, 
and post-dialysis urea were plotted as time series to check 
variability among patients, as shown in Figure 2. Figure 
2A displays the variability profile of potassium throughout 
patients’ monthly checkups, highlighting the fact that an 

8-month course of dialysis had some positive and negative 
effects on the electrolyte levels of some patients. To further 
study the causes of high variability in some vital electrolytes, 
electrolyte trends were visualized using several tools during 
EDA.
	 Boxplots of significant electrolytes were created as the first 
EDA approach, shown in Figure 3. Each box represents the 
range of the particular electrolyte for each of the 45 dialysis 
patients upon their monthly dialysis checkups. Within each 
electrolyte profile plot, the mean of every patient is shown as 
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dark blue circles, while the electrolyte minimum and maxi-
mum ranges are plotted as dotted horizontal red lines. Black 
lines connect the mean from one dialysis patient to another 
to further emphasize variability. 
	 The boxplots demonstrated significant variability of elec-
trolyte levels from patient to patient, as is also seen in Figure 
2. The largest degrees of variability appeared in the plasma 
sodium and potassium electrolyte profiles. Patients’ electro-
lyte levels were shown to have fluctuated, which is a serious 
concern from a medical point of view, and it seemed possible 

that significant variations could be due to the non-removal 
of potassium during dialysis sessions. However, the plasma 
sodium profile added insight, since changes in sodium levels 
have an inverse effect on potassium levels. Therefore, the 
decline in plasma sodium levels in Figure 3E corresponds to 
the increase in blood potassium levels in Figure 3A.
	 To add to the insights from important electrolytes, a time-
lapse study was analyzed to view these electrolytes from the 
perspective of dialysis sessions over time, shown in Figure 4. 
The plots represented the connected mean with electrolyte 

Figure 4. �Boxplot time-lapses of (A) potassium, (B) post-dialysis 
urea, (C) calcium, (D) magnesium, and (E) plasma so-
dium. Representation of electrolyte variables as a range 
for all patients.
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levels on the y-axis and visit numbers along the x-axis. Each 
box in the plots represents the range of a particular electro-
lyte for patients receiving dialysis on a monthly basis. 
	 The electrolyte trends of dialysis patients displayed low 
variability with respect to the time-lapse input. Figure 3A 
shows high variability in potassium levels, but Figure 4A 
demonstrates very low variability. Because Figures 3 and 4 
show consistent variability in the electrolyte distributions for 
different patients and visits, the time-lapse electrolyte results 
further support the inference that dialysis was indeed work-
ing well, with proper dialysate solutions and dialysis ses-
sions. Hence, the analysis showed that other factors caused 
the high variability of levels of vital electrolytes in patients. 
The four predictive models mentioned earlier were used to 
interpret the causative factors for the data presented in Fig-
ure 4.

1. Data Prediction and Interpretation
Each of the four models had differently weighted predic-
tors and predicted different electrolyte outcomes. Since the 
models incorporated predictions of 13 electrolytes with the 
output of weights, each model’s most important predictor at-
tribute was captured in Figure 5. 
	 From Figure 5, it can be seen that various attributes affect-
ed the predictions of certain electrolytes, illustrated as mul-
tiple attributes with repeating colors and their correspond-

ing values. Level 1 (L1) defines the most important feature 
from the model, followed by level 2 (L2), then level 3 (L3). 
For further statistical details from the illustrations, Figure 6 
displays the specific color code for each input attribute to the 
model as a weighted table for further characterization.
	 In other words, Figure 6 displays the sums of the weights of 
the input attributes at three importance levels from the four 
predictive models. The total sum of the attribute weights 
was also generated, corresponding to how much weight the 
attributes showed in these models for one of the top three 
importance levels from the prediction results. These weights 
were taken from the predictive model output, with reference 
to Figure 5. 
	 As a result, the top five input attributes were identified as 
pre-dialysis blood urea nitrogen (BUN), pre-weight, dry 
weight, anticoagulation, and sex. Figure 6 indicates pre-dial-
ysis BUN as the most significant attribute, with the highest 
analytical total weight (8.162) from all models. From a medi-
cal standpoint, each patient’s BUN levels are tested monthly 
before dialysis is administered. The next most significant at-
tributes are pre-weight, dry weight, anticoagulation, and sex, 
with total analytical weights of 4.635, 4.529, 4.216, and 4.145, 
respectively. 
	 Hence, our study recommends following the DT model’s 
decision-making support system because the results encour-
age physicians to ensure that patients’ pre-dialysis BUN 
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Figure 5. ‌�Most significant electrolyte predictor attributes. These attributes had an impact on predicting certain electrolytes and their 
relative significance. LR: linear regression, DT: decision tree, SVM: support vector machine, NN: neural network.
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levels are within an acceptable range. To do so, physicians 
ought to consider each patient’s lifestyle before dialysis treat-
ment because the five most significant attributes are related 
to lifestyle features. Other variables included in the models 
(e.g., duration and age) were not significant as predictors.

2. Model Performance
Tables 1 and 2 illustrate the performance of each of the four 
predictive models as integrated tables. Table 1 displays the 
performance of the predictive models from the validated and 
trained output, which used the training dataset, while Table 
2 does the same for the tested, finalized model output and 
the testing dataset. 
	 In our comparison of the models, DT achieved by far the 
most accurate results, with higher values of R2 and lower 
values of RMSE for both the training and testing models. For 
the training output performance in Table 1, DT achieved an 
average of 0.4649 ± 0.1639 for R2 and an average RMSE of 
18.8783 ± 4.74369. For the final tested dataset model per-
formances in Table 2, DT had R2 and RMSE values of 0.4099 
and 21.7011, respectively. The highest R2 value in the DT 
model was 0.752 for alkaline phosphatase, and the lowest 
RMSE value was 0.096 for magnesium.

IV. Discussion

In this research, a clinical decision-making support system 
was developed for dialysis patients using data analytics. The 
results demonstrate the potential of extracting insights from 
big data to transform healthcare from a traditional symp-
tom-driven practice to precisely personalized medicine. 

	 This study utilized big data from more than 100 dialysis 
parameters in patients’ records, where critical electrolyte pa-
rameters were used to analyze, predict, and provide insights 
on how to improve a patient’s dialysis dosing. Therefore, 
electrolyte parameters were investigated with respect to 
demographic attributes and attributes typical of dialysis pa-
tients, including glycated hemoglobin and pre-dialysis BUN 
values. Vital electrolytes (i.e., magnesium, calcium, sodium, 
potassium, and post-dialysis BUN) were found to be highly 
variable in patients, due either to insufficient removal of 
electrolytes during dialysis sessions or to an inverse correla-
tion with other electrolyte profiles. An example of inverse 
proportionality involved the higher levels of potassium in 
patients due to the lower sodium levels. However, it was 
also demonstrated that the electrolyte levels were consistent 
over time for each month when a time-lapse view of each 
electrolyte was analyzed. This clarified that the patients had 
received appropriate dialysis treatments.
	 After several types of predictive models (DT, NN, SVM, 
and LR) were built for further investigation, they predicted 
electrolyte levels within a range of demographic and vital di-
alysis parameters. Pre-dialysis BUN, pre-weight, dry weight, 
anticoagulation, and sex were found to be the five most 
significant predictive factors. Moreover, the DT model was 
demonstrated to be the best of the four models we evaluated 
because it provided a higher average R2 output and lower av-
erage RMSE values for electrolytes. 
	 Ultimately, the predictive results achieved the goal of our 
study in determining important factors for the improvement 
of patients’ dialysis dosing levels, where the interpretations 
from predictors verified that the duration and frequency of 
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dialysis were not crucial attributes for determining patients’ 
important electrolyte levels. Instead, the five most significant 
attributes were pre-dialysis BUN, pre-weight, dry weight, 
anticoagulation, and sex, which are related to the lifestyle 
features of dialysis patients. 
	 Moreover, in clinical practice by nurses or physicians, pre-
dictive models can be carried out using multiple patients’ 
datasets, and the three most important attributes can be 
noted from the models’ significant levels, which will sup-
port decision-making and offer insights from the predictive 
models’ output. Thus, from our results and an interpretation 
of the models’ most significant attributes, physicians ought 
to educate patients about patterns of nutritional intake. This, 
likewise, provides patients with more accurate dialysis dos-
ing using big data analytics from the growing number of 
dialysis patients, which will eventually help improve each pa-
tient’s quality of life, life expectancy, and well-being, as well 
as reducing costs, efforts, and time consumption for both 
patients and physicians.
	 On that note, this study comprised 45 patients in total, with 
dialysis sessions recorded from January 2020 to August 2020. 
In the future, this study could be extended either by analyz-
ing the records of a larger number of patients or by adding 
temporal data with a history of dialysis earlier than Janu-
ary 2020. This could further improve the predictive models 
and lead to more reliable results. Other dialysis machine 
parameters could also be added to the predictive models to 

determine their correlations with patients’ electrolyte levels, 
which may support researchers in further investigations.
	 The limitations of this work include the fact that it was 
conducted at a single site and the small number of partici-
pants. The study’s results need to be validated on a larger 
scale. Unfortunately, to our knowledge, no previous studies 
have used ML models to predict electrolyte concentrations, 
which makes it challenging to validate our models’ perfor-
mance. Moreover, there is a need for further research on big 
data analysis, which would validate the application of multi-
dimensional measures and compute adequate dialysis dosing 
levels for the patient’s treatment. Hence, there is a need to 
develop a model that aids physicians and clinicians in deliv-
ering precise and optimized dialysis treatments through big 
data analytics. 
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Table 2. Performance of predictive models with the test dataset

Electrolyte name
LR DT SVM NN

RMSE R2 RMSE R2 RMSE R2 RMSE R2

Sodium plasma 4.210 0.123 4.048 0.247 3.818 0.467 4.203 0.121
Potassium 0.675 0.338 0.695 0.325 0.677 0.339 0.710 0.316
Chloride plasma 3.511 0.336 3.927 0.415 5.315 0.443 4.605 0.214
Carbon dioxide 2.082 0.154 1.975 0.275 2.353 0.219 2.071 0.151
Creatinine plasma 176.332 0.427 160.993 0.512 237.395 0.772 139.677 0.720
Post-urea (BUN) 1.951 0.613 1.991 0.611 2.530 0.343 1.927 0.638
Protein total 4.805 0.035 4.686 0.035 3.952 0.242 4.225 0.088
Albumin 4.075 0.234 4.333 0.204 4.144 0.382 4.508 0.164
Calcium 0.229 0.157 0.184 0.438 0.183 0.454 0.217 0.238
Phosphate 0.416 0.377 0.388 0.420 0.326 0.571 0.413 0.427
Magnesium 0.139 0.362 0.096 0.749 0.100 0.727 0.132 0.515
Alkaline phosphatase 77.871 0.128 40.216 0.752 80.345 0.278 81.411 0.079
Uric acid 54.093 0.442 58.582 0.346 70.881 0.323 53.316 0.463
Average 25.415 0.287 21.701 0.409 31.694 0.428 22.878 0.318
Values more than 0.5 R2 (in bold) indicate best performances of the result.
LR: linear regression, DT: decision tree, SVM: support vector machine, NN: neural network, RMSE: root mean square error. 
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