
I. Introduction

In recent years, congestive heart failure (CHF), acute myo-
cardial infarction (AMI), chronic obstructive pulmonary 
disease (COPD), pneumonia (PN), and type 2 diabetes (DB) 
have become the top most costly hospitalized conditions in 
the United States [1]. The majority of these conditions are 
characterized by longer than national average length of stay 
(LOS) of 4.5 days [2]. Moreover, in 2013, the number of hos-
pitalizations for these conditions equaled 3.621 million stays 
(10.2% of inpatient admissions) [1]. Likewise, the average 
inpatient treatment costs incurred for these conditions were 
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high, between $7,400 and $18,400 per stay, compared to the 
national average [3]. Due to the recent substantial increase in 
medical costs and hospital expenditures, predicting the like-
lihood of prolonged LOS has become increasingly impor-
tant to reduce the waste of hospital resources and improve 
patient satisfaction. Determining influential risk factors for 
prolonged LOS is useful for planning interventions or care 
management for patients with multiple chronic conditions. 
Furthermore, the prediction of prolonged LOS can improve 
the process of arranging a continuum of care for the patients, 
thus allowing family members to prepare for the return of 
their loved one. Additionally, under the government’s new 
inpatient progressive payment system (IPPS), reimburse-
ments are paid in fixed payments based on the patient’s 
diagnosis-related group (DRG) rather than the volume of 
services [4]. 
	 Several studies have explored the use of various predic-
tive models to improve performance in predicting LOS [5]. 
Multiple variations of artificial neural network (ANN)-based 
models have been applied in a variety of hospital settings 
(e.g., emergency department, psychiatric, and intensive care 
unit) [6,7]. Several other classification algorithms (e.g., sup-
port vector machine, logistic regression, and random forest) 
have also been applied for predicting LOS, and they have 
achieved diverse levels of accuracy [8,9]. However, these 
models did not use machine learning-based feature selec-
tion, anomaly detection, and class imbalance techniques in a 
framework that might result in overfitting and a weak learn-
er. Only one study attempted to apply a class imbalance tech-
nique in predicting prolonged emergency department (ED) 
LOS [10]. Hence, the use of machine learning algorithms 
to predict condition-specific prolonged LOS needs further 
exploration. Therefore, a prolonged LOS prediction model is 
crucial and indispensable to healthcare providers, especially 
those with an alternative payment contract (e.g., account-
able care organizations) with the Centers for Medicare and 
Medicaid Services (CMS). Thus, there is a need to develop a 
predictive decision support system that (1) identifies patients 
with prolonged LOS risk and (2) helps to develop individual 
discharge planning to reduce inpatient usage and eventually 
improve quality of care.
	 This study constructed and compared predictive models 
based on supervised machine learning algorithms to iden-
tify patients with the risk of prolonged LOS hospitalized 
with chronic conditions. Condition-specific prolonged LOS 
prediction represents a significant benchmark in provid-
ing healthcare providers a better tool to plan for discharge 
planning and resource allocation to reduce LOS; therefore, 

it can lower hospitalization costs. We developed a robust 
framework for prolonged LOS prediction using data mining 
algorithms to extract important features, handle missing val-
ues, eliminate multicollinearity, detect outlier observations, 
and balance imbalanced class. Based on previous studies, 
we chose five algorithms: decision tree C5.0, linear support 
vector machine (LSVM), k-nearest neighbors (KNN), ran-
dom forest (RF), and multi-layered ANNs. Twenty different 
model combinations for each cohort were constructed and 
compared in terms of several performance metrics.

II. Methods

1. Study Design
Prediction models were constructed using an administrative 
claim dataset provided by a network of nine hospitals geo-
graphically localized within three adjacent counties in the 
Tampa Bay region, Florida, USA. The types of hospitals in 
the study included general, teaching, and specialized hospi-
tals. The initial dataset included 594,751 patients accounting 
for 1,093,177 patient discharges from January 2008 through 
July 2012. The five disease cohorts included in this study 
were AMI, CHF, COPD, DB, and PN. These conditions 
were identified by a primary diagnosis ICD-9 code for the 
inpatient claims. ICD-9 codes are used to identify hospital 
admission for AMI (codes 410.*), CHF (codes 428.*, 402.01, 
402.91, 404.01, 404.03, 404.11, 404.13, 404.91, 404.93), 
COPD (codes 491.0, 491.1, 491.2, 491.20, 491.21, 490, 492, 
496), DB (codes 250.*2), and PN (codes 480–483, 485–486, 
510, 511.0, 511.1, 511.9, 780.6, 786.00, 786.05, 786.06, 
786.07, 786.2, 786.3, 786.4, 786.5, 786.51, 786.52, 786.7). 
The final subsets of AMI, CHF, COPD, DB, and PN cohorts 
consisted of 10,983, 9,194, 7,189, 3,476, and 21,317 inpatient 
admissions, respectively.
	 For each discharge claim, we extracted 82 common fea-
tures (including patient demographics, hospital information, 
and comorbidity) and several disease-specific features from 
the inpatient diagnosis and revenue codes based on insights 
from previous studies [5,11,12]. Descriptive statistics for the 
data and variables (common and cohort specific) are shown 
in Tables 1 and 2, respectively. Features were extracted from 
the diagnosis codes using ICD-9 numeric, E and V codes. 
For example, one of the features, accidental fall, was identi-
fied from 30 diagnoses ICD-9 codes by filtering E88–E89. 
The severity index was calculated as the severity of illness 
(from 1 = minor to 4 = extreme) defined by 3M all-patient 
refined–diagnosis-related groups (APR-DRG) [13]. 
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2. Outcome Variable
We defined prolonged LOS in our study as >7 days by calcu-
lating the 85th percentile threshold for the entire study pop-
ulation cohort’s LOS [14]. The uniform prolonged LOS crite-
ria (>7 days) for all cohorts were applied to simplify hospital 
resource allocation in discharge planning and to reduce the 

hospital-wise risk of post-discharge complications. Hospital 
stays longer than seven days are associated with a higher risk 
of post-discharge adverse outcomes and complications than 
short stay (≤7 days) regardless of admission causes [15]. 

Table 1. Descriptive statistics for all common features

Variable type Variable name Level
CHF

(n = 9,194)

AMI

(n = 10,983)

COPD

(n = 7,189)

PN

(n = 21,317)

DB

(n = 3,476)

Outcome Prolonged LOS Yes 1,287 (14) 1,614 (15) 863 (12) 1,918 (9) 452 (13)
Demographics Age (yr) N/A 70.4 ± 13.7 65.1 ± 13.1 65.8 ± 13.7 47.9 ± 27.1 53.2 ± 16.2

Gender Male 4,443 (48) 6,448 (59) 4,161 (58) 11,231 (53) 1,785 (51)
Female 4,751 (52) 4,535 (41) 3,028 (42) 10,086 (47) 1,691 (49)

Race Caucasian 6,884 (75) 9,010 (82) 6,129 (85) 13,891 (65) 1,881 (54)
African American 1,413 (15) 691 (6) 607 (8) 3,370 (16) 1,061 (31)
Hispanic 758 (8) 914 (8) 357 (5) 3,387 (16) 474 (14)
Others 139 (2) 368 (4) 96 (1) 669 (3) 60 (1)

Language English 6,381 (69) 8,616 (78) 5,670 (79) 15,815 (74) 2,664 (77)
Spanish 209 (2) 233 (2) 89 (1) 738 (3) 128 (4)
Others 2,604 (29) 2,134 (20) 1,430 (20) 4,764 (23) 684 (19)

Marital status Single 2,019 (22) 2,508 (23) 1,731 (24) 10,384 (49) 1,350 (39)
Married 3,651 (40) 5,615 (51) 2,504 (35) 6,306 (30) 1,223 (35)
Others 3,524 (18) 2,860 (26) 2,954 (41) 4,627 (11) 903 (16)

Socioeconomic 
factor

Payer class Public 7,739 (84) 6,768 (62) 5,711 (79) 14,333 (67) 2,001 (58)
Private 39 (0) 122 (1) 53 (1) 254 (1) 25 (1)
Managed care 823 (9) 2,750 (25) 723 (10) 4,527 (21) 707 (20)
Uninsured 593 (7) 1,343 (12) 702 (10) 2,203 (11) 743 (21)

Hospital and  
admission  
factors 

Number of previous 
admissions

N/A 2.8 ± 2.6 1.9 ± 1.8 3.3 ± 3.6 2.3 ± 2.9 3.3 ± 5.1

Admission type Emergency 8,037 (87) 8,660 (79) 6,459 (90) 17,571 (82) 2,978 (86)
Routine 636 (7) 1,034 (9) 291 (4) 1173 (6) 213 (6)
Others 521 (6) 1,309 (14) 439 (6) 2,573 (12) 285 (8)

Admission source ED 7,999 (87) 8,623 (78) 6,428 (89) 17,522 (82) 2,976 (85)
Acute care 54 (1) 1,349 (12) 19 (0) 318 (1) 15 (0)
Others 1,141 (12) 1,011 (10) 742 (11) 3,477 (17) 485 (15)

Severity index Minor 898 (10) 2,827 (26) 1,627 (22) 5,622 (26) 956 (27)
Moderate 4,358 (47) 4,592 (42) 3,417 (48) 10,298 (48) 1,384 (40)
Major 3,402 (37) 2,549 (23) 1,907 (27) 4,592 (22) 1,001 (29)
Extreme 536 (6) 1,015 (9) 238 (3) 805 (4) 135 (4)

Number of PX N/A 1.1 ± 1.5 3.5 ± 1.9 0.5 ± 1.0 0.6 ± 1.1 0.9 ± 1.4
Weekend admission Yes 2,727 (13) 2,765 (25) 1,786 (24) 5,295 (25) 774 (21)
Hospital location Rural 1,655 (18) 1,089 (10) 1,078 (15) 3,839 (18) 418 (12)

Urban 7,539 (82) 9,894 (90) 6,111 (85) 17,478 (82) 3,058 (88)
Hospitalist Yes 2,358 (26) 2,697 (27) 2,037 (28) 6,382 (30) 1,109 (32)
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Table 1. Continued 1

Variable type Variable name Level
CHF

(n = 9,194)

AMI

(n = 10,983)

COPD

(n = 7,189)

PN

(n = 21,317)

DB

(n = 3,476)

Comorbidities Number of chronic 
diseases 

N/A 3.3 ± 1.6 2.1 ± 1.4 1.8 ± 1.2 1.1 ± 1.2 1.6 ± 1.9

Infectious disease Yes 180 (2) 104 (1) 262 (4) 742 (4) 228 (7)
Neoplasm Yes 21 (0) 25 (0) 8 (0) 0 (0) 2 (0)
Immunity disorder Yes 7,471 (82) 8,620 (78) 5,059 (70) 11,870 (56) 3,326 (96)
Blood forming disease Yes 3,285 (36) 2,732 (25) 1,927 (27) 5,737 (27) 998 (29)
Mental disorder Yes 3,633 (40) 4,606 (42) 4,558 (63) 7,658 (36) 1,647 (47)
Nerve disease Yes 2,127 (23) 1,763 (16) 1,841 (26) 4,905 (23) 1,400 (40)
Rheumatic heart disease Yes 947 (10) 376 (3) 101 (1) 310 (1) 28 (1)
Hypertension Yes 6,999 (76) 7,353 (67) 4,433 (62) 8,539 (40) 2,202 (63)
Ischemic heart disease Yes 2,400 (26) 9,949 (91) 794 (11) 1518 (7) 255 (7)
Pulmonary disorder Yes 1,551 (17) 418 (4) 461 (6) 549 (3) 49 (1)
Other heart diseases Yes 7,116 (77) 5,007 (46) 2,336 (32) 4,754 (22) 564 (16)
Cerebrovascular  

disease
Yes 311 (3) 440 (4) 151 (2) 285 (1) 76 (2)

Diseases of arteries Yes 1,195 (13) 1,236 (11) 558 (8) 855 (4) 552 (16)
Circulatory disorder Yes 720 (8) 923 (8) 278 (4) 850 (4) 187 (5)
Respiratory infections Yes 435 (5) 268 (2) 572 (8) 2,335 (11) 129 (4)
Influenza Yes 792 (9) 455 (4) 909 (13) 16,474 (77) 57 (2)
Chronic pulmonary 

disease
Yes 3,555 (39) 2,189 (20) 6,325 (88) 4,558 (21) 570 (16)

Pneumoconiosis Yes 1,842 (20) 1,348 (12) 1,465 (20) 4,558 (21) 134 (4)
Stomach disease Yes 1,672 (18) 1,806 (16) 1,634 (23) 3,650 (17) 850 (24)
Oral disorder Yes 25 (0) 25 (0) 23 (0) 91 (0) 26 (1)
Gastroenteritis Yes 667 (7) 592 (5) 632 (9) 1600 (8) 318 (9)
Digestive system  

disorder
Yes 411 (4.47) 407 (3) 268 (4) 824 (4) 252 (7)

Nephritis Yes 0 (0) 12 (0) 7 (0) 0 (0) 0 (0)
Kidney disease Yes 1,097 (12) 751 (7) 458 (6) 1,525 (7) 338 (11)
Diseases of productive 

organs
Yes 634 (7) 563 (5) 390 (5) 930 (4) 169 (5)

Pregnancy  
complication

Yes 4 (0) 0 (0) 0 (0) 3 (0) 0 (0)

Skin disease Yes 692 (7) 357 (3) 283 (4) 1,083 (5) 1,046 (30)
Musculoskeletal disease Yes 2,524 (27) 2,317 (21) 2,297 (32) 4,824 (23) 1,135 (33)
Congenital anomalies Yes 144 (2) 86 (1) 45 (0) 633 (3) 32 (1)
Perinatal abnormalities Yes 3 (0) 7 (0) 3 (0) 133 (1) 0 (0)
Ill conditions Yes 2,411 (26) 1,941 (18) 2,282 (32) 9,740 (46) 1,119 (32)
Abnormal symptoms Yes 1,017 (11) 843 (8) 836 (12) 2,052 (10) 218 (6)
Fracture Yes 59 (1) 78 (1) 83 (1) 150 (1) 40 (1)
Intracranial injury Yes 39 (0) 44 (0) 4 (0) 37 (0) 5 (0)
Open wounds Yes 30 (0) 44 (0) 19 (0) 56 (0) 22 (1)
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Table 1. Continued 2

Variable type Variable name Level
CHF

(n = 9,194)
AMI

(n = 10,983)
COPD

(n = 7,189)
PN

(n = 21,317)
DB

(n = 3,476)

Injury to blood vessels Yes 0 (0) 2 (0) 0 (0) 0 (0) 0 (0)
Superficial injury Yes 16 (0) 25 (0) 11 (0) 34 (0) 14 (0)
Entrance of foreign 

body
Yes 12 (0) 17 (0) 19 (0) 102 (0) 3 (0)

Burns Yes 1 (0) 4 (0) 2 (0) 4 (0) 2 (0)
Spinal cord injury Yes 2 (0) 12 (0) 3 (0) 10 (0) 0 (0)
Poisoning Yes 14 (0) 23 (0) 30 (0) 35 (0) 5(0)
Surgical care  

complication
Yes 207 (2) 851 (8) 50 (1) 188 (1) 69 (2)

Cancer Yes 25 (0) 13 (0) 4 (0) 17 (0) 10 (0)
Artery disease Yes 5,266 (57) 2,169 (20) 2,090 (29) 3,794 (18) 637 (18)
Heart failure Yes 9,194 (100) 8,303 (76) 1,165 (16) 1,997 (9) 261(8)
Vascular disease Yes 1,090 (12) 2,363 (22) 512 (7) 758 (4) 440 (13)
Chronic liver disease Yes 516 (6) 348 (3) 171 (2) 373 (2) 1,730 (50)
Diabetics with organ 

damage
Yes 833 (9) 413 (4) 132 (2) 309 (1) 184 (5)

Renal failure Yes 1,101 (12) 660 (6) 491 (7) 1,582 (7) 195 (6)
Appendicitis Yes 11 (0) 19 (0) 10 (0) 32 (0) 15 (0)

External causes 
and patient  
history 

Accident Yes 290 (0) 484 (4) 297 (4) 738 (1) 132 (3.8)
Misadventure during 

care
Yes 160 (2) 680 (6) 49 (1) 231 (1) 55 (2)

Falls Yes 97 (1) 149 (1) 110 (1.5) 229 (1) 65 (2)
Drug adverse effects Yes 564 (6) 440 (4) 708 (10) 1,137 (5) 127 (4)
Communicable  

disease history
Yes 182 (2) 153 (1) 166 (2) 451 (2) 45 (1)

Treatment isolation Yes 93 (1) 52 (0) 66 (1) 367 (2) 91 (3)
History of cancer Yes 665 (7) 584 (5) 485 (7) 1,041 (5) 83 (2)
Mental disorder  

history
Yes 15 (0) 11 (0) 11 (0) 23 (0) 5 (0)

Previous heart attack Yes 361 (4) 285 (2) 215 (3) 444 (2) 72 (2)
Allergic to drug Yes 690 (8) 669 (6) 701 (10) 1,443 (7) 260 (7)
Tobacco users Yes 1,399 (15) 1,565 (14) 1,607 (22) 2,061 (10) 244 (7)
History of non- 

compliance
Yes 772 (8) 407 (4) 312 (4) 359 (2) 635 (18)

Organ replacement Yes 587 (6) 264 (2) 220 (3) 546 (3) 58 (2)
Machine dependence Yes 3,439 (37) 2,253 (21) 1,690 (25) 3,338 (16) 402 (12)
Heart surgery history Yes 2,180 (24) 1,862 (20) 871 (15) 1,929 (9) 292 (8)
Current drug users Yes 1,819 (20) 1,230 (11) 1,062 (15) 1,880 (9) 1,054 (30)
Homeless Yes 143 (2) 180 (1) 182 (3) 301 (1) 98 (3)

Values are presented as number (%) or mean ± standard deviation. For the binary (Yes or No) type variable, descriptive statistics is 
shown for “Yes” level only.
CHF: congestive heart failure, AMI: acute myocardial infarction, COPD: chronic obstructive pulmonary disease, PN: pneumonia, 
DB: type 2 diabetes, LOS: length of stay.
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Table 2. Descriptive statistics for disease cohort-specific variables

Disease cohorts Variable name Level Total number (%)

CHF (n = 9,194) Unspecified CHF Yes 635 (7)
Malignant CHF Yes 134 (1)
Systolic heart failure Yes 1,383 (15)
Diastolic heart failure Yes 1,339 (15)
Combined CHF Yes 297 (3)

COPD (n = 7,189) Farmer lungs Yes 10 (0)
Hazardous chemical exposure Yes 7 (0)
Pneumopathy Yes 2 (0)
Emphysema Yes 155 (2)
Extrinsic allergic alveolitis Yes 12 (0)
COPD with acute bronchitis Yes 55 (1)
COPD with asthma Yes 65 (1)
Exacerbation of COPD Yes 6,499 (90)

AMI (n = 10,983) STEMI elevated AMI Yes 6,817 (62)
Non-STEMI AMI Yes 2,699 (25)
Inferior wall AMI Yes 1,568 (15)
Anterior wall AMI Yes 1,084 (10)
Subendocardial infraction Yes 6,817 (62)
Initial episode of care Yes 9,949 (91)

DB (n = 3,476) Hyperglycemia Yes 2 (0)
Sepsis Yes 39 (1)
Urinary tract infection Yes 395 (11)
Wound/graft infection Yes 10(0)
Postoperative bleeding Yes 35 (1)
Hyperlipidemia Yes 1,368 (40)
Diabetes with neurological manifestations Yes 1,342 (38)

PN (n = 21,317) Sepsis Yes 117 (0)
Ventilator dependence Yes 37 (0)
Coma Yes 2 (0)
Dyspnea Yes 222 (1)
Dialysis Yes 224 (1)
Chronic condition with asthma Yes 749 (3.5)
Bacterial pneumonia Yes 916 (4)
Influenzas vaccine Yes 415 (2)
Pleural effusion Yes 1,750 (8)
Lung abscess Yes 17 (0)
Acute respiratory distress syndrome Yes 3 (0)
Hospital-acquired pneumonia Yes 13,540 (63)

For the binary (Yes or No) type variable, descriptive statistics is shown for “Yes” level only.
CHF: congestive heart failure, COPD: chronic obstructive pulmonary disease, AMI: acute myocardial infarction, DB: type 2 diabe-
tes, PN: pneumonia.
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3. Modeling Framework
The modeling framework comprised three major steps: data 
preprocessing, model training, and performance evaluation. 
The data preprocessing comprised missing value handling, 
zero-variance test, correlation test, novelty detection, and 
feature selection. Figure 1 illustrates the steps involved in 
data preprocessing. Using the software RStudio caret pack-
ages [16], we performed the data preprocessing steps. First, 
missing values in the patient records were handled using 
established strategies. If the feature contained over 15% 
missing cases, we excluded the attributed feature. If less than 
15% of the records were missing, the mean or median value 
replaced the blanks for the continuous and ordinal feature 
respectively. 
	 We used the one-class support vector machine (O-SVM) to 
identify outliers from noisy observations [17]. The O-SVM 

identified a similar proportion of anomalies (1.92%–2.44%) 
and excluded them from the dataset. Then we identified cor-
related features using the Pearson correlation and chi-square 
test for the continuous and nominal features, respectively, 
with a 0.05 level of significance. Among the correlated pairs 
of features, we dropped those with the highest variance in-
flation factor. Finally, features with in-class imbalances or 
zero variances were dropped after the zero-variance test with 
a 1.0% cutoff. Table 3 summarizes the results obtained from 
the data preprocessing steps. 
	 We separated the records into training (70%), and testing 
(30%) sets for each cohort. Figure 2 illustrates the process of 
model building and the evaluation process. Next, using the 
same training dataset for each patient cohort, two different 
types of feature selection methods, chi-square filtering, and 
the SVM-based wrapper algorithm were applied to identify 
significant variables [18]. In the chi-square filtering method, 
features were selected at a 0.05 level of significance. For the 
wrapper algorithm, we limited our algorithm to a maximum 
of 200 iterations for each training model. The selected fea-
tures from chi-square filtering and wrapper feature selection 
methods are shown in Supplementary Tables S1 and S2. 
After selecting features from both methods, we trained C5.0, 
LSVM, KNN, RF, and multi-layered ANN models for each 
cohort. 
	 While training these models, we also explored the issues 
with the imbalance nature of the data. When training with 
imbalanced data, the algorithm tends to learn more from 
the majority class than the minority class, resulting in a 
weak learner with limited predictability. For the five cohorts, 
we had a varying imbalance ratio (0.09 to 0.15). To resolve 
this issue, we over-sampled the training data set using the 
Synthetic Minority Over-sampling Technique (SMOTE) 
and created new balanced data [19]. We trained 20 different 
models for each cohort and compared the performance of 

Table 3. Summary statistics in data preprocessing steps

Patient cohort
Number of  

observations
Anomalies Total features

Correlation  

test rejection

Zero variance  

test rejection

Remained  

features

CHF 9,194 217 (2.36) 87 3 25 59
AMI 10,983 259 (2.35) 89 5 25 59
COPD 7,189 172 (2.39) 90 2 29 59
PN 21,317 410 (1.92) 97 2 36 59
DB 3,476 85 (2.44) 93 3 32 58

Values are presented as number (%).
CHF: congestive heart failure, AMI: acute myocardial infarction, COPD: chronic obstructive pulmonary disease, PN: pneumonia, 
DB: type 2 diabetes.

Cohort specific
datasets

Missing value
handling

Zero variance &
correlation test

Novelty detection
(One class SVM)

Training
dataset

(70%) (30%) Testing
dataset

Figure 1. �Data preprocessing steps for building predictive model. 
SVM: support vector machine.
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the models using the testing dataset under several metrics. 
Although the area under the curve (AUC) metric was unaf-
fected by imbalances, the AUC tends to mask poor perfor-
mance [20]. Therefore, we considered two other perfor-
mance metrics, namely, sensitivity and specificity, with the 
AUC to minimize imbalance biases.
We propose a new rank average aggregate metric approach 
for selecting the best performing model to deal with the 
dilemma of performance tradeoff initiated by data imbal-
ance. In our approach, the performance of each model was 
ranked separately for the three metrics of AUC, sensitivity, 
and specificity, and each was assigned a score (between 1 to 
20) based on the rank. For example, if the LSVM model was 
ranked third by the AUC, we assigned a score of 18 out of 20. 
These three scores were multiplied by the assigned weights 
and summed to obtain a single aggregate metric where the 
summation of all weights must be equal to 1. Finally, we se-
lected a single model by comparing the composite weighted 
sum metrics among the 20 different models, and the steps 
were repeated for each cohort.

III. Results

1. Assessment of the Prediction Models 
We fitted 20 different model combinations comprising two 
feature selection methods, with or without SMOTE, and five 
learning algorithms for each cohort. Table 4 summarizes 
the performance of the learning algorithms for each cohort. 
As shown, the KNN models did not outperform any of the 
other algorithms. LSVM outperformed every other algo-

rithm in all cohorts with AUC, while it only outperformed 
CHF in terms of specificity. RF models outperformed for the 
AMI and DB cohorts, whereas for CHF and PN, the ANN 
models worked better according to the specificity metric. 
However, it is evident that selecting a model solely based on 
the AUC masked a model’s poor specificity. For example, the 
best model for CHF under AUC is LSVM using the wrapper 
feature selection, with 0.81 AUC and 0.28 specificity. A spec-
ificity of 0.28, meaning only a 28% chance of detecting a true 
negative, represents poor model performance, which was 
completely shadowed by the AUC. Between the two feature 
selection methods, the SVM-based wrapper method yielded 
better prediction by AUC, whereas chi-square filtering 
methods achieved better true-negative rates. SMOTE used 
with feature selection did not improve the model’s AUC. 
However, chi-square feature selection with SMOTE resulted 
in the highest specificity in all cohorts.
	 Figure 3 illustrates the changes in sensitivity and specificity 
with and without using SMOTE for the chi-square feature 
selection method. As shown, there is a significant tradeoff 
between the sensitivity and specificity. Furthermore, all the 
learning algorithms showed a positive tradeoff, specificity 
increase, and sensitivity decrease, except for the RF models. 
SMOTE yielded the highest and lowest increment of sensi-
tivity for the C5.0 and KNN algorithms, respectively. The 
performance of each model depends on the algorithm as well 
as the feature selection and data balancing technique. Addi-
tionally, the tradeoff between the metrics due to the dataset 
imbalance makes it more challenging to select the best per-
forming model. Table 5 shows the selected models based on 

Testing
dataset

Training
dataset

Chi-square filtering
Feature selection

Best predictive
model

Dataset with
SMOTE + WR

SVM based wrapper
Feature selection

Dataset with
SMOTE + CQ

Model kth
with WR

Model kth
with CQ

Model kth with
SMOTE dataset

Model kth with
SMOTE dataset

Human inputs /
Aggregate metric

Model
Evaluation

(AUC, SP, SN)

Figure 2. ‌�Flowchart of the predic-
tive model building and 
best performing model 
selection. CQ: chi-square 
feature selection, WR: 
support vector machine-
based wrapper feature 
selection, AUC: area under 
the curve, SP: specificity, 
SN: sensitivity, SMOTE: 
Synthetic Minority Over-
sampling Technique.
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AUC, sensitivity, F1 score, proposed aggregate rank, and a 
custom rule for each cohort. Based on our proposed metric, 
we selected several variations of LSVM models that showed 
balanced performance in every metric. In healthcare deci-
sion making, administrators or decision makers select the 
best model either empirically or by custom decision criteria 
favorable to the budgetary constraints. Therefore, we tested 
a custom rule comprising a minimum 0.75 specificity and 
the maximum for the AUC metric. If there was no model 
associated with more than 0.75 specificity, we selected the 

final model with the highest specificity. In general, LSVM 
with the wrapper feature selection was selected based on the 
AUC criteria, while different algorithms with SMOTE were 
selected based on the specificity metric. The selected mod-
els obtained by custom rules comprised different machine 
learning algorithms with SMOTE, and the results showed a 
moderate performance across all metrics.

2. Important Features
Tables 6 and  7 show significant features using the LSVM 

Table 4. Performance comparison of predictive models

Prediction  

model

AMI CHF COPD DB PN

AUC SP AUC SP AUC SP AUC SP AUC SP

C5.0
   WR 0.83 0.44 0.75 0.24 0.72 0.22 0.82 0.46 0.84 0.40
   WR+ST 0.84 0.58 0.74 0.46 0.72 0.40 0.82 0.67 0.82 0.64
   CQ 0.80 0.43 0.75 0.26 0.72 0.15 0.82 0.49 0.78 0.35
   CQ+ST 0.84 0.73 0.71 0.76b 0.75 0.63 0.80 0.76 0.81 0.81
KNN
   WR 0.77 0.29 0.65 0.21 0.60 0.02 0.81 0.44 0.75 0.19
   WR+ST 0.73 0.36 0.65 0.09 0.57 0.12 0.81 0.45 0.70 0.25
   CQ 0.78 0.39 0.62 0.25 0.70 0.18 0.83 0.56 0.75 0.27
   CQ+ST 0.75 0.67 0.73 0.67 0.63 0.36 0.81 0.52 0.79 0.70
LSVM
   WR 0.88a 0.46 0.81a 0.28 0.79a 0.19 0.86a 0.56 0.88a 0.40
   WR+ST 0.87 0.51 0.79 0.35 0.77 0.21 0.86 0.57 0.85 0.42
   CQ 0.86 0.51 0.79 0.35 0.77 0.21 0.86 0.57 0.85 0.42
   CQ+ST 0.87 0.74 0.79 0.73 0.77 0.64b 0.86 0.74 0.85 0.76
RF
   WR 0.86 0.66 0.76 0.69 0.71 0.46 0.83 0.66 0.84 0.71
   WR+ST 0.82 0.49 0.72 0.26 0.64 0.17 0.82 0.43 0.78 0.47
   CQ 0.83 0.71 0.74 0.67 0.74 0.61 0.81 0.80b 0.78 0.77
   CQ+ST 0.80 0.84b 0.75 0.68 0.71 0.63 0.81 0.70 0.76 0.75
NN
   WR 0.85 0.46 0.81a 0.27 0.74 0.05 0.85 0.55 0.87 0.40
   WR+ST 0.83 0.58 0.76 0.34 0.70 0.26 0.82 0.50 0.82 0.43
   CQ 0.83 0.47 0.76 0.28 0.70 0.13 0.82 0.50 0.82 0.35
   CQ+ST 0.86 0.78 0.79 0.70 0.76 0.60 0.85 0.79 0.85 0.80b

AMI: acute myocardial infarction, CHF: congestive heart failure, COPD: chronic obstructive pulmonary disease, DB: type 2 dia-
betes, PN: pneumonia, AUC: area under the curve, SP: specificity, KNN: k-nearest neighbor, LSVM: linear support vector ma-
chine, RF: random forest, NN: multi-layer neural network, WR: support vector machine-based wrapper method, WR+ST: wrapper 
method with SMOTE (Synthetic Minority Over-sampling Technique), CQ: chi-square filtering method, CQ+ST: chi-square with 
SMOTE.
aBest model based on AUC, bbest model based on specificity.
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algorithm and regression analysis, respectively. The most 
important variable in all disease cohorts except DB for mak-
ing a prolonged LOS prediction was the disease severity 
index with varying relative weights. In addition, the pres-
ence of different types of comorbidity was a strong predictor 
of prolonged LOS. For example, in AMI, COPD, and PN, 
the presence of comorbidities related to blood and blood-
forming organ diseases resulted in a longer LOS. In addi-

tion, AMI and CHF patients admitted with pneumoconiosis 
and other lung-related conditions tended to stay longer in 
hospital inpatient settings. Several non-comorbidity-related 
features, such as the number of PX, source of admission, and 
payer class were also associated with a prolonged LOS. The 
number of tests (PX) required to assess patient condition 
was highly associated with prolonged inpatient stays in all 
cohorts expect AMI, and the higher the number of tests, the 

Table 5. Best performing model based on several criteria

Selection criteria
Selected model for disease (AUC, SP, SN)

AMI CHF COPD DB PN

AUC LSVM+WR
(0.88, 0.46, 0.93)

LSVM+WR
(0.81, 0.28, 0.89)

LSVM+WR
(0.79, 0.19, 0.94)

LSVM+WR
(0.86, 0.56, 0.92)

LSVM+WR
(0.88, 0.40, 0.93)

SP RF+CQ+ST
(0.80, 0.84, 0.80)

C5.0+CQ+ST
(0.71, 0.76, 0.85)

LSVM+CQ+ST
(0.77, 0.64, 0.86)

RF+CQ
(0.81, 0.80, 0.88)

NN+CQ+ST
(0.85, 0.80, 0.83)

F1-score LSVM+WR
(0.88, 0.46, 0.93)

LSVM+CQ+ST
(0.79, 0.73, 0.91)

LSVM+CQ+ST
(0.77, 0.64 ,0.86)

KNN+WR+ST
(0.81, 0.52, 0.95)

LSVM+WR
(0.88, 0.40, 0.93)

Aggregate ranking LSVM+CQ+ST
(0.87, 0.74, 0.87)

LSVM+CQ+ST
(0.79, 0.35, 0.91)

LSVM+CQ+ST
(0.77, 0.64, 0.86)

LSVM+CQ+ST
(0.86, 0.74, 0.91)

LSVM+WR
(0.88, 0.40, 0.93)

Custom rule NN+CQ+ST
(0.86, 0.78, 0.86)

C5.0+CQ+ST
(0.71, 0.76, 0.85)

LSVM+CQ+ST
(0.77, 0.64, 0.86)

LSVM+CQ+ST
(0.86, 0.74, 0.91)

NN+CQ+ST
(0.85, 0.80, 0.83)

AMI: acute myocardial infarction, CHF: congestive heart failure, COPD: chronic obstructive pulmonary disease, DB: type 2 diabe-
tes, PN: pneumonia, AUC: area under the curve, SP: specificity, SN: sensitivity, LSVM: linear support vector machine, RF: random 
forest, NN: multi-layer neural network, KNN: k-nearest neighbor, WR: support vector machine-based wrapper method, WR+ST: 
wrapper method with SMOTE (Synthetic Minority Over-sampling Technique), CQ: chi-square filtering method, CQ+ST: chi-
square with SMOTE.
Example, a+b+c; a = machine learning method, b = feature selection technique, c = presence of SMOTE balancing; LSVM+CQ+ST = 
linear support vector mechanics with chi-square feature selection and SMOTE date balancing technique.
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greater the risk of a prolonged LOS. Specifically, PN patients 
with non-commercial payers and COPD patients admitted 
through the ED showed a greater likelihood of prolonged 
LOS.

IV. Discussion 

In this study, we analyzed prolonged inpatient stays using 
an administrative claim dataset, performed extensive data 
preprocessing, and then developed and compared several 
variants of predictive models for the five disease cohorts. We 
identified several important factors that increase the risk of 
a prolonged stay for each disease. We found that prolonged 
LOS is associated with blood-forming and skin-disease-
related comorbidities in most of the chronic conditions. The 
finding of several previous studies also support this result 
[21]. Some other studies have reported that patient demo-
graphics, gender, and hospital locations were contributors to 
identifying the risk of a prolonged LOS. However, our results 
do not conform to the findings in those studies [22,23]. One 
possible reason for this discrepancy is that the previous stud-
ies have mostly used homogenous data consisting of a single 
hospital or specific type of operation (e.g., knee replacement, 
heart surgery). When examining data from nine different 
hospitals over eight years, other factors had more weight 
than demographic factors (e.g., race, gender) in terms of the 
prediction of prolonged LOS.
	 Significant factors found in our study could be used to for-
mulate individual disease-specific treatment pathways and 
early discharge planning to decrease inpatient LOS. Identify-
ing patients with risk of prolonged LOS at the time of admis-
sion or inpatient care, the hospital can assign a dedicated 

hospitalist and prepare a plan for the advanced discharged 
planning process. Studies show that having a dedicated hos-
pitalist after four days of inpatient care and effective early 
discharged planning with a continuum of care can signifi-
cantly reduce inpatient LOS [24,25]. Additionally, prioritiz-
ing laboratory tests and avoiding duplication of tests using 
hospital information exchange (HIE) can effectively decrease 
the LOS [26]. Furthermore, implementing improved care 
management and care coordination for patients with spe-
cific comorbidities in accountable care organizations (ACO) 
could reduce inpatient care utilization [27]. In addition, we 
found that the type of payer or insurance, which are typically 
considered to be significant socioeconomic factors, signifi-
cantly affect the likelihood of a prolonged LOS. This insight 
agrees with the claims made in previous studies that social 
deprivation or economic inequality has a negative effect on 
the expected length of hospital stays of admitted patients 
[28]. Furthermore, an individual prolonged LOS risk profile 
can be used as a decision-making aid to the physician’s sub-
jective judgment while adjusting a patient’s LOS [21]. This 
study of disease-specific prolonged LOS prediction may also 
assist in reducing the financial burden of the numerous out-
lier claims under CMS IPPS resulting from extended hospi-
tal stays. [29]. Outlier payments exert tremendous pressure 
on Medicare expenditures and are responsible for an average 
of $4.04 billion each year [30].
	 The prediction model we developed was compared to other 
published models in terms of predictive power and robust-
ness. The selected cohort-specific models showed a varia-
tion of prediction performance depending on the model 
evaluation criteria. We found that although predictive power 
(AUC) was similar across certain methods, the range in de-

Table 6. Important features extracted by LSVM algorithm

Rank
Cohort specific important features (relative importance weight)

AMI CHF COPD DB PN

1 Severity index (0.22) Severity index (0.21) Severity index (0.22) Number PX (0.25) Severity index (0.21)
2 Blood forming disease 

(0.15)
Number of PX  

(0.14)
Number of PX  

(0.21)
Severity index  

(0.21)
Number of PX  

(0.15)
3 Pneumoconiosis  

(0.10)
Pneumoconiosis 

(0.09)
Admission source 

(0.12)
Musculoskeletal  

disease (0.12)
Payer class  

(0.12)
4 Surgery complication  

(0.07)
Influenza  

(0.08)
Blood forming disease 

(0.09)
Skin disease  

(0.09)
Blood forming disease 

(0.1)
5 Non-disease related ab-

normal symptoms (0.04)
Skin disease  

(0.05)
Number of chronic 

diseases (0.08)
Chronic liver disease 

(0.06)
Number of chronic 

diseases (0.06)
LSVM: linear support vector machine, AMI: acute myocardial infarction, CHF: congestive heart failure, COPD: chronic obstructive 
pulmonary disease, DB: type 2 diabetes, PN: pneumonia.
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Table 7. Important features extracted using regression analysis

Variable name Level
Odds ratio (mean and lower-upper bounds)

CHF AMI COPD PN DB

Number of previous admissions N/A 1.3 (1.1–1.4)
Admission source ED 1

Acute care 1.4 (1.1–1.8)
Others 0.6 (0.3–0.9)

Severity Index Minor 1 1 1 1 1
Moderate 1.5 (1.2–1.8) 2.1 (1.6–2.7) 1.3 (1.1–1.6) 0.6 (0.4–0.8) 1.2 (1.0–1.4)
Major 2.3 (2.1–2.6) 3.4 (3.2–4.1) 1.6 (1.3–1.9) 1.3 (1.1–1.5) 1.2 (1.0–1.5)
Extreme 3.6 (3.1–4.1) 4.4 (3.8–5.1) 2.1 (1.9–2.5) 1.9 (1.7–2.1) 2.3 (1.9–2.7)

Number of PX N/A 1.6 (1.5–1.7) 1.8 (1.6–1.9)
Payer class Public 1

Private 0.8 (0.6–1.1)
Managed care 1.3 (1.0–1.6)
Uninsured 1.6 (1.4–1.8)

Number of chronic diseases Yes 1.2 (1.0–1.4) 1.1 (1.0–1.3) 1.3 (1.2–1.4) 1.2 (1.0–1.5) 1.2 (1.0–1.4)
Infectious disease Yes 2.1 (1.8–2.5)
Blood forming disease Yes 1.7 (1.5–1.9) 4.0 (3.6–4.6) 1.6 (1.3–1.9) 2.7 (2.5–3.1) 1.3 (1.1–1.5)
Nerve disease Yes 1.2 (1.1–1.4)
Hypertension Yes 1.8 (1.5–2.1) 1.9 (1.8–2.1) 1.8 (1.4–2.1)
Ischemic heart disease Yes 1.4 (1.2–1.7) 1.3 (1.1–1.4)
Pulmonary disorder Yes 1.4 (1.2–1.6)
Circulatory disorder Yes 1.5 (1.1–1.5)
Influenza Yes 1.7 (1.4–1.9) 1.8 (1.4–2.3)
Pneumoconiosis Yes 1.9 (1.7–2.1) 4.2 (3.6–4.8) 1.7 (1.3-1.9) 1.7 (1.5–1.9)
Digestive system disorder Yes  1.4 (1.2–1.6)
Skin disease Yes 1.2 (1.0–1.5) 1.9 (1.5–2.4)
Musculoskeletal disease Yes 1.8 (1.4–2.2)
Ill conditions Yes 1.5 (1.3–1.8) 1.9 (1.7–2.2)
Surgical care complication Yes 2.8 (2.4–3.4)
Artery disease Yes
Heart failure Yes 1.3 (1.1–1.6) 1.12 (1.0–1.4)
Vascular disease Yes 1.2 (1.1–1.4)
Chronic Liver disease Yes 1.6 (1.4–1.9) 1.3 (1.1–1.5)
DB with organ damage Yes 1.3 (1.1–1.5)
Drug adverse effects Yes 1.5 (1.2–1.7)
Bacterial pneumonia Yes 5.7 (4.9–6.8)
DB with neurological  

manifestations
Yes 1.9 (1.6–2.4)

CHF: congestive heart failure, AMI: acute myocardial infarction, COPD: chronic obstructive pulmonary disease, DB: type 2 diabe-
tes, PN: pneumonia, ED: emergency department.
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tecting true-positive and true-negative events varied greatly. 
Analyzing multiple aspects of models provides the health 
administrators or decision-makers a stronger understanding 
of those models and real-time applicability. LSVM models 
with wrapper feature selection showed overall better perfor-
mance for all cohorts. Furthermore, integration of O-SVM 
for outlier detection in data preprocessing also improved 
model robustness when dealing with noisy observations. Im-
plementation of the SMOTE technique along with feature-
selection algorithms showed a significant tradeoff between 
sensitivity and specificity in all prediction models except RF, 
which made the final model selection based on a single per-
formance metric difficult. Moreover, our results showed that 
using only the AUC as a baseline metric may mask a model’s 
poor prediction performance, especially regarding the true-
negative rate. Our proposed aggregate rank-based selec-
tion approach resolves this tradeoff dilemma by choosing a 
model with balanced performance, and it can provide a deci-
sion support tool to health administrators when comparing 
predictive models.
	 In conclusions, the accurate prediction of a prolonged LOS 
and prognosis of the risks associated with chronic disease 
are challenging. We adapted five machine-based learning 
techniques with feature selection, anomaly detection, and 
SMOTE balancing to predict prolonged LOS. The perfor-
mance of the methods varies in complex ways, including 
discrimination and predictive range. We found that LSVM 
models performed better in terms of AUC and sensitivity. 
We also found that clinical and socioeconomic factors are 
the main features driving patient prolonged LOS. Designing 
predictive models would help to accelerate the stratification 
of patients according to prolonged LOS risk for improved 
care. The proposed prolonged LOS prediction model can 
be used to plan for advanced discharge planning, healthcare 
personnel allocation, and care coordination programs to 
reduce the usage of inpatient care. Some limitations of the 
present study should be addressed because they may restrict 
generalizability and are indicative of the need for further re-
search. Our research did not include potential pathological 
(e.g., hemoglobin level) and sociocultural (e.g., education) 
features due to data availability, which might be useful for 
improving accuracy.
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