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Objectives: Both the valence and arousal components of affect are important considerations when managing mental health-
care because they are associated with affective and physiological responses. Research on arousal and valence analysis, which 
uses images, texts, and physiological signals that employ deep learning, is actively underway; research investigating how to 
improve the recognition rate is needed. The goal of this research was to design a deep learning framework and model to clas-
sify arousal and valence, indicating positive and negative degrees of emotion as high or low. Methods: The proposed arousal 
and valence classification model to analyze the affective state was tested using data from 40 channels provided by a dataset 
for emotion analysis using electrocardiography (EEG), physiological, and video signals (the DEAP dataset). Experiments 
were based on 10 selected featured central and peripheral nervous system data points, using long short-term memory (LSTM) 
as a deep learning method. Results: The arousal and valence were classified and visualized on a two-dimensional coordinate 
plane. Profiles were designed depending on the number of hidden layers, nodes, and hyperparameters according to the er-
ror rate. The experimental results show an arousal and valence classification model accuracy of 74.65 and 78%, respectively. 
The proposed model performed better than previous other models. Conclusions: The proposed model appears to be effec-
tive in analyzing arousal and valence; specifically, it is expected that affective analysis using physiological signals based on 
LSTM will be possible without manual feature extraction. In a future study, the classification model will be adopted in mental 
healthcare management systems.
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I. Introduction 

Recent advances in artificial intelligence technologies, such 
as deep learning, have resulted in the rapid development 
of the field, and hence in new research opportunities [1,2]. 
While the support of stable mental healthcare needs to be 
considered, the focus is on automated mental state detection, 
which is a complex phenomenon with both affective and 
physiological responses. Although regulation of emotion is 
a difficult concept, arousal and valence recognition studies 
have been undertaken to provide an understanding of affec-
tive experiences using physiological signals, such as such as 
electrocardiography (ECG), photoplethysmography (PPG), 
and electroencephalography (EEG) [3-5]. In addition, some 
studies about early mental stress detection using physiologi-
cal signals have been performed in the mental healthcare 
domain [6-9]. On the other hand, with significant advances 
in machine learning technologies, such as deep learning, 
artificial intelligence methods can be applied to improve the 
efficiency of emotion recognition. Recently, deep learning 
methods have been applied in the processing of physiologi-
cal signals, such as EEG and skin resistance. The results 
were comparable to those of conventional methods [10-12]. 
In this study, a dataset for emotion analysis obtained from 
an EEG, physiological, and video signals database (DEAP) 
was used to conduct an emotion classification experiment 
to validate the efficacy of the deep learning-based approach. 
The database is the largest, most comprehensive physiologi-
cal signal emotion dataset publicly available. The goal of this 
study was to design an LTSM-based emotion classification 
model using EEG, galvanic skin response (GSR), and PPG 
signal data that can classify arousal (which indicates strength 
of emotion) and valence (which indicates positive and nega-
tive degree of emotion) as high or low. The DEAP dataset 
provides data for 10 channels—namely, for 8 EEG chan-
nels as well as single channels of GSR and PPG—to analyze 
emotional states. Then the accuracy of the emotion analysis 
presented in this paper is assessed by comparing it with the 
previous studies of Wang and Shang [11], which classifies 
emotions based on the deep belief network (DBN), which 
conducts learning by probabilistic judgment using signals 
of four channels as input data in the DEAP dataset from the 
central nervous system. 
	 The remainder of this paper is organized as follows. In 
Section II, a brief overview of both emotion recognition 
and deep learning for emotion recognition is provided. The 
experimental design aspects of long short-term memory 
(LSTM)-based emotion recognition using physiological sig-

nals are discussed in Section II. The simulated and experi-
mental schemes and their results are described in Section III. 
Finally, the conclusions are summarized in Section IV.

1. Emotion Recognition Using Physiological Signals
As previously mentioned, methods for emotion detection us-
ing physiological signals have been extensively investigated 
and have provided encouraging results where the affective 
states are directly related to changes in bodily signals [13,14]. 
For the central nervous system (CNS), EEG is a useful tech-
nique to study emotion variance. The brain’s response to var-
ious stimuli is usually measured by dividing the EEG signals 
into different frequency rhythms, namely, delta (0.5–4 Hz), 
theta (4–8 Hz), beta (16–32 Hz), and gamma (32 Hz and 
above). These band waves are omnipresent in various parts 
of the brain [15]. In addition, among peripheral systems, 
autonomic nervous system (ANS) activity is considered a 
major component of an emotional response because the 
physiological signals based on ANS activity are very descrip-
tive and easy to measure [13-15]. Pulse waves result from 
periodic pulsations in the blood volume, and are measured 
by the changes in optical absorption that they induce [16-
19]. Changes in the amplitudes of PPG signals are related to 
the level of tension in an individual. GSR signals can be an 
indicator of the autonomic activity of physiological arousal, 
which varies with the moisture level of the skin.
	 Emotion refers to the human being’s complex emotional 
state that is changed by external factors [20,21]. Russell [22] 
classified human emotions into two dimensions: arousal rep-
resents the strength of emotions in the degree of arousal and 
relaxation, while valence represents the degree of positivity 
and negativity. 
	 Among the many emotion models, we adopted Russell’s 
model [22], where the two dimensions are represented by a 
vertical arousal and a horizontal valence axes. 

2. Long Short-Term Memory 
Deep learning in neural networks comprises decomposition 
of networks into multiple layers of processing with the aim 
of learning multiple levels of abstraction [5]. LSTM is one of 
the deformation models of an RNN that is used to overcome 
its long-term dependency problem. LSTM is particularly 
useful for sequential data, such as time series data [23]. 
LSTM solves the long-term dependency by installing three 
gates, which are used for input and output of the memory 
space; these are the input gate, forget gate, and output gate. 
Each of the three gates determines how much of the input 
value will be reflected, how much of the current value is to 
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be forgotten, and whether or not to display the calculation 
up to present [24].

II. Methods

This section describes the data used in the experiment, the 
model, and the experimental method.
	 The first step in mapping physiological signals to emo-
tions is to extract some features from raw signal data—for 
instance, analyzing the heart rate variability (HRV), which 
is equivalent to the response of the nervous system of the 
physiological signal with R-R intervals. These features are 
usually hand-engineered using task-dependent techniques 
developed by domain experts [13,25-27] and selected by ex-
perts or feature selection algorithms. However, in this study, 
we overcame these disadvantages by adopting the LSTM 
model, which allows automatic feature selection through the 
learning and training process.

1. DEAP Dataset
DEAP is a multimodal dataset for the analysis of human af-
fective states [12]. The EEG and peripheral physiological 
signals (down sampled to 128 Hz), including the horizon-

tal electrooculogram (hEOG), vertical electrooculogram 
(vEOG), zygomaticus major electromyogram (zEMG), tra-
pezius major electromyogram (tEMG), GSR, respiration belt 
data, plethysmogram, and body temperature, of 32 subjects 
were recorded as each subject watched 40 one-minute long 
videos. The subjects rated the levels as continuous values 
of arousal, valence, liking, dominance, and familiarity. The 
structure of the DEAP dataset is shown in Table 1 and Figure 
1. Figure 1 shows a small part of the DEAP dataset used as 
the input data. Also, Figure 1 shows the input data consisting 
of 10 channels’ physiological signals. 
	 As a reference [13,14], we selected a PPG signal, a GSR sig-
nal, and 8-channel EEG signals of the frontal lobe (Fp1, Fp2, 
F3, F4) that are responsible for the high level of cognitive, 
emotional, and mental functions; temporal lobes (T7, T8) 
responsible for the auditory area; and the occipital lobes (P3, 
P4) responsible for the auditory area of the 32-channel EEG 
signals. Only data with a length of 60 seconds (128 Hz × 60), 
excluding the initial 3 seconds (128 Hz × 3) corresponding 
to the baseline of the total data length of each signal (128 Hz 
× 63 seconds), were used in the experiment. For each sub-
ject, arousal and valence were evaluated in successive values 
from 1 to 9. A result of less than 5 was set to 0, while a result 

Figure 1. Example of the DEAP dataset.
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Table 1. Structure of the DEAP dataset

Array name Array shape Array contents

Data 40 × 40 × 8064 (Video/trial) × channels × data (128 Hz × 63 seconds)
Labels 40 × 4 (Video/trial) × label (valence, arousal, dominance, liking)
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greater than or equal to 5 was set to 1 and used as output 
data (labels). The input and output data were stored as sepa-
rate files, each of which was divided into 40 files for each 
participant. The total number of files was 1,280 (participant 

× video). Of the 1,280 experimental data files, 1,024 files 
(representing 80% of the total data, from the 1st to the 32nd 
participants’ 40-channel signal files) were used to train the 
model, and 256 files (representing 20% of the data, from the 

Figure 2. Long short-term memory (LSTM) model for emotion classification.
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33rd to the 40th participants’ 40-channel signal files) were 
used to evaluate the performance of the model.

2. LSTM-Based Emotion Classification Model 
The structure of the proposed LSTM-based emotion clas-
sification model using the central nervous system signals 
and autonomic nervous system signal is shown in Figure 2. 
In the hidden layer of Figure 2, x0, x1,…, xt represent the 8 
EEG signals of the central nervous system, the autonomic 
nervous system GSR signal, and the PPG signal, which are 
physiological signals of 10 channels used as input data. The 
state values h0, h1,…, ht of the hidden layer, determined from 
the input data, are those in which the result of the previous 
signal affects the current signal. In addition, a forget gate (․) 
was installed between the hidden layer nodes to determine 
how much of the current value should be forgotten. The out-
put value y is communicated only once at the end, since the 
degrees of arousal and valence are classified into two catego-
ries of low and high. Therefore, weights W, V and U are cal-
culated for each physiological signal with sequence and out-
put values of low or high that are generated. The output data 
of the proposed emotion classification model was the result 
of evaluating the degree of arousal and valence between 1 
and 9 in the DEAP dataset. Since the performance of the 
model depends on the numbers of layers and nodes and the 
hyperparameters, we evaluated its accuracy by varying each 
parameter. Accuracy is a measure of how precise the model 
is based on the evaluation criteria. The ratio of prediction—
true positive (TP) and true negative (TN)—is expressed as 
accuracy (%). We tried to improve the performance of the 
proposed emotion classification model. The experiments 
were conducted using Deeplearning4j written for Java and 
Scala in a Window 10 environment. We installed CUDA 8.0 
to use the GPU, and managed the project library by install-
ing the build automation tool Apache Maven [27].

III. Results

1. The Designed LSTM Model
The accuracy results of the arousal and valence classification 
models, according to the hyperparameter setting values ap-
plied to the LSTM, are shown in Tables 1 and 2, respectively. 
We modified the hyperparameter more than 30 times based 
on the setup method that can give the best learning result. 
Thus, only the top four results from each hyperparameter 
are shown in Tables 2 and 3.
	 Settings 1, 2 and 3 in Table 2 show the process of setting 
the hyperparameter value of the arousal classification model, 
and the numbers of layers and nodes. Settings 3 and 4 are 
part of the process of setting the hyperparameters with a 
fixed number of layers and nodes. The accuracy of the mod-
el differs according to the value of the forget gate bias. If the 
learning rate is too low, the speed of the algorithm is slowed 
down, and the learning cannot be completed before the 
point at which the cost function is minimized. On the other 
hand, if the learning rate is too high, overshooting can occur 
without the minimum value being reached [28]. 
	 Settings 1, 2 and 3 in Table 3 show the process of setting 
the hyperparameter value of the valence classification model, 
and the numbers of layers and nodes. Settings 3 and 4 are 
part of the process of setting the hyperparameter with a fixed 
number of layers. As the result of Setting 3, if the neural net-
work becomes larger, the number of parameters increases. 
Thus, the performance of the algorithm may be lowered. 
Therefore, Setting 3 is not predictable when the degree of 
valence is high (1).

2. Experimental Results
We classified the values of arousal and valence through the 
proposed LSTM model as low (0) and high (1). Thereafter, 

Table 2. Performance comparison of the arousal classification 
model by hyperparameter setting

Setting 1 Setting 2 Setting 3 Setting 4

Number of layer 1 1 2 2
Number of node 6 4 [6, 4] 4
Batch size 64 128 64 128
Epochs 30 30 30 30
Learning rate 0.1 0.5 0.1 1
Momentum 0.1 0.7 0.1 1
Forge gate bias 1 1 0.6 1
Accuracy (%) 62.5 68.12 33 74.65

Table 3. Performance comparison of the valence classification 
model by hyperparameter setting

Setting 1 Setting 2 Setting 3 Setting 4

Number of layer 1 1 2 2
Number of node 4 2 [8, 6] 2
Batch size 50 128 50 128
Epochs 30 30 30 30
Learning rate 1 0.0001 1 0.0001
Momentum 0.1 0.1 0.1 0.1
Forge gate bias 0.5 0.8 0.5 1
Accuracy (%) 36.2 68 high(1)

unpredictable
78
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we arranged the results of the physiological data as the values 
of arousal and valence between 1 and 9. Figure 3 shows the 
distribution of the classification results using a two-dimen-
sional coordinate plane with the arousal and valence axes. In 
Figure 3, darker color of the circles represents greater density 
of arousal or valence data in coordinates. Larger size of the 
circles indicates that accumulation of frequency of arousal or 
valence data. 
	 Figure 4 shows the accuracy of the arousal classification 
model and the valence classification model; the LSTM-
based valence classification model using physiological sig-
nals showed 78% accuracy. In the experiment, the proposed 
arousal classification model had 2 layers, 4 nodes, 128 batch 
sizes, and a learning rate, momentum, and forget gate bias 
of 1, 1, and 1, respectively. The number of iterations was 
set to 8. As a result, the LSTM-based arousal classification 
model using physiological signals showed 74.65% accuracy. 
In addition, the proposed valence classification model had 2 
layers, 2 nodes, 128 batch sizes, and a learning rate, momen-

tum, and forget gate bias of 0.0001, 0.1, and 1, respectively. 
The number of iterations was set to 7. As a result, the LSTM-
based valence classification model using physiological sig-
nals showed 78% accuracy. Figure 5 compares the accuracy 
of the model developed in this study to that of Wang and 
Shang [11]. As shown in Figure 5, although emotion classifi-
cation is very personal and variable, in comparison with the 
results of other studies, each of the results is more than 20% 
better than those of previous studies. 

IV. Discussion

In this paper, we proposed an arousal and valence classifi-
cation model based on LSTM using physiological signals 
obtained from the DEAP dataset for mental healthcare 
management. The performance of the emotion classifica-
tion model depends on the number of layers, nodes, and 
hyperparameters. If the neural network becomes too large, 
it is important to find the appropriate number of layers and 
nodes due to the increase in the number of parameters. 
	 Although, there were some limitations of the study, such 
as the lack of comparison with other classification methods, 
such as non-deep learning technique classification models, 
including naïve Bayesian, decision tress, and support vector 
machine and so on. To improve the accuracy of the arousal 
and valence status classification results, more systematic 
profile generation including hyperparameter settings will be 
performed in a future study.

1. Comparison with Other Previous Research
When the optimized parameters are set by these criteria, the 
proposed arousal and valence classification models based 
on LSTM achieve 74.65% and 78% accuracy, respectively. In 
addition, the performance of the proposed emotion classi-
fication model proposed is compared with the performance 
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Figure 4. The accuracy results of the arousal classification and 
valence classification model.
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of the emotion classification model proposed by Wang and 
Shang [11], who classified the degree of arousal, valence, and 
liking based on DBN by using autonomic nervous system 
signals (hEOG, vEOG, zEMG, tEMG) of four channels as 
input data from the DEAP dataset. In that work, the classifi-
cation accuracies for arousal, valence, and liking were 60.9%, 
51.2%, and 68.4%, respectively. In this paper, only the de-
grees of arousal and valence were classified; therefore, only 
the classification accuracy of arousal and valence were com-
pared. Practically, the results of the LSTM model proposed 
in this paper achieved higher accuracy for arousal (1.99%) 
and valence (4.95%) than those of a previous study by Song 
[29], in which the arousal accuracy was 72.66%, and the va-
lence accuracy was 73.05%.
	 Thus, we confirmed that the LSTM-based emotion clas-
sification model using the central nervous system and auto-
nomic nervous system signals is more suitable for classifying 
emotions than the DBN-based emotion classification model 
using autonomic nervous system signals. Those results indi-
cate that the designed classification model has tremendous 
potential to facilitate and enhance personal mental health-
care if it is adopted in mental health management systems, 
such as mobile or web-based applications. It can support 
individuals managing their own mental health, and it can be 
used in clinical care systems to enhance existing treatment 
processes, such as medical examination through interviews.

2. Conclusion 
In this paper, we proposed an emotion classification model 
based on LSTM using central and autonomic nervous system 
signals obtained from the DEAP dataset. 
	 It has been confirmed that, according to the situation or 
purpose, emotion classification is possible based on the 
LSTM, which extracts features from the time series data 
by itself using the central and autonomic nervous system 
signals. The model can quantitatively measure and analyze 
emotion without reflecting subjective judgment. Therefore, 
it is expected that emotion analysis using physiological sig-
nals based on LSTM will be possible without processing. In 
a future study, the classification model will be adopted in 
mental healthcare management systems.
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