
I. Introduction

Hemorrhage is a serious clinical event that can result in 
organ failure, coma, and death. Massive bleeding requires 
blood transfusion, causes low perfusion-related damage 
to major tissues and organs, and increases morbidity and 
mortality [1-3]. Specifically, patients who bleed severely 
in intensive care units (ICUs) are often at an elevated risk 
of mortality and extended hospital stay [4]. In many cases, 
hemorrhage causes loss of blood volume, and patients with 
potentially fatal bleeding are a critical issue for both medical 
teams and blood banks [5]. Blood supplies could be delayed 
in life-threatening situations for various reasons, and such 
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delays during emergencies could have irreversible adverse 
outcomes for patients. Therefore, it is essential to promptly 
recognize and treat bleeding to avoid adverse outcomes 
and complications. The early prediction of hemorrhage in 
the ICU could improve patient safety by ensuring sufficient 
blood management. Furthermore, since it is expensive to 
store unnecessarily large amounts of blood, the ability to 
predict hemorrhage might help in properly maintaining the 
blood supply chain, thereby reducing costs [6].
	 Electronic medical record systems have recently been 
established at many hospitals. These systems facilitate the 
management and secondary analyses of big clinical data 
generated in hospitals [7]. Patients with the most severe 
conditions are admitted to the ICU, which uses more medi-
cal resources and equipment than general wards and gener-
ates large amounts of data [8]. Machine learning, which is a 
branch of artificial intelligence, is instrumental in healthcare 
because it can be used to generate and interpret information 
faster than an individual medical professional. The ICU is 
an optimal environment for applying machine learning tech-
niques in clinical decision-making [9,10].
	 Several studies have attempted to identify patient vari-
ables and biomarkers associated with bleeding, but no clear 
single factor or predictor has been identified that can predict 
hemorrhage in individual patients [11]. Hemoglobin, he-
matocrit, systolic blood pressure, and heart rate are known 
to be closely correlated with hypovolemia, and several stud-
ies have reported clinically significant parameters for the 
early recognition of the occurrence of bleeding [12-14]. 
Coagulation tests are also used to diagnose problems in the 
hemostatic system and can help assess the risk of excessive 
bleeding or thrombosis. Before surgery, coagulation tests 
are recommended to predict potential bleeding and blood 
clotting disorders [15,16]. The blood urea nitrogen test is 
used to measure the amount of urea nitrogen in the blood, 
which represents a waste product of protein metabolism 
[17,18]. The excessive accumulation of nitrogen-containing 
compounds, such as uric acid and creatinine, in the blood is 
associated with gastrointestinal bleeding [19]. Additionally, 
some studies have identified age, sex, cardiovascular disease, 
and kidney disease as risk factors for bleeding [11]. There 
are several complex predictors of bleeding, and it is neces-
sary to integrate various factors to predict bleeding.
	 Several studies have been conducted on the early detection 
of bleeding among patients in ICUs. However, most of those 
studies mainly focused on patients experiencing gastrointes-
tinal bleeding or bleeding as a complication following spe-
cific surgical procedures [20-22]. In this study, we attempted 

to consider all types of bleeding requiring emergency blood 
transfusion in the ICU setting.
	 We aimed to develop a machine learning model for predict-
ing hemorrhage. Our proposed model learns the patterns of 
continuously changing real-world clinical data. We expected 
to identify groups at a high risk of hemorrhage during ICU 
admission in a manner that would allow pre-emptive inter-
ventions.

II. Methods

1. Data Source
In this retrospective study, we used data obtained from the 
Medical Information Mart for Intensive Care (MIMIC) da-
tabases. The MIMIC databases are sizeable, freely available 
databases comprising de-identified health-related data of pa-
tients admitted to the ICU at the Beth Israel Deacons Medi-
cal Center, which is a tertiary medical institution located in 
Boston, USA. The data include demographics, vital signs, 
laboratory results, prescriptions, and notes, among other 
data concerning critical patients [23]. We analyzed the most 
recent versions of the MIMIC databases: MIMIC-III v1.4 
and MIMIC-IV v1.0. The MIMIC-III clinical database con-
tains data obtained between 2001 and 2012. The data were 
collected using MetaVision (iMDSoft, Wakefield, MA, USA) 
and CareVue (Philips Healthcare, Cambridge, MA, USA) 
systems. The original Philips CareVue system (archived data 
from 2001 to 2008) was replaced with the new MetaVision 
data management system, which continues to be used today. 
The MIMIC-IV database contains data obtained between 
2008 and 2019. The data were collected using the MetaVi-
sion system. We used CareVue data obtained from the MIM-
IC-III database (2001–2008) as the training dataset, except 
for the overlapping collection period, and we used data from 
the MIMIC-IV database (2008–2019) as the internal test da-
taset.

2. Ethics and Data Use Agreement
We completed the online human research ethics training 
required by PhysioNet Clinical Databases and were granted 
access to the data according to the procedures presented. 
The Ajou University Hospital Institutional Review Board ap-
proved the study protocol (No. AJIRB-MED-EXP-21-526).

3. Definition of the Outcome of Interest
We studied patients aged 18 years and above who were ad-
mitted to the ICU, as recorded in the MIMIC databases. 
Hemorrhage was defined as follows. First, we considered 
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hemorrhage as occurring in patients who received transfu-
sions of more than 1 unit of packed red blood cells (PRBCs) 
after admission to the ICU, based on 53 International Clas-
sification of Diseases (ICD) procedure codes (ICD-9 and 
ICD-10), including “control of hemorrhage” or “control of 
bleeding” (Supplementary Table S1). Second, we defined 
hemorrhage as occurring in patients who were continuously 
transfused with more than 1,500 mL of PRBCs within 3 
hours after the start of transfusion. Among the patients sat-
isfying either condition, we excluded those who experienced 
hemorrhage within 12 hours of ICU admission owing to 
insufficient input length. As the control group, we selected 
patients who did not receive blood transfusions during their 
stay in the ICU. Controls were matched to cases based on 
the length of stay at a ratio of 1:4 using propensity score-
matching. Finally, we labeled the data as hemorrhage cases 
(n = 1,134) or controls (n = 4,536). A flowchart of the patient 
selection process is presented in Figure 1.

4. Input Variables
We extracted the patient information that provided the most 
relevant clinical features on ICU stays from the databases. 
The candidate features comprised static and dynamic feature 
information. Patient information included patient status, 
vital signs, the Glasgow Coma Scale (GCS) score, complete 
blood count (CBC), chemistry measurements, coagulation 
measurements, and urine output. Patient status included 
four features: age, sex, weight, and the Elixhauser comorbid-
ity index. The vital signs included seven features: systolic, 
mean, and diastolic blood pressure, heart rate, respiratory 
rate, body temperature, and oxygen saturation (SpO2). The 
GCS included three features: GCS eye, GCS verbal, and GCS 
motor. The CBC included four features: hematocrit, hemo-

globin, white blood cells, and platelet count. The chemistry 
measurements included five features: potassium, sodium, 
blood urea nitrogen, creatinine, and glucose levels. The 
coagulation measurements included three features: partial 
thromboplastin time, international normalized ratio, and 
prothrombin time. Urine output was a single feature. We 
developed three machine models that included increasingly 
larger amounts of information (i.e., higher numbers of in-
put features) and evaluated their performance. Model 1 was 
developed based only on patient status (four features) and 
vital signs (seven features). Model 2 used additional input 
information from the GCS (three features) and CBC (four 
features), along with the input for model 1. Model 3 used 
additional input information on chemistry (five features), 
coagulation (three features), and urine output (one feature) 
along with the input from model 2. The input features used 
for each of the three models are summarized in Table 1.

5. Data Preprocessing
For time-varying features, such as vital signs, we considered 
a 12-hour observation window before the time at which 
hemorrhage was predicted. The average time interval for all 
feature measurements within the observation window was 
32 minutes for the MIMIC-III dataset and 22 minutes for 
the MIMIC-IV dataset. Considering the average intervals 
and those that can be used to divide the 12-hour observa-
tion window into the same sequence, a 30-minute interval 
sequence of all the features was used as the input for our 
proposed model. For static features, we replicated the values 
for each input window. Logically contradictory outliers were 
removed, and extreme values above the 99th percentile were 
replaced with values in the 99th percentile. The continuous 
features were then normalized to z-scores by subtracting 

PRBC transfusion during ICU stay
MIMIC-III 17,279 ICU stays
MIMIC-IV 17,103 ICU stays

Propensity score
matching by length
of stay (1: 4)

Excluded patients who
had hemorrhage within

12 hours of entering ICU

or

Hemorrhage case

MIMIC-III 630 ICU stays
MIMIC-IV 504 ICU stays

Hemorrhage control

MIMIC-III 2,520 ICU stays
MIMIC-IV 2,016 ICU stays

1. PRBC transfusion &
ICD procedure related

to hemorrhage
MIMIC-III 714 stays

MIMIC-IV 1,237 stays

2. Continuous >1,500 mL
PRBC transfusion

MIMIC-III 2,619 stays
MIMIC-IV 1,146 stays

Had no PRBC transfusion
MIMIC-III 36,083 ICU stays
MIMIC-IV 59,437 ICU stays

Adult patients entered in ICU (> 18 years)
MIMIC-III 53,362 ICU stays
MIMIC-IV 76,540 ICU stays

Figure 1. ‌�Flowchart of the patient se
lection process. A detailed 
flow chart of the patient se
lection process by dataset. 
We selected 5,670 intensive 
care admissions including 
hemorrhage cases (n = 1,134) 
and hemorrhage controls 
(n = 4,536). MIMIC: Medical 
Information Mart for In-
tensive Care, ICU: intensive 
care unit, PRBC: packed red 
blood cells.



367Vol. 28  •  No. 4  •  October 2022 www.e-hir.org

Predicting Hemorrhage in ICU

the mean and scaling each feature into unit variance. Miss-
ing values within the observation window were replaced by 
linear interpolation, and the data at each point in time were 
sorted sequentially. The overall architecture of data prepro-
cessing is illustrated in Figure 2.

6. Model Development
In this study, to predict hemorrhage in the ICU, we used 
the gated recurrent unit (GRU) model, which is a modified 
structure of a recurrent neural network (RNN) for solving 
the vanishing or exploding gradient problem [24]. The GRU 
model is used widely for time series forecasting along with a 
long short-term memory network [25]. The model was de-
signed to present predictive results for hemorrhage 3 hours 

before it occurs. We first designed the GRU layers, followed 
by sigmoid activation. We performed hyperparameter tun-
ing for the three models. Subsequently, we found that the 
optimal architecture was five-layer GRUs with 20 hidden 
layers and Xavier initialization, followed by sigmoid activa-
tion for the three models. Figure 3 shows an architectural 
overview of our hemorrhage prediction models. We used a 
binary cross-entropy loss of over 300 training epochs using 
the Adam optimizer, with a learning rate of 0.001. Hyperpa-
rameter tuning was performed empirically. 

7. Performance Evaluation
The hemorrhage prediction model was trained using the 
MIMIC-III dataset and evaluated using the MIMIC-IV data-

Table 1. Feature overview

Category Features

11 features for Model 1
   Patient status (4 features) Age, gender, weight, Elixhauser comorbidity score
   Vital signs (7 features) Systolic, mean, and diastolic blood pressure, heart rate, respiratory 

rate, body temperature, SpO2

Additional 7 features for Model 2 (total of 18 features)
   GCS (3 features) GCS eye, GCS verbal, GCS motor
   CBC (4 features) Hematocrit, hemoglobin, WBC, platelet count
Additional 9 features for Model 3 (total of 27 features)
   Chemistry (5 features) Potassium, sodium, BUN, creatinine, glucose 
   Coagulation (3 features) PTT, INR, PT
   Output value (1 feature) Urine output

GCS: Glasgow Coma Scale, CBC: complete blood count, WBC: white blood cell, BUN: blood urea nitrogen, PTT: partial thrombo-
plastin time, INR: international normalized ratio, PT: prothrombin time.

Imputation Standardization

Figure 2. ‌�Overall architecture of data preprocessing. For patients with hemorrhage, prediction results were obtained 3 hours prior to 
the point of onset during the period of ICU stays, and patient data for the previous 12 hours were used as input. Control 
patients’ input data were extracted at random times during ICU stays. All input data were preprocessed through missing-
data imputation and a standardization process. ICU: intensive care unit.
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set. The performance of the model was assessed by compar-
ing the actual label with the label predicted using the model. 
True positives represent correctly classified samples belong-
ing to a specific class. True negatives correspond to samples 
that do not belong to a specific class and are classified as not 
belonging to the class. False positives represent the samples 
that do not belong to a specific class but are classified as be-
longing to the class. False negatives are misclassified samples 
belonging to a specific class. We evaluated the predictive 
performance of our proposed model using general perfor-
mance metrics: positive predictive value, negative predictive 
value, sensitivity, specificity, and area under the receiver op-
erating characteristic (AUROC) curve. We also included the 
F1-score to compute the harmonic mean of the two scores 
and reflect the trade-off between precision and sensitivity. 
The AUROC curve has a range of between 0.5 and 1; the 
closer it is to 1, the better the performance. The area under 
the precision-recall curve (AUPRC) is the area under the 
curve drawn with the x-axis as the recall and the y-axis as 
the precision, and it is useful when there is an imbalance be-
tween labels.

8. External Validation
The eICU Collaborative Research Database (eICU) was used 
for external verification of model 3, which demonstrated 
the best performance. The eICU is an open database created 
through collaboration with Philips Healthcare in the United 
States and the MIT Laboratory for Computational Physics 
[26]. It comprises data collected from ICUs at more than 
300 hospitals across the United States and covers patients 
admitted between 2014 and 2015. The eICU database does 
not contain information regarding the ICD procedures. 

Therefore, only patients who had a continuous transfusion 
of more than 1,500 mL of PRBC were defined as having 
hemorrhage, corresponding to the second condition of the 
outcome definition. Additionally, the data obtained from the 
eICU showed a lower time resolution of laboratory test re-
sults and more missing values than the data from the MIM-
IC database. All input features were limited to patients with 
values measured more than once. The measured features 
were used to process the 30-minute interval sequence simi-
lar to the main model. Missing values were imputed based 
on the patient’s last measurement. Therefore, each time step 
represented a recent measurement. This is the most realistic 
approach because doctors also observe the last measurement 
when evaluating a patient’s status. Forty-four patients were 
selected as hemorrhage cases, and 176 controls were selected 
through the same propensity score-matching process.
	 For patient selection, data preprocessing, group match-
ing, and the imputationentry of missing values, we used 
Microsoft SQL server (MSSQL; v15.0, R v4.0.3) with the 
tidyverse (v1.3.1), comorbidity (v0.5.3), MatchIt (v4.2.0), 
ggplot2 (v3.3.4), and Python v3.8.5 packages, and with the 
pyodbc (v4.0.0), pandas (v1.1.3), scipy (v1.5.2), and numpy 
(v1.19.2) modules. For model development, we used Python 
v3.8.5 with the sklearn (v0.24.1), pytorch (v1.9.1), matplotlib 
(v3.3.2), pandas (v1.1.3), and numpy (v1.19.2) modules. The 
model was trained using an NVIDIA GeForce RTX 2080 Ti 
graphics processing unit (GPU).

III. Results

The complete training set from the MIMIC-III database 
comprised 3,150 ICU stays, corresponding to 2,996 patients, 
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and the test set from the MIMIC-IV database included 2,520 
ICU stays, corresponding to 2,440 patients. The general 
characteristics of the patients are expressed as numbers (%) 
or as mean ± standard deviation. For each numeric charac-
teristic, the t-test was performed to compare the hemorrhage 
cases with the control group. The chi-square test was used to 
evaluate categorical characteristics. Differences were consid-
ered statistically significant if the p-value was less than 0.05 
(Table 2).
	 Table 3 shows the distribution of the mean and standard 
deviation of the input features for each model. The mean 
value of the Elixhauser comorbidity index was higher in the 
hemorrhage group than in the control group. Patients in the 
hemorrhage group tended to have high initial severity. In the 
MIMIC-III dataset, the mean blood pressure in the hemor-
rhage group was lower, and the heart and respiratory rates 
were faster, but this trend was not consistent in the MIMIC-
IV dataset. Hemoglobin, hematocrit, platelets, and complete 
blood count indicators had lower mean values in the hemor-
rhage group than in the control group in all datasets, and the 
difference was statistically significant. The measured mean 
differences of 18 variables in the MIMIC-III dataset and 20 

variables in the MIMIC-IV dataset were statistically signifi-
cant.
	 The performance of each model with the internal test set 
is presented in Table 4. Model 1 used 11 input variables, in-
cluding only the patient’s basic information and vital signs, 
and it showed an accuracy of 0.76, a sensitivity of 0.39, a 
specificity of 0.85, and an AUROC of 0.61. Model 2, which 
used a total of 18 input variables with the addition of GCS 
and CBC, showed improved performance compared to mod-
el 1, with an accuracy of 0.87, sensitivity of 0.75, specificity 
of 0.90, and an AUROC of 0.88. Using the final 27 input 
variables, including blood coagulation tests, electrolytes, oth-
er blood chemistry tests, and urine output, model 3 achieved 
an accuracy of 0.88, a sensitivity of 0.81, a specificity of 0.90, 
and an AUROC of 0.94.
	 Figure 4 shows the AUROC and AUPRC curves for each 
model in which the number of input features was increased 
step by step. The AUROC and AUPRC values from model 
2 were higher than those from model 1. The AUROC and 
AUPRC values from model 3 were higher than those from 
model 2. Model 3, which used data for all the input variables, 
showed the highest performance. These findings indicate 

Table 2. Baseline characteristics in the training and test sets

MIMIC-III MIMIC-IV

Hemorrhage case Control p-value Hemorrhage case Control p-value

Number of ICU admissions 630 2,520 504 2,016
Number of patients 618 2,378 475 1,965
Age (yr) 63.0 ± 16.1 63.1 ± 17.0 0.90 63.4 ± 16.0 62.8 ± 16.5 0.47
Sex
   Male 395 (62.7) 1,476 (58.6) 0.47 320 (63.5) 1,203 (59.7) 0.65
   Female 235 (37.3) 1,044 (41.4) 184 (36.5) 813 (40.3)
Care unit
   MICU 278 (44.1) 1,042 (41.3) <0.001 109 (21.6) 410 (20.3) <0.001
   SICU 78 (12.4) 506 (20.1) 110 (21.8) 409 (20.3)
   CCU 127 (20.2) 389 (15.4) 50 (9.9) 237 (11.8)
   TSICU 59 (9.4) 343 (13.6) 55 (10.9) 276 (13.7)
   CSRU 88 (14.0) 240 (9.5) - -
   MICU/SICU - - 66 (13.1) 312 (15.5)
   CVICU - - 104 (20.6) 174 (8.6)
   NSICU - - 10 (2.0) 198 (9.8)
Length of stay (day) 19.6 ± 18.9 8.5 ± 5.6 <0.001 14.3 ± 16.4 10.9 ± 9.0 <0.001
Values are presented as mean ± standard deviation or number (%).
MIMIC: Medical Information Mart for Intensive Care, ICU: intensive care unit, MICU: medical intensive care unit, SICU: surgical 
intensive care unit, CCU: cardiac care unit, TSICU: trauma surgical intensive care unit, CSRU: community sector relations unit, 
CVICU: cardiovascular intensive care unit, NSICU: neurosurgery intensive care unit.
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Table 3. Statistics of input features for all three models in the training and test sets

MIMIC-III MIMIC-IV

Hemorrhage case Control p-value Hemorrhage case Control p-value

Model 1
   Elixhauser comorbidity 14.2 ± 11.0 11.9 ± 11.0 <0.001 21.4 ± 13.1 17.9 ± 12.3 <0.001
   Weight 83.2 ± 24.1 83.0 ± 25.0 0.86 84.1 ± 24.2 87.4 ± 34.6 0.04
   Systolic BP 113.7 ± 22.1 126.5 ± 30.3 <0.001 117.8 ± 31.2 144.6 ± 49.7 <0.001
   Diastolic BP 55.6 ±14.6 63.6 ± 17.2 <0.001 62.1 ± 15.5 75.8 ± 18.2 <0.001
   Mean BP 74.2 ± 14.9 84.0 ± 23.2 <0.001 77.7 ± 25.0 102.8 ± 44.3 <0.001
   Heart rate 91.9 ± 19.8 90.8 ± 21.1 0.25 88.3 ± 17.7 90.4 ± 23.1 0.05
   Respiratory rate 19.8 ± 6.2 19.1 ± 7.0 0.03 19.7 ± 6.0 20.2 ± 6.7 0.13
   Temperature 37.0 ± 1.0 36.7 ± 1.1 <0.001 36.9 ± 0.8 36.9 ± 1.0 0.09
   SpO2 97.0 ± 4.7 96.9 ± 5.2 0.70 97.5 ± 2.7 96.7 ± 4.3 <0.001
Model 2
   GCS eye 2.9 ± 1.2 2.8 ± 1.3 0.12 2.9 ± 1.2 2.8 ± 1.3 0.03
   GCS verbal 2.5 ± 1.8 2.8 ± 1.9 <0.001 2.9 ± 1.9 2.8 ± 1.9 0.35
   GCS motor 4.8 ± 1.7 4.7 ± 1.9 0.23 4.7 ± 1.9 4.7 ± 1.9 0.94
   Hematocrit 27.8 ± 4.2 34.8 ± 5.8 <0.001 26.7 ± 4.6 37.9 ± 8.1 <0.001
   Hemoglobin 9.3 ± 1.4 11.7 ± 2.0 <0.001 8.9 ± 1.7 13.2 ± 3.8 <0.001
   WBC 13.2 ± 7.6 13.3 ± 8.6 0.74 14.2 ± 9.1 29.8 ± 34.9 <0.001
   Platelets 206.3 ± 132.5 240.3 ± 123.4 <0.001 180.9 ± 117.6 386.3 ± 320.0 <0.001
Model 3
   Potassium 4.1 ± 0.6 4.1 ± 0.7 0.84 4.2 ± 0.7 4.9 ± 2.0 <0.001
   Sodium 138.5 ± 4.4 139.0 ± 4.5 0.02 138.8 ± 5.6 148.9 ± 23.3 <0.001
   BUN 35.6 ± 26.6 63.6 ± 73.2 <0.001 37.9 ± 30.2 50.5 ± 64.2 <0.001
   Creatinine 1.8 ± 1.5 3.2 ± 3.7 <0.001 1.8 ± 1.6 2.6 ± 3.3 <0.001
   Glucose 142.2 ± 57.5 147.5 ± 57.4 0.04 141.5 ± 51.5 171.1 ± 76.8 <0.001
   PTT 46.0 ± 26.7 38.6 ± 21.7 <0.001 45.0 ± 21.8 54.9 ± 33.0 <0.001
   PT 16.3 ± 7.5 20.1 ± 20.0 <0.001 19.1 ± 12.7 41.2 ± 39.2 <0.001
   INR 1.7 ± 1.2 2.0 ± 2.1 <0.001 1.8 ± 1.3 4.0 ± 4.0 <0.001
   Urine output 119.8 ± 145.9 286.6 ± 294.5 <0.001 154.7 ± 209.0 296.2 ± 323.6 <0.001
Values are presented as mean ± standard deviation.
MIMIC: Medical Information Mart for Intensive Care, BP: blood pressure, GCS: Glasgow Coma Scale, WBC: white blood cell, 
BUN: blood urea nitrogen, PTT: partial thromboplastin time, PT: prothrombin time, INR: international normalized ratio.

Table 4. Predictive model performance in the MIMIC-IV test set

Accuracy PPV NPV Sensitivity Specificity F1-score AUROC AUPRC

Model 1 0.76 0.39 0.85 0.39 0.85 0.39 0.61 0.32
Model 2 0.87 0.66 0.94 0.75 0.90 0.70 0.88 0.64
Model 3 0.88 0.67 0.95 0.81 0.90 0.73 0.94 0.80

MIMIC: Medical Information Mart for Intensive Care, PPV: positive predictive value, NPV: negative predictive value, AUROC: area 
under receiver operating characteristic, AUPRC: area under the precision-recall curve.
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that hemorrhage can be predicted more accurately as the 
number of inputs increases.
	 A subgroup of cases from the eICU database was selected 
by limiting the cases to those in which sufficient input vari-
ables were present, and 220 ICU admissions (44 cases of 
bleeding, 176 cases with no bleeding) were used for external 
validation. The general characteristics of the patients in the 
eICU database are listed in Table 5.
	 We externally evaluated model 3, which showed the high-
est performance, using a subgroup of the eICU database. In 
the external validation analysis, model 3 obtained an accu-
racy of 0.79, a sensitivity of 0.38, a specificity of 0.88, and an 
AUROC of 0.74 (Table 6). This performance was somewhat 
lower than was observed for the test set. Figure 4 shows the 
AUROC and AUPRC curves for the eICU dataset.

IV. Discussion

In this study, we developed a machine learning model that 
uses structured electronic healthcare data to predict the risk 
of hemorrhage among patients admitted to the ICU. The 
model was designed to predict hemorrhage 3 hours before 
occurrence using sequential input of 12 hours of clinical 
observation data. We evaluated three models with an in-
creasing number of input features. Model 3, which used the 
most input variables, showed the best performance, with a 
sensitivity of 0.81, specificity of 0.90, and AUROC of 0.94. 
Of note, the MIMIC-III and MIMIC-IV databases used dif-
ferent data collection periods, enabling the verification of 
retrospectively collected data using prospective data.
	 Model 1 used basic patient status and the most frequently 
measured vital sign parameters. In model 2, the CBC in-
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Figure 4. ‌�AUROC and AUPRC curves in the MIMIC-IV test and validation sets. (A) ROC curves for the different models depending on 
the number of input variables. (B) Precision-recall curves for the different models depending on the number of input vari-
ables. Model 3, which achieved the highest performance, was evaluated with an external dataset. (C) ROC curves for the 
eICU validation set. (D) Precision-recall curves for the eICU validation set. AUROC: area under the receiver operating char-
acteristic curve, AUPRC: area under the precision-recall curve, MIMIC: Medical Information Mart for Intensive Care, ROC: 
receiver operating characteristic.
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dicators had close correlations with bleeding and patient 
consciousness. In model 3, all the extracted and available 
variables were used as inputs. The best performance was 
observed for model 3, suggesting that performance could be 
improved by constructing models that learn the complexity 
of increasing amounts of data and by having models learn 
sequentially changing patient data while increasing the input 
variables. Additionally, we can estimate variables’ contribu-
tions to the prediction of bleeding by comparing the perfor-
mance of the model depending on the added features.
	 Our model shows the potential to derive predictive out-
put by monitoring individual patients in clinical settings. 
However, when a model is generally intended to be applied 
in actual clinical practice, there may be conflicts between 

increasing complexity and achieving stable generalization. 
Model 1 had the highest measurement frequencies, but did 
not show good predictive performance. It seems that the 
amount of information in model 1 alone was insufficient to 
predict bleeding. Model 2 showed better performance than 
model 1 because a sufficient data measurement frequency 
was ensured and a variable related to bleeding was added. All 
available additional variables were used in model 3, which 
showed the highest performance. In practice, it is rare for all 
patient data, including laboratory results, to be available on 
time, without missing values. Depending on the situation, 
model 2 or model 3 (or, potentially, an even more detailed 
model) could be used. There remains a need for attempts to 
determine the optimal balance, in a flexible and situation-
specific manner, between the advancement of the model and 
its practical applicability in clinical practice.
	 Several tools have been developed to predict the risk of 
bleeding, but most are limited to patients with cardiovascu-
lar disease or those taking antithrombotic drugs [27-29]. An 
RNN-based model for predicting bleeding complications 
within 24 hours among patients after cardiac surgery showed 
an AUROC of 0.87 [20]. An ensemble machine learning 
model that predicted blood transfusion among patients with 
gastrointestinal bleeding in the ICU using the MIMIC-III 
and eICU databases showed an AUROC of 0.8035 [22]. In a 
study aiming to predict hemorrhage within 24 hours among 
surgical intensive care unit patients using several machine 
learning methods, a machine learning model based on least 
absolute shrinkage and selection operator (LASSO) regres-
sion showed an AUROC of 0.921, one based on random 
forests showed an AUROC value of 0.922, one based on a 
support vector machine (SVM) showed an AUROC value 
of 0.827, and an artificial neural network (ANN)-based 
machine learning model showed an AUROC of 0.894 [30]. 
Overall, studies on the development of machine learning 
models for predicting bleeding as an overall emergency 
clinical event, without limiting such models based on the pa-
tient’s history, are rare. In this study, we constructed a model 
for predicting all emergency bleeding events requiring blood 
transfusion for all patients admitted to the ICU, and our 
proposed model achieved performance levels comparable to 

Table 5. Baseline characteristics in the eICU dataset

eICU

Hemorrhage 

case
Control p-value

Number of ICU admissions 44 176
Age (yr) 59.0 ± 14.0 61.2 ± 17.0 0.43
Sex
   Male 24 (54.5) 90 (51.1) 0.16
   Female 20 (45.5) 86 (48.9)
Care unit
   MICU 5 (11.4) 17 (9.7) 0.80
   SICU 8 (18.2) 11 (6.2)
   Med-Surg ICU 17 (38.6) 96 (54.5)
   CCU-CTICU 8 (18.2) 39 (22.2)
   CSICU 5 (11.4) 8 (4.5)
   NICU 1 (2.3) 5 (2.8)
Length of stay (day) 8.6 ± 6.3 8.7 ± 6.4 0.94
Values are presented as mean ± standard deviation or number (%).
ICU: intensive care unit, MICU: medical intensive care unit, 
SICU: surgical intensive care unit, Med-Surg ICU: medical-
surgical intensive care unit, CCU: cardiac care unit, CTICU: 
cardiothoracic intensive care unit, NICU: neonatal intensive 
care unit.

Table 6. Predictive model performance in the eICU validation set

  Accuracy PPV NPV Sensitivity Specificity F1-score AUROC AUPRC

eICU 0.79 0.44 0.86 0.38 0.88 0.41 0.74 0.39
ICU: intensive care unit, PPV: positive predictive value, NPV: negative predictive value, AUROC: area under receiver operating 
characteristic, AUPRC: area under the precision-recall curve.
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those of other machine learning models proposed in previ-
ous studies.
	 Our proposed model demonstrated the possibility of the 
early detection of severe bleeding in clinical settings, and it 
can be used to ensure timely follow-up measures, such as 
massive transfusion, surgery, or vascular embolization. Spe-
cifically, when bleeding occurs among patients with severe 
conditions that require intensive care, if early intervention 
is not performed immediately, delays could threaten patient 
safety, thereby resulting in a significant deterioration of their 
health. Additionally, because blood banks are used to store 
and transport blood products among various hospitals, there 
exists an inevitable turnaround time between entering or-
ders and the actual transfusions. Further, the supply of blood 
products may not always be stable. Therefore, detecting se-
vere blood loss in advance could substantially improve the 
efficiency of blood supply management strategies.
	 This study has several limitations. First, this study used 
open relational databases specialized for ICUs, thereby mak-
ing it difficult to obtain data pertinent to patients’ history 
before entering the ICU. Therefore, patients who experi-
enced bleeding during the early stage of admission did not 
have sufficient data to use as input for the model. As a result, 
such patients were excluded from the model training pro-
cess, reducing the sample size. Another limitation is that the 
resolution of the data over time was different for each input 
variable, and we collected information only from structured 
data. However, many recent studies have collected and ac-
tively used various types of unstructured medical data, such 
as high-resolution images, videos, and biosignals. In future 
studies, we must expand the model structure applied in this 
study to follow-up datasets from the time patients are admit-
ted to hospitals and obtain various types of data containing 
additional information regarding patients to improve the 
performance of our proposed prediction model.
	 External verification was performed using data obtained 
from the eICU database to confirm the robustness and 
generalizability of the model. However, the results were 
somewhat poorer than the initial performance of this model. 
Because the eICU database comprises data obtained from 
various ICUs across the United States, the clinical data were 
more heterogeneous than those obtained from the MIMIC 
databases. There were missing blood test results, and the 
frequency of data measurements was low. Therefore, we per-
formed external validation in limited subgroups, whereby 
the patients had measurements of all the input features more 
than once during the observation window. Despite these 
limitations, given an AUROC of 0.74, we suggest that our 

proposed model is worth further external verification in 
multiple institutions. Additionally, to enhance the effective-
ness of prediction in clinical environments, it is imperative 
to present changing predictive results in various windows 
depending on the patient. In clinical practice, critical pa-
tients’ status is monitored in real time, and predictive models 
require continuous input data updates from admission and 
prediction results according to changes in patients’ status to 
ensure efficiency in real-world environments. In our future 
studies, we plan to construct our proposed model using a 
sliding window to support clinical decision-making.
	 In conclusion, our proposed machine learning model has 
potential for utilization as a tool for monitoring patients, 
with the main aim of identifying ICU patients at a high risk 
of bleeding in advance.
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