
I. Introduction

According to the World Health Organization (WHO), can-
cer is the second leading cause of death, with 9.6 million 
deaths in 2018 worldwide [1]. Lung cancer is one of the most 
common types of cancer, with 2.26 million incident cases 
and 1.80 million deaths globally in 2020 [2]. Mesothelioma, 
pancreatic cancer, and brain cancer are the cancers with the 
lowest 5-year survival estimates cancers [3]. The fight against 
cancer is particularly difficult in low- and middle-income 
countries, as approximately 70% of cancer deaths occur in 
these countries [1]. However, this fact shows that modern 
medicine and advanced health services have improved the 
survivability of cancer patients. Most cancers can be cured 
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in the early stages; however, after metastasis, cancer becomes 
almost incurable, underscoring the importance of early 
detection [4]. Fortunately, cases of cancer can be identified 
even before they turn malignant [5]. Nevertheless, cancer 
prevention strategies (e.g., a healthy diet and lifestyle) are 
still a better approach, since tobacco use, alcohol consump-
tion, dietary intake, and lack of physical activity are among 
the main leading causes of cancer [6–9]. 
	 Genome-wide association studies (GWAS) have revealed 
many significant markers or single-nucleotide polymor-
phisms (SNPs) that have associations with certain types of 
cancer, including colorectal cancer in our previous research 
[10]. Most of these studies used sex, age, lifestyle, and diet 
as confounding variables. These findings indicate that some 
people are prone to develop cancer even with a fairly healthy 
lifestyle. The genetic variants associated with phenotypic 
traits or the risk of complex diseases such as cancer have 
been researched using GWAS to identify SNPs with signifi-
cant associations. However, these associations have a limited 
capability to explain genetic risk or disease heritability be-
cause they only account for a small fraction of the genetic 
aspects in both traits and the disease risk; this gap is termed 
“missing heritability” [11]. Interactions among genetic vari-
ants (i.e., SNP-SNP interactions) have been suggested in 
many studies as a factor that may account for a substantial 
proportion of complex disease susceptibility. Several breast 
cancer studies have found that selected SNPs from genes 
related to cancer mechanism pathways may weakly con-
tribute to the cancer risk individually, but their interactions 
demonstrated significant associations with breast cancer risk 
[12]. In another study, Lin et al. [13] identified SNP-SNP 
interactions in angiogenesis-related gene pairs that were as-
sociated with prostate cancer severity and constructed a gene 
interaction network based on those results to identify genes 
involved in the angiogenesis pathway. Similarly, Goodman 
and Weare [14] identified SNP-SNP interactions that con-
tribute to colon cancer risk using polymorphism interaction 
analysis. The selected SNPs obtained from case-control data 
include SNPs with a weak contribution to colorectal cancer 
risk and even individual SNPs that did not contribute to 
colon cancer risk. Jiao et al. [15] conducted a genome-wide 
study of gene-gene interactions and colorectal cancer risk 
from GWAS data using the average risk due to interaction 
method. They showed evidence of two pairwise SNP-SNP 
interactions that were significantly associated with colorectal 
cancer risk. 
	 Biological data including DNA structure, RNA expres-
sion, and protein expression, offer a vast amount of interac-

tions that can be analyzed to generate hypotheses on the 
underlying biological phenomena of certain traits or dis-
eases. Data interactions are often analyzed using a network 
analysis approach. This approach was originally used in the 
social sciences, with representative applications including 
person-person or social media interactions [16]. However, 
the emergence of big data availability in the life sciences 
domain prompted researchers to implement this approach 
to investigate hidden patterns within data [17]. A Bayesian 
network model was developed to illustrate SNP-gene-trait 
interactions from microarray data [18]. This model used a 
Bayesian rule to filter the SNPs and genes to be included in 
the network. A more recent study built a model based on 
the pairwise correlations of each SNP [19]. Only SNPs with 
correlation scores exceeding the designated threshold were 
included in the model. The approach resulted in a network 
with highly interconnected nodes. The application of a 
threshold for inclusion is a crucial part of the methodology 
because the number of SNPs included in the model can sig-
nificantly affect the computational power needed to run the 
model.
	 In our previous studies, we reviewed some approaches 
to enhance the accuracy of polygenic risk scores. We tried 
Bayesian approaches [20] and deep learning [21], and we 
also reviewed the reliability of polygenic risk scores based on 
reported biomarkers from different populations [22]. Based 
on the lessons from our previous studies, we propose a novel 
method to find or filter SNPs with significant associations. 
Specifically, we propose a network analysis method, where 
we generate SNP association network(s) that can differenti-
ate samples from case and control groups. We hypothesize 
that the risk score for developing a certain type of cancer is 
affected by mutations in groups of SNPs that are associated 
and have SNP-SNP interactions instead of being solely af-
fected by a single mutation, as assumed in GWAS. Although 
this method can be applied to all types of cancer and even 
for other phenotypic traits, in this study we applied this 
method to a small dataset since our method requires tre-
mendous computation power. We implemented our method 
on GWAS colorectal cancer results as a proof of concept. In 
the future, we will test our method on a larger dataset and 
other cancers. 

II. Methods

1. Dataset
The dataset of this study was already used in our GWAS of 
colorectal cancer in the South Sulawesi population array 
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[10], which consists of 173 samples with 89 colorectal cancer 
cases and 84 healthy controls genotyped by the Smokescreen 
genotyping array [23]. The majority of the samples are from 
self-reported South Sulawesi locals, and the rest of them 
are from residents of Java Island, which can be classified as 
a Southeast Asian population. The ethnicity of the partici-
pants was used as a confounding variable in our analysis. 
Another confounding variable, the ancestry estimation, was 
computed using the fastStructure 1.0 algorithm [24]. The de-
mographic characteristics of the samples are summarized in 
Table 1. The use of the data was approved by the Hasanud-
din University Ethical Committee (No. UH 15040389). Since 
this was a proof-of-concept study, we applied our concept 
to a small dataset. Thus, we chose the top 200 SNPs with the 
lowest p-value results from the GWAS experiment, and we 
filtered these SNPs with the minor allele frequency threshold. 

2. Network Analysis
The significance of SNPs in GWAS is measured using the 
p-value of the SNPs generated from logistic regression. Con-
founding variables are usually added to the logistic regres-
sion analysis to minimize bias. We proposed a method that 
measures the significance of SNPs for the trait, colorectal 
cancer, with regard to their associations with other SNPs. 
Hence, we entered the SNP pairs in a logistic regression 
analysis with other confounding variables (sex, body mass 
index [BMI], smoking status, and race [African, American, 
European, East Asian, South Asian]), as shown in Equation 
(1). We measured the significance of the SNPs using the p-
values from logistic regression. However, if one of the SNPs’ 
p-value was larger than 1 × 10−5, the SNP pair was consid-
ered non-significant. 

Table 1. Demographic data of samples

Variable Cases (n = 89) Controls (n = 84) p-value

Age (yr) 53.8 ± 13.2 50.5 ± 14.5
Sex >0.99
   Female 38 (43.8) 36 (42.9)
   Male 51 (27.0) 48 (57.1)
Ethnicity 0.68
   Bugis 39 (43.8) 45 (53.6)
   Makassar 24 (27.0) 23 (27.4)
   Mandar 2 (2.3) 1 (1.2)
   Toraja 10 (11.2) 8 (9.5)
   Non-South Sulawesi 9 (10.1) 4 (4.8)
   Non-Sulawesi 5 (5.6) 3 (3.6)
Estimated ancestry
   East Asian (EAS) 0.92 0.94 0.02
   South Asian (SAS) 0.07 0.05 0.15
   African (AFR) <0.01 <0.01 0.02
   European (EUR) 0.01 0.01 0.36
BMI (kg/m2) 21.2 ± 3.1 24.5 ± 3.6
Smoking status <0.01
   Smoker 39 (43.8) 15 (17.9)
   Non-smoker 50 (56.2) 69 (82.1)
Tumor stage
   I 3 (3.4)
   II 9 (10.1)
   III 62 (69.7)
   IV 11 (12.4)
Values are presented as mean ± standard deviation or number (%).
BMI: body mass index.
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Y ≈ SNP 1 + SNP 2 + sex + age + BMI + 
	 smoking status + AFR + AMR + EUR + EAS + SAS

	 (1)

In GWAS, there are n logistic regressions, where n is the 
number of the analyzed SNPs. Since, in our method we 
paired all SNPs, we had an arithmetic series (1 + 2 + ... + 
(n – 1); n is number of SNPs) of logistic regressions. 
	 Regional association plots for the top-hit SNPs were gener-
ated using LocusZoom [25]. This plot shows the association 
strength of all SNPs within 100-kb regions both to the left 
and the right of a top-hit SNP. The association strengths 
were obtained from our previous GWAS [10]. This method 
also provides information on known genes within this re-
gion. Additionally, association results from the GWAS cata-
logue in this region were also included for comparison with 
our own GWAS.
	 After all SNP pairs were regressed, the results were sorted 
based on the regression p-values. The 5% of SNP pairs with 
the smallest p-values were taken. However, we excluded SNP 
pairs that had a p-value larger than 1 × 10−5 for any of the 
SNPs. The SNP pairs that passed this filter were then used to 
create the SNP network and calculate the colorectal cancer 
risk score. Our step-by-step method and an example experi-
ment are presented in Figures 1 and 2. 
	 In that example, there are four processed SNPs: SNP A, 
SNP B, SNP C, and SNP D. Therefore, there are six SNP 
pairs that need to be regressed. After regression and filter-
ing, only two pairs pass: SNP A – SNP B and SNP A – SNP 
C. These two pairs are then used to create the SNP network 
that can be seen in Figure 2. The thicker line that connects 
the SNP A node and the SNP B node means that the p-value 
of the logistic regression that uses this pair is smaller than 
the p-value obtained using the SNP A and SNP C pair. SNPs 
with more connections have larger nodes.

3. Risk Score Evaluation
To evaluate the risk score generated by the SNP pairs, the 
risk score was compared with other risk scores that were 
generated using another SNP-based prediction method. We 
calculated risk scores based on the SNPs with the lowest p-

values from our previous GWAS [10] as a comparable mea-
sure. To measure the effectiveness of the risk score, the t-test 
was used to compare the risk scores of the control and case 
groups. A smaller p-value from the t-test means that the risk 
score is more significantly different between the groups. A 
p-value of less than 0.05 was deemed to indicate a successful 
risk score.

III. Results

From 200 SNPs analyzed in the experiment, a total of 20,094 
SNP pairs were generated. However, some pairs of SNPs had 
the exact same values across the sample. Their exclusion left 
19,899 pairs of SNPs that could be made. Figure 3 shows 
the p-values produced from logistic regression of these SNP 
pairs that appeared to be normally distributed. From those 
19,899 SNP pairs, only four pairs with five SNPs passed the 
filter. These SNPs were all interconnected to create one clus-
ter of the SNP network, as shown in Figure 4. All the SNPs 
in the network are listed in Table 2. 

IV. Discussion

The SNP network generated by our proposed method showed 
an interesting relationship. As presented in Figure 4, one 
locus on chromosome 12 (12:54410007) was connected to 
four variants on chromosome 1. Figure 5 shows the regional 

List of SNPs

SNP A
SNP B
SNP C
SNP D

Pairing the SNPs

SNP A - SNP B
SNP A - SNP C
SNP A - SNP D
SNP B - SNP C
SNP B - SNP D
SNP C - SNP D

Logistic regression

Y ~ SNP 1 + SNP 2 +
confounding vars

Filtering results

Logistic regression
5% smallest -value

SNP 1 -value < 1e

SNP 2 -value < 1e

p
p -5

-5p

SNPs network

Figure 2

Figure 1. Network analysis workflow. SNP: single-nucleotide polymorphism.

A B

D

Figure 2. ‌�Example of a single-nucleotide polymorphism (SNP) net-
work.
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association plot for rs66868779 on chromosome 1. It in-
cludes three other SNPs that were found to be significant in 
our network analysis. No known genes are found in this re-
gion. The four intergenic variants from our network analysis 
are clustered in a close region, as illustrated in Figure 5. The 
regional association plot for SNP 12:54410007 is depicted in 
Figure 6. Two known genes overlapping with this SNP are 
AC012531.3 and HOXC6. Several other genes are also found 

in this 200-kb region. The above four variants are close to 
the RP11-42O15.2 and CASP3P1 genes. At the time this pa-
per was written, CASP3P1 is classified as a pseudogene with 
no reported clinical associations. 

Figure 3. ‌Normalized p-value distribution.
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Figure 4. ‌�Generated single-nucleotide polymorphism (SNP) net-
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Table 2. List of filtered SNPs 

rsID CHR Position Overlap gene Nearest gene

rs10047125 1 71090629 NA RP11-42O15.2, CASP3P1
rs6686879 1 71103392 NA RP11-42O15.2, CASP3P1
rs11209657 1 71097036 NA RP11-42O15.2, CASP3P1
rs1192280121 1 71118031 NA RP11-42O15.2, CASP3P1
12:54410007 12 54410007 AC012531.3, HOXC6 HOXC4, HOXC8

SNP: single-nucleotide polymorphism, CHR: chromosome, NA: not applicable.

Figure 5. Association plot for the 100-kb region flanking rs6686879 on chromosome 1.
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	 Meanwhile, the 12:54410007 variant is an insertion vari-
ant that belongs to the HOXC6 gene, as depicted in Figure 
6. HOXC6 is part of the homeobox family and is classified 
as a protein-coding gene. This gene plays an important role 
in the morphogenesis of all multicellular organisms. In a 
recent study, HOXC6 was found to be excessively expressed 
in colorectal cancer tissues; that study also indicated that 
higher HOXC6 expression was associated with poorer overall 
survival [26]. HOXC6 has been included in several prognos-
tic risk models as a signature gene [27]. Qi et al. [28] utilized 
public RNA and mRNA sequencing data from The Cancer 
Genome Atlas database to analyze the expression of HOXC6 
in colorectal cancer in relation to the tumor immune micro-
environment (TIME). They performed differential expres-
sion analysis to find that upregulated and overexpressed 
HOXC6 had a strong impact on a poor prognosis in colorec-
tal cancer. Moreover, pathway analysis (gene set enrichment 

analysis, Kyoto Encyclopedia of Genes and Genomes, and 
Gene Ontology) revealed that the upregulated genes in the 
colorectal cancer group with high HOXC6 expression were 
enriched in various inflammation-related pathways. Their 
results also demonstrated that TME characteristics such as 
chemokine expression, the infiltration ratio of immune cells, 
and the tumor mutation burden score, were positively corre-
lated with high HOXC6 expression. The above study by Qi et 
al. [28] therefore suggests the potential causal role of HOXC6 
in promoting colorectal cancer progression.
	 Despite the absence of connections between variants on 
chromosome 1, the variant on chromosome 12 became 
the center of the network and had strong connections with 
the four variants on chromosome 1. This may suggest that 
the variant on chromosome 12 had a significant impact on 
boosting the repercussions of the other four variants on 
chromosome 1. 
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	 To verify the significance of these SNPs, a polygenic risk 
score was created based on these five SNPs. The polygenic 
risk score model was then used to calculate the colorectal 
cancer risk of individuals from the case and control groups. 
The risk score distribution among cases and controls is 
shown in the form of a boxplot in Figure 7A. Despite some 
outliers, the boxplot shows a clear difference in the risk score 
between the case and control groups, and the t-test yielded a 
significant p-value of 0.000138. 
	 As a comparable measure, we used the polygenic risk score 
model based on the five SNPs with the lowest p-value from 
the previous GWAS [10]. These SNPs were rs58207296, 
rs6863320, rs1892764, rs4734950, and 8:108161966, all 
of which are intergenic variants. The polygenic risk score 
model based on these five SNPs was then applied to both 
groups. The risk distribution is shown in Figure 7B. The t-
test between the case and control groups based on these five 
SNPs with the lowest p-values showed a significant differ-
ence between the groups. However, the p-value (0.014) was 
much higher than that obtained using our newly proposed 
method.
	 Based on the experimental results of the present study, 
our proposed model provides new insights into interactions 
between SNPs. We found that one locus on chromosome 12 
(12:54410007) may have a significant impact on boosting 
the repercussions of the other 4 variants on chromosome 1 
(rs10047125, rs6686879, rs11209657, and rs1192280121). 
Given the scarcity of variant 12:54410007 in the clinical liter-
ature, our findings may stimulate new interest in this variant 
since its interactions with the other four specific SNPs are 
suspected to be related to the promotion of colorectal can-
cer risk based on our results. Hence, further investigations 
into the biomolecular mechanisms and clinical significance 
of this insertion variant would be warranted to elucidate its 
potential role in colorectal cancer. Meanwhile, the multiple 
relationships of 12:54410007 with other variants can be 
formalized mathematically with the concept of network cen-
trality to understand the role of the “central” variant that is 
involved in variants that promote colorectal cancer progres-
sion. This approach has been sought in several epistasis stud-
ies in colorectal cancer [29] and even bipolar disorder [30] 
and can be adapted in our pipeline if a larger and more com-
plex network of SNPs is created. In addition, the relevance 
of our obtained SNPs was further shown by the fact that we 
obtained a higher level of significance in the polygenic risk 
score model based on these five SNPs than was obtained us-
ing the polygenic risk score model based on SNPs with the 
lowest p-values from the previous GWAS. 

	 Our results demonstrate the capability of our proposed 
network analysis-based pipeline to provide complementary 
post-GWAS analysis to obtain a measure of how SNP-SNP 
interactions contribute to the risk of colorectal cancer pro-
gression. However, we need to corroborate the interactions 
between the variants identified in our study in different 
populations to avoid sampling bias. Therefore, we aim to 
validate our method using significant markers of colorectal 
cancer taken from large-scale GWAS datasets from public 
databases (e.g., GWAS Catalog, GWAS Central) or the data-
set from the Genetics and Epidemiology of Colorectal Can-
cer Consortium to determine whether we can replicate the 
above set of SNPs identified in our results, especially variant 
12:54410007, in well-established populations for GWAS 
of colorectal cancer, including European and East Asian 
populations. Our method provides a promising approach 
since variants not found to have significant associations with 
certain traits in another study or another population may 
emerge as significant markers in a separate study/population 
when they are paired with other variants based on statistical 
significance to build a unique network of SNPs. In addition, 
we also emphasize the versatility of our proposed network 
analysis pipeline for GWAS of various targeted traits and 
diseases, since the input for our approach only requires sig-
nificant variants identified in GWAS. Hence, we expect to 
expand our proposed methodology to be used on GWAS-
identified variants of different cancers/diseases in future 
research.
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