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Objectives: Machine learning has been widely used to predict diseases, and it is used to derive impressive knowledge in the 
healthcare domain. Our objective was to predict in-hospital mortality from hospital-acquired infections in trauma patients 
on an unbalanced dataset. Methods: Our study was a cross-sectional analysis on trauma patients with hospital-acquired in-
fections who were admitted to Shiraz Trauma Hospital from March 20, 2017, to March 21, 2018. The study data was obtained 
from the surveillance hospital infection database. The data included sex, age, mechanism of injury, body region injured, se-
verity score, type of intervention, infection day after admission, and microorganism causes of infections. We developed our 
mortality prediction model by random under-sampling, random over-sampling, clustering (k-mean)-C5.0, SMOTE-C5.0, 
ADASYN-C5.5, SMOTE-SVM, ADASYN-SVM, SMOTE-ANN, and ADASYN-ANN among hospital-acquired infections 
in trauma patients. All mortality predictions were conducted by IBM SPSS Modeler 18. Results: We studied 549 individuals 
with hospital-acquired infections in a trauma hospital in Shiraz during 2017 and 2018. Prediction accuracy before balancing 
of the dataset was 86.16%. In contrast, the prediction accuracy for the balanced dataset achieved by random under-sampling, 
random over-sampling, clustering (k-mean)-C5.0, SMOTE-C5.0, ADASYN-C5.5, and SMOTE-SVM was 70.69%, 94.74%, 
93.02%, 93.66%, 90.93%, and 100%, respectively. Conclusions: Our findings demonstrate that cleaning an unbalanced dataset 
increases the accuracy of the classification model. Also, predicting mortality by a clustered under-sampling approach was 
more precise in comparison to random under-sampling and random over-sampling methods.
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I. Introduction

Healthcare data mining has been widely used to help pre-
dict diseases and extract impressive knowledge [1], and it is 
commonly applied to detect early progress of diseases. These 
techniques can be applied to detect cancer, Alzheimer dis-
ease, transient ischemic attacks, lung nodules, coating on the 
tongue, diabetes, hepatitis, traumatic events, polyps, acute 
pediatric conditions, and Parkinson’s disease [2]. Typically, 
the prediction variable is unbalanced, which means that one 
class does not have as many records as the other. The largest 
class is called the majority, and the smallest class is called the 
minority [3]. Prediction models using unbalanced data are 
intricate, as long as balanced training sets are required for 
standard classifiers learning, such as logistic regression, de-
cision tree, support vector machine (SVM), neural networks, 
and deep learning. Models often underestimate rare classes 
in terms of unbalanced data, while the overlapping between 
two classes will happen. 
	 There are many methods to deal with unbalanced learning, 
such as data level, algorithm-level, and hybrid methods. In 
data-level methods, researchers modify the training dataset 
to make it appropriate for a classifier algorithm. For bal-
ance distribution, they might generate new objects for the 
minority group (over-sampling) and remove instances from 
majority groups (under-sampling). In algorithm-level meth-
ods, they tune existing learners to decrease their bias toward 
the majority groups, while the cost-sensitive approach is the 
most commonly used algorithm-level method [4]. Our aim 
is to predict death by applying various methods of balanc-
ing to data on hospital-acquired infection among trauma 
patients. In medical datasets, records in minority classes are 
often more vital than those of the control class. Hence, it is 
critical to handle unbalanced data to improve recognition 
rates, while it is remarkable that the balancing method de-
pends on the context. 
	 Trauma is a leading cause of death worldwide, while these 
injured patients usually acquire infections during hospi-
talization [5]. These infections are the principal cause of 
mortality and extended hospitalization for trauma patients 
[6]. Moreover, these types of mortality are among the top 
five causes of death throughout the world [7]. Trauma pa-
tients with hospital-acquired infections have a significantly 
increased risk of mortality, longer stays in the hospital, and 
increased cost of equipment or services [8,9], resulting in the 
nosocomial cause of 80% of in-hospital mortality [10].
	 Although numerous studies have been done on balancing, 
there has been little research on the prediction of mortality 

from hospital-acquired infections in trauma patients using a 
balanced dataset. On the other hand, context, environment, 
and predictor variables (such as injury severity score and 
injury body region) affect the prognostic model. A previous 
study in Shiraz Trauma Center showed that the accuracy of 
the traditional scoring system for predicting mortality in 
trauma patients is under 91% [11]. This research is one of 
the first works on this topic that handles unbalanced data. 
We compared various method of data balancing to predict 
death related to hospital-acquired infections in trauma 
patients based on a real dataset gathered in a tertiary-care 
teaching trauma hospital in Shiraz, Iran. This study tries to 
determine the best method to precisely predict the death 
rate for hospital-acquired infections in trauma patients. Ac-
curate prediction models can provide useful information for 
decision making to manage hospital-acquired infections as a 
priority in terms of patient treatment.
	 The objectives of this study were the following:
	 (1)  Predicting death from hospital-acquired infections in 

trauma patients in the absence of a balanced dataset 
(C5.0 and CHAID);

	 (2)  Predicting death from hospital-acquired infection in 
the trauma patients using a balanced dataset by sam-
pling methods (reduced data set) (C5.0 and CHAID);

	 (3)  Clustering hospital-acquired infections in trauma pa-
tients by k-means algorithms; 

	 (4)  Predicting death from hospital-acquired infections in 
trauma patients in each cluster (C5.0 and CHAID);

	 (5)  Predicting death from hospital-acquired infections in 
trauma patients with SMOTE-C5.0 and ADASYN-
C5.0;

	 (6)  Predicting death from hospital-acquired infections in 
the trauma patients with SMOTE-SVM, ADASYN-
SVM, SMOTE-ANN, and ADASYN-ANN.

	 Many previous studies have attempted to handle unbal-
anced data [12-14] by adopting various approaches, such 
as using the right evaluation metrics, resampling the train-
ing set (under-sampling, and over-sampling), using K-fold 
cross-validation appropriately, ensemble different resampled 
datasets, resampling different ratios, and clustering the fre-
quent class. However, no best model for these problems has 
been identified, while this strongly relates to techniques, 
models, and subjects used [2].
	 In 2013, Roumani et al. [15] indicated that the C5 and 
SVM algorithms have the highest recall and specificity, re-
spectively, to predict death in an extremely unbalanced ICU 
dataset. In 2017, Gu et al. [2] reviewed class unbalanced data 
and provided techniques to balance data, such as data pre-



286 www.e-hir.org

Mehrdad Karajizadeh et al

https://doi.org/10.4258/hir.2020.26.4.284

processing, classification algorithms, and model evaluation. 
In 2016, Krawczyk [4] reviewed learning methods for unbal-
anced data and studied various aspects of unbalanced learn-
ing, such as classification, clustering, regression, datastream 
mining, and big data analytics. Further, they directed han-
dling unbalanced data for all domains. Additionally, in 2011, 
Paoin [16] observed that the accuracy of the C5.0 and naive 
Bayes algorithms for predicting death is under 40%. 

II. Methods

This study was a cross-sectional analysis on trauma patients 
with hospital-acquired infections who were admitted to 
Shiraz Trauma Hospital from March 20, 2017, to March 21, 
2018. We aimed to classify unbalanced death records from 
hospital-acquired infections in trauma patients.
	 For this purpose, we used the cross-industry standard 
process for data mining (CRISP-DM) to classify highly 
unbalanced data. CRISP-DM consists of six steps, namely, 
identifying the problem, understanding the data, preparing 
the data, modeling, evaluation, and deployment. It could be 
a cyclical process [17].
	 Shiraz Trauma Hospital is affiliated with Shiraz University 
of Medical Sciences, a national university, which collected 
hospital-acquired infections data for surveillance and pre-
vention of infections. This reporting aims to reduce hospital-
acquired infections.
	 First, the hospital acquired infection records extracted 
from the mortality infection management database. Next, all 
features of hospital-acquired infection analysis were done for 
descriptive statistics: frequency and mean ± standard devia-
tion (SD). Bivariate analysis was performed, and a p-value 
under 0.05 was considered as a significant level. Further, data 
preprocessing was done to enhance the data mining process 
using three stages: data selection, cleaning, and transforma-
tion.
	 We set some rules for our inclusion criteria. We included 
all trauma patients above 15 years old who had sustained 
hospital-acquired infections who were injured in road traffic 
accidents (car, motorcycle, and pedestrian accidents), falls, 
assaults, and gunshots, or had been struck by an object. We 
excluded admissions for surgical procedure (elective), com-
plications of previous trauma surgeries, patients who had 
been burned, foreign body injuries, suicides, and sports in-
juries, and those who referred to another hospital in Shiraz. 
Note that patients younger than 15 years old were excluded 
because they were referred to another hospital in Shiraz.
	 Finally, records of a total of 549 trauma patients with hos-

pital-acquired infections were selected. The values (sex, age, 
mechanism of injury, body region injured, severity score, 
type of intervention, infection day after admission, microor-
ganism causes of infections, and outcome) were chosen from 
this hospital-acquired infection management database. 
	 This substantial clinical database tends to be incomplete, 
dirty, inaccurate, and inconsistent. Hence, for the prepara-
tion step, we removed duplicate records, found missing 
values, eliminated outliers, and revised inconsistency in the 
database. We randomly split data into training (70%), testing 
(20%), and validation (10%) sets. Moreover, on building the 
decision tree model (CHAID), we stopped when the mini-
mum records in the parent and child branches became 2% 
and 1%, respectively. In the CHAID algorithm, a p-value of 
at least 0.05 was considered significant.
	 All data were transformed to an appropriate format for 
the IBM SPSS Modeler software (IBM, Armonk, NY, USA). 
Some new features were also derived using other fields. For 
example, age was calculated by the expiring date and the 
birthdate. Next, we divided the participants into three age 
groups based on a previous study: between 15 and 45, be-
tween 46 and 64, and above 65 years [18]. Table 1 presents 
other categorized variables used.
	 Furthermore, we applied a decision-tree model for clas-
sification considering the study of Alonso et al. [19], which 
showed that decision-tree models are the conventional tech-
niques in mental health. Hence, the C5.0 and CHAID algo-
rithms were applied for classification. For the CHAID algo-
rithm, we also used a chi-square test to decide the condition 
for splitting [20]. The following objectives were carried out 
by using the C5.0 and CHAID algorithms:
	 (1)  To predict the death rate from hospital-acquired infec-

tions in trauma patients in the absence of a balanced 
dataset (using C5.0 and CHAID);

	 (2)  To predict the death rate from hospital-acquired infec-
tions in trauma patients using a balanced dataset by 
using sampling methods (reduced dataset, C5.0, and 
CHAID);

	 (3)  To cluster hospital-acquired infections in trauma pa-
tients by k-means algorithm;

	 (4)  To predict the death rate from hospital-acquired infec-
tions in trauma patients regarding each cluster (C5.0 
and CHAID);

	 (5)  To predict death from hospital-acquired infections in 
trauma patients by using SMOTE-C5.0 and ADASYN-
C5.0;

	 (6)  To predict death from hospital-acquired infections in 
trauma patients by using SMOTE-SVM, ADASYN-
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Table 1. Detailed information about dataset used in this study

Data variable 

name
Measurement Data variable categories or values Role

Definition of the 

data variable

1 Sex Nominal 0 = Female
1 = Male

Input The patient's gender

2 Age category Ordinal 1 = "15–45"
2 = "46–64"
3 = ">=65"

Input The patient's age at the time 
of injury

3 Mechanism of 
injury

Nominal 1 = Car accident
2 = Motorcycle accident
3 = Pedestrian
4 = Assault
5 = falling
6 = Struck by objects

Input The mechanism (or mul-
tiple injury factor) that 
caused the injury event

4 Injured body 
region

Nominal 1 = Head and neck
2 = Face
3 = Thorax
4 = Abdomen
5 = Extremities
6 = Multiple injuries

Input ISS body region

5 Injury Severity  
Score (ISS)  
category

Ordinal 1 = "1–8"
2 = "9–15"
3 = ">=16"

Input ISS was calculated based on 
the Baker formula. The ISS 
severity score that reflects 
the patient's injuries.

6 Ward Nominal 1 = ICU
2 = General or surgical ward

Input Ward where detect nosoco-
mial infection

7 Type of invasive 
intervention

Nominal 1 = Catheter vein
2 = Urinary catheter
3 = Medical ventilator
4 = Tracheostomy
5 = Trachea intubation
6 = Arterial line
7 = Surgery

Input Type of invasive interven-
tion performed

8 Infected day Nominal 1 = Infection is less than 21 day
2 = Infection is higher than 22 day

Input Substation detect infection 
date from admission date 

9 Hospital-acquired 
infected

Nominal 1 = upper respiratory infection
2 = Urinary tract infection - other UTI
3 = Surgical site infection - SKIN
4 = Bloodstream infection
5 = Pneumonia
6 = Upper respiratory infection - symptomatic UTI
7 = Central nervous system - meningitis
8 = Surgical site infection - surgery took place

Input Type of hospital-acquired 
infections

10 Survival status Nominal 0 = Non-survivors
1 = Survivors

Target Survival status when pa-
tients discharge  

ICU: intensive care unit, UTI: urinary tract infection.
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Table 2. Bivariate analysis of mortality predictors

Survivors

(n = 464)

Non-survivors

(n = 85)

Total

(n = 549)
p-value

Sex 0.137
    Male 386 (85.6) 65 (14.4) 451 (100)
    Female 78 (79.6) 20 (20.4) 98 (100)
Age (yr) <0.05
    15–45 318 (89.8) 36 (10.2) 354 (100)
    46-64 84 (81.6) 19 (18.4) 103 (100)
    >65 62 (67.4) 30 (32.6) 92 (100)
Mechanism of injury <0.05
    Car accident 188 (86.2) 30 (13.8) 218 (100)
    Motorcycle accident 117 (88.6) 15 (11.4) 132 (100)
    Pedestrian 61 (82.4) 13 (17.6) 74 (100)
    Gunshot 8 (66.7) 4 (33.3) 12 (100)
    Falling 65 (74.7) 22 (25.3) 87 (100)
    Assault 13 (100) 0 (0) 13 (100)
    Struck by objects 13 (100) 0 (0) 13 (100)
Injured body region 0.38
    Head and neck 183 (84.7) 33 (15.3) 216 (100)
    Face 17 (81) 4 (19) 21 (100)
    Thorax 54 (84.4) 10 (15.6) 64 (100)
    Abdomen 16 (94.1) 1 (5.9) 17 (100)
    Extremities 107 (88.4) 14 (11.6) 121 (100)
    Multiple Injuries 87 (79.1) 23 (20.9) 110 (100)
Injury Severity Score (n = 492) 0.18
    1–8 157 (89.2) 19 (10.8) 176 (100)
    9–15 170 (82.5) 36 (17.5) 206 (100)
    ≥16 94 (85.5) 16 (14.5) 110 (100)
Ward <0.05
    ICU 312 (80.4) 76 (19.6) 388 (100)
    General or surgical ward 152 (94.4) 9 (5.6) 161 (100)
Type of invasive intervention
    Catheter vein (yes) 86 (89.6) 10 (10.4) 96 (100) 0.13
    Urinary catheter (yes) 113 (90.4) 12 (9.6) 125 (100) <0.05
    Medical ventilator (yes) 102 (75) 34 (25) 136 (100) <0.05
    Tracheostomy (yes) 74 (87.1) 11 (12.9) 85 (100) 0.48
    Trachea intubation (yes) 14 (70) 6 (30) 20 (100) 0.06
    Arterial line (yes) 2 (100) 0 (0) 2 (100) 0.54
    Surgery (yes) 74 (88.1) 10 (11.9) 84 (100) 0.32
Infected day 0.51
    Infected in less than 21 days after admission 415 (84.9) 74 (15.1) 489 (100)
    Infected in more than 22 days after admission 49 (81.7) 11 (18.3) 60 (100)
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SVM, SMOTE-ANN, and ADASYN-ANN.
	 The following tools were used in this study: IBM SPSS 
Modeler, MS Excel, SPSS, and Python (for running SMOTE 
and ADASYN).
	 We calculated the accuracy, precision, and recall for each 
classifier algorithm to evaluate each model separately. Previ-
ous studies found that these metrics were commonly used to 
assess the performance of prognostic models [21,22]. In ad-
dition, the receiver operating characteristic curve is a stan-
dard technique for evaluating classifier performance, and the 
area under the curve (AUC) is another typical metric for a 
ROC curve. Hence, we measured the AUC in this study [21].
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III. Results

There were 549 individuals who acquired hospital infections 
in this trauma hospital during the study period from March 
2017 to March 2018. In the studied population, 82.1% were 
male, and 17.9% were female; 64.5% were aged between 
15 to 45 years. The total number of patients with hospital-
acquired infections who passed away in the hospital was 85 
(15.5%), while the remaining 464 (84.5%) survived. Table 2 
shows the demographic characteristic of the studied indi-

viduals.
	 In this study, a death prediction model was applied to un-
balanced hospital-acquired infection datasets. Mortality was 
significantly associated with age, gender, ward, urinary cath-
eter, medical ventilator (yes), and central nervous system - 
meningitis (yes) (all p < 0.05). Table 2 depicts the detailed 
bivariate analysis of mortality predictors of the studied indi-
viduals.
	 We predicted death rates related to hospital-acquired infec-
tions for trauma patients based on unbalanced data by using 
the C5.0 and CHAID algorithms. The prediction accuracy 
of C5.0 was higher (86.16% vs. 85.16%). The C5.0 precision 
count for the death class was 17.64%, and for survival was 
90.27%. Table 3 displays more details for accuracy, recall, 
and precision in predicting the possibility of death from 
these hospital-acquired infections.
	 On the other hand, considering a balanced dataset, we 
predicted mortality rates by random-under sampling us-
ing the C5.0 and CHAID algorithms. The accuracy for C5.0 
was 70.69%, and that for the CHAID algorithm was 61.24%, 
as shown in Table 4. After we boosted the dataset for over-
sampling by C5.0 and CHAID, the accuracy reached 94.74% 
for C5.0; however, it remained relatively low at 79.47% for 
CHAID (Table 5).
	 In terms of clustering, we first used k-mean algorithms by 
setting 5 as the k value. We set the number of clusters (i.e., 
k = 5) equal to the number of principal infection diagnoses 
for the majority class (survivor class). Then mortality was 
predicted separately for each cluster. After all, the mortal-
ity prediction accuracy of this model on the clustered data 
was higher than the previous methods assessed in this study. 
Table 6 presents the findings in detail.

Table 2. Continued

Survivors

(n = 464)

Non-survivors

(n = 85)

Total

(n = 549)
p-value

Hospital-acquired infected
    Upper respiratory infection (yes) 252 (83.7) 49 (16.3) 301 (100) 0.57
    Urinary tract infection - other UTI (yes) 90 (85.7) 15 (14.3) 105 (100) 0.70
    Surgical site infection - SKIN (yes) 92 (85.2) 16 (14.8) 108 (100) 0.83
    Bloodstream infection (yes) 82 (80.4) 20 (19.6) 102 (100) 0.20
    Pneumonia (yes) 34 (85) 6 (15) 40 (100) 0.93
    Upper respiratory infection - symptomatic UTI (yes) 14 (87.5) 2 (12.5) 16 (100) 0.73
    Central nervous system - meningitis (yes) 17 (70.8) 7 (29.2) 24 (100) <0.05
    Surgical site infection - surgery took place (yes) 1 (50) 1 (50) 2 (100) 0.17

Values are presented as number (%).
ICU: intensive care unit, UTI: urinary tract infection.
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	 Further, we applied SMOTE-C5.0, ADASYN-C5.0, 
SMOTE-SVM, ADASYN-SVM, SMOTE-ANN, and 
ADASYN-ANN, while the AUC for death classification 
using SMOTE-SVM was 1.00 and 0.99 for the ADASYN-
SVM algorithm. Table 7 represents the details of calibration 
of SVM and the ANN algorithm shown in Supplementary 
Table S1.
	 To validate the results, we split the data into training (70%), 
testing (20%), and validation (10%) sets. Table 8 shows the 
details for the AUC and the accuracy of each approach. The 
highest validation accuracy was obtained by the k-means 
algorithm in the clustering approach, followed by the C5.0 
algorithm in classification.

IV. Discussion

This research developed models to predict mortality sus-
tained by hospital-acquired infection data set (dead vs. 
survived) by various methods like over-sampling, under-
sampling, and clustered data set using k-means. Next, death 
predicted by CHAID, C5.0, SMOTE-C5-0, ADASYN-

C5.0, SMOTE-SVM, ADASYN-SVM, SMOTE-ANN, and 
ADASYN-ANN algorithms while each one run separately. 
Comparing all, the prediction process by clustering method 
on imbalanced hospital-acquired infection was better than 
under-sampling and over-sampling methods.
	 As a part of this study, the best prediction accuracy for 
mortality from hospital-acquired infection based on an un-
balanced dataset was achieved by using the cluster-based 
algorithm. Alongside our research, regarding cluster-based 
under-sampling methods, Yen and Lee [23] found that k-
means reduces imbalance distribution, and Rahman and 
Davis [24] noted its significantly better performance on un-
balanced cardiovascular data. Likewise, Onan [25] reported 
the more reliable predictive performance of clustering-based 
under-sampling methods.
	 Additionally, our results showed that random over-
sampling led to significantly better prediction performance. 
These results are similar to the findings of Chawla et al. [21], 
which showed accuracy improvement after the application 
of a random over-sampling approach to classify a minority 
class. Nevertheless, random over-sampling approaches are 

Table 3. Performance evaluation of death models

Model Description AUC Accuracy (%) Class Precision (%) Recall (%)

CHAID tree Classification without the balanced data set 0.781 85.16 Survivors 90.27 86.66
Non-survivors 17.64 62.50

C5.0 tree Classification without the balanced data set 0.619 86.16 Survivors 99.13 86.46
Non-survivors 15.29 76.47

AUC: area under the curve.

Table 4. Performance evaluation of death models (random under-sampling)

Model Description AUC Accuracy (%) Class Precision (%) Recall (%)

CHAID tree Classification using the balanced data set 
(random under-sampling)

0.709 61.24 Survivors 28.76 80.76
Non-survivors 94.11 70.79

C5.0 tree Classification using the balanced data set 
(random under-sampling)

0.797 70.69 Survivors 61.79 76.38
Non-survivors 80.00 66.66

AUC: area under the curve.

Table 5. Performance evaluation of death models (random over-sampling)

Model Description AUC Accuracy (%) Class Precision (%) Recall (%)

CHAID tree Classification with the balanced data set 
(boost)

0.883 79.47 Survivors 74.35 82.53
Non-survivors 69.70 76.98

C5.0 tree Classification with the balanced data set 
(boost)

0.974 94.74 Survivors 92.02 97.26
Non-survivors 97.88 92.58

AUC: area under the curve.
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Table 6. Performance evaluation for death models on the clustered dataset

Model Cluster number AUC
Accuracy 

(%)
Class

Precision 

(%)

Recall 

(%)

CHAID tree Cluster 1 with alive data and dead data set 0.862 79.19 Survivors 96.40 74.19
Non-survivors 57.25 92.59

Cluster 2 with alive data and dead data set 0.961 89.34 Survivors 100 82.64
Non-survivors 78.35 100

Cluster 3 with alive data and dead data set 0.987 94.74 Survivors 94.66 94.66
Non-survivors 95.87 95.87

Cluster 4 with alive data and dead data set 0.993 97.60 Survivors 97.06 94.28
Non-survivors 97.89 98.88

Cluster 5 with alive data and dead data set 0.982 95.05 Survivors 96.59 93.40
Non-survivors 93.62 96.70

Overall - 0.962 91.30 Survivors 96.98 83.35
Non-survivors 82.56 96.78

C5.0 tree Cluster 1 with alive data and dead data set 0.899 87.25 Survivors 95.80 83.77
Non-survivors 76.34 93.46

Cluster 2 with alive data and dead data set 0.944 92.89 Survivors 96.00 90.57
Non-survivors 89.69 95.60

Cluster 3 with alive data and dead data set 0.962 94.77 Survivors 96.00 91.14
Non-survivors 93.81 96.81

Cluster 4 with alive data and dead data set 0.981 97.60 Survivors 91.18 100
Non-survivors 100 96.80

Cluster 5 with alive data and dead data set 0.999 97.80 Survivors 97.72 97.72
Non-survivors 97.87 97.87

Overall - 0.965 93.02 Survivors 93.88 88.29
Non-survivors 90.39 96.04

AUC: area under the curve.

Table 7. Performance evaluation for death models with SMOTE-C5.0 and ADASYN-C5.0

Model AUC Accuracy (%) Class Precision (%) Recall (%)

SMOTE-C5.0 0.97 93.66 Survivors 96.35 90.95
Non-survivors 91.15 96.43

ADASYN-C5.0 0.95 90.93 Survivors 89.60 92.89
Non-survivors 92.40 88.91

SMOTE-SVM 1.00 100 Survivors 100 100
Non-survivors 100 100

ADASYN-SVM 0.99 98.57 Survivors 98.74 98.39
Non-survivors 98.43 98.71

SMOTE-ANN 0.92 91.48 Survivors 86.54 95.74
Non-survivors 96.27 98.41

ADASYN-ANN 0.97 97.46 Survivors 96.86 98.09
Non-survivors 98.08 96.83

SVM: support vector machine, ANN: artificial neural network, AUC: area under the curve.
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Table 8. Evaluation metrics in training, testing, and validation sets

Model Evaluation metrics Training Testing Validation

Classification without the balanced data set (with CHAID) AUC 0.77 0.81 0.76
Accuracy (%) 82.34 85.57 92.54

Classification without the balanced data set (with C5.0) AUC 0.59 0.75 0.60
Accuracy (%) 84.68 88.66 91.04

Classification with balance data set (boost) with CHAID AUC 0.89 0.87 0.88
Accuracy (%) 79.11 76.72 82.42

Classification with balance data set (boost) with C5.0 AUC 0.97 0.97 0.97
Accuracy (%) 92.65 94.71 91.21

Classification with the balanced data set (random under-sampling) 
with CHAID

AUC 0.64 0.53 0.74
Accuracy (%) 59.50 48.28 53.57

Classification with the balanced data set (random under-sampling) 
with C5.0

AUC 0.78 0.80 0.84
Accuracy (%) 72.07 76.92 73.08

Cluster 1 with alive data and dead data set and classification with 
C5.5

AUC 0.91 0.82 0.91
Accuracy (%) 88.29 81.82 87.76

Cluster 2 with alive data and dead data set and classification with 
C5.5

AUC 0.95 0.91 0.96
Accuracy (%) 93.94 90.91 90.62

Cluster 3 with alive data and dead data set and classification with 
C5.5

AUC 0.96 0.95 0.96
Accuracy (%) 95.76 96.30 88.46

Cluster 4 with alive data and dead data set and classification with 
C5.5

AUC 0.98 0.98 1.00
Accuracy (%) 98.86 94.74 94.44

Cluster 5 with alive data and dead data set and classification with 
C5.5

AUC 0.99 0.99 1.00
Accuracy (%) 97.54 98.88 100

Cluster 1 with alive data and dead data set and classification with 
CHAID

AUC 0.88 0.759 0.872
Accuracy (%) 81.46 72.73 75.51

Cluster 2 with alive data and dead data set and classification with 
CHAID

AUC 0.955 0.981 0.954
Accuracy (%) 89.39 93.94 84.38

Cluster 3 with alive data and dead data set and classification with 
CHAID

AUC 0.982 1.00 0.99
Accuracy (%) 94.07 96.30 96.15

Cluster 4 with alive data and dead data set and classification with 
CHAID

AUC 0.99 1.0 1.0
Accuracy (%) 96.59 100 100

Cluster 5 with alive data and dead data set and classification with 
CHAID

AUC 0.99 0.95 0.95
Accuracy (%) 98.36 87.50 89.66

SMOTE-C5.0 AUC 0.98 0.84 0.89
Accuracy (%) 93.69 79.69 86.52

ADASYN-C5.0 AUC 0.90 0.77 0.69
Accuracy (%) 86.37 77.16 75.86

SMOTE-SVM AUC 1.00 0.989 0.98
Accuracy (%) 100 92.71 94.38

ADASYN-SVM AUC 0.99 0.89 0.87
Accuracy (%) 98.57 81.73 80.46
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sometimes inefficient because it can take a long time to pre-
pare unbalanced data [26].
	 Notably, we compared these three methods for unbalanced 
data on a hospital-acquired infection dataset; practicing the 
same methods as future studies on different healthcare data 
will be valuable. We were interested in doing this compari-
son; however, the time and resources of the project were 
limited. Further, external validation using an alternative 
dataset could improve the assurance of the model; hence, we 
consider it a limitation in our study.
	 Original datasets are unclean and sparse. Therefore, the 
preparation steps for healthcare data take a long time. A 
further subject to study could be a systematic review of the 
handling of unbalanced data in healthcare, which is impera-
tive to provide evidence-based approaches.
	 The results of this study examined two aspects of unbal-
anced data elaborately, the prognosis of patients with hospi-
tal-acquired infection and the need for pre-processing these 
types of data. 
	 Interestingly, various balancing approaches were applied to 
handle the imbalance issue for hospital-acquired infection 
data in the trauma hospital. What stands out in these types 
of data is that clustered under-sampling performed better 
than random over-sampling and under-sampling. Overall, 
the issue of unbalanced data in healthcare remains from 
prevention to prognosis and follow-up. Hence, we suggest 
methods for handling unbalanced data in the healthcare do-
main. 
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