
I. Introduction

Resolving the functional conformation of a protein remains 
a central challenge in molecular biology [1]. Structural 
knowledge is imperative to analyze the functionality of pro-
tein; such knowledge contributes much to the development 
of better drug design, higher-yield crops, and even synthetic 
bio-fuels. Predicting the three-dimensional (3D) structure of 
a protein is one of the greatest challenge and a cornerstone 
for structural biologists.
  Currently, there are three experimental techniques, namely, 
X-ray crystallography, nuclear magnetic resonance (NMR) 
spectroscopy, and electron microscopy, that can be used to 
determine the 3D structure of protein with accuracy. Due to 
technical difficulties, the gap between the number of known 
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sequences and the predicted structure is widening, which is 
a formidable challenge in terms of effort demand and time 
consumption. Thus, there is a greater need than ever before 
for a reliable computational method to address the problem 
of protein structure prediction (PSP) directly from the se-
quence.
  The existing computational methods are categorized into 
three approaches based on the information used to model 
the protein. Homology modeling and threading utilize the 
structural information of similar proteins, whereas the ab in-
itio method does not. The template free approach is followed 
by ab initio and it has been proven to be better in several 
cases.
  Many successive computational studies have proposed 
solution for the conformation structure of protein, such as 
the evolutionary algorithm [2,3], Monte Carlo [4,5], and 
HP models [6,7]; however, such solutions are not powerful 
to search structures in a huge conformational space. The 
genetic algorithm (GA) has been chosen and has proven to 
be a reliable computational tool to address the PSP problem 
because of 1) its success in solving a complex problem by 
improving the speed using parallelization and 2) the com-
putation process involved in the genetic search to find the 
optimal strategies for a large space.
  Even though several studies have explored the implementa-
tion of GA variants [1,8-17] on PSP, the efficiency of GA can 
be realized only by setting appropriate parameter values. As 
various inputs require different parameter settings, they are 
usually obtained by ad-hoc experimentation with manual 
tuning by a trial-and-error method. This is time consuming 
and requires a lot of experience and knowledge. On the oth-
er hand, inappropriate selection of values leads to premature 
convergence and consequently, failure to find the optimum 
in a reasonable computational time, especially when the size 
of the conformational space is huge (PSP).
  From the research work [18] using GA, it is clear that the 
confirmation results produced were not satisfactory. To over-
come the previously mentioned limitations, the most impor-
tant parameter values of genetic operators need to be self-
organized. Therefore, this study focuses on the application of 
a novel genetic algorithm called the self-organizing genetic 
algorithm for PSP (SOGA-PSP), which self-configures the 
crossover and mutation rate during execution, thereby re-
ducing the complexity, which in turn increases the perfor-
mance efficiency.
  Since Met-enkephalin (Protein Data Bank [PDB] ID: 
1PLW) has been a test case in many studies [16,19,20], the 
developed algorithm was tested using the same protein. In 
addition, the NNFGAIL segment from islet amyloid poly-

peptide (PDB ID: 3DGJ) was also tested.

II. Methods

1.	Genetic Algorithm
Algorithm begins with initial population 
  1) Fitness function f(x) is calculated for every chromosome 

x in the population.
  2) Reiterate the following procedure to regenerate the pop-

ulation;
    • Choose the parents on the basis of fitness score
    • Reproduce the offspring by crossover operator 
    • Mutate the resultant chromosome 
    • Calculate the fitness score for elite selection
    • Resultant chromosome reproduces the population

  3) Algorithm terminates as it reaches the fitness value/
number of generations.

2.	Self-Organizing Genetic Algorithm
A self-organizing system operates based on information 
received locally without the guidance of the external envi-
ronment. It is an adaptive methodology adopted for GA to 
discover the interaction of operators to collect the required 
information to set the parameter values in an automated 
way. The SOGA was developed with full knowledge of the 
test problem and parameter values which are incremented 
uniformly in each generation. Self-organization contributes 
desirable factors to GA by adding knowledge to guide and 
assist the choice of right parameter values.

3.	Self-Organizing Genetic Algorithm to Protein Struc-
ture Prediction

Generally, knowledge regarding the interaction of param-
eters leads to better global solutions in less time, thereby 
making GA more robust. A lack of robustness in the choice 
of design parameters always leads to search imbalance, caus-
ing premature convergence and lower performance, which 
is completely eliminated by the developed algorithm given 
below:
    Step 1: Generate n chromosomes for the initial population
    Step 2: Encode the structure for n chromosomes using TIN-

KER [18] 
    Step 3: Calculate the energy value for each chromosome us-

ing Discovery Studio [21]
    Step 4: Select and save the elite (chromosome with minimal 

energy value)
    Step 5: Initialize the crossover and mutation rate
    Step 6: Repeat the following steps to create a new population

    • Calculate the crossover point for initial crossover 
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    • Select the elite and replace, if it is low 
    • Increase crossover rate with uniform interval
    • Perform mutation with initial mutation rate
    • Select the elite and replace if it is low
    • Increase mutation rate by uniform interval

    Step 7: Algorithm terminates by reaching the optimal rate 
SOGA-PSP is pictorially represented in Figure 1.

4.	Chromosome Representation
The chromosome representation varies for different prob-
lems, and as a set, it constitutes an individual structure called 
a gene, a set of solution representatives. In general, Cartesian 
coordinates, templates, torsion angles, side chains, and sim-
plified residues are considered for chromosome representa-
tion in PSP [8]. In the present work, torsion [22] and side 
chain angles [23] were assumed to be best for encoding the 
chromosomes since both contribute much to the consistency 
and confirmation of protein structure. 

5.	Number of Generations
Self-organizing mutation and crossover rates are uniformly 
increased until they reach the optimal values; in turn the ter-
mination condition decides the number of generations.

6.	Population Initialization
Population is created using frequently occurring torsion 
angles [15] which have the degree of freedom for adequate 
adaptability of GA; it helps in determining the 3D conforma-
tion, which is chosen for population size. 

Figure 1. Flowchart for self-organizing genetic algorithm for 
protein structure prediction.

Figure 2. Self-organizing crossover operation.
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7.	Fitness Evaluation 
The population created in each generation is evaluated by 
fitness function for selection of the elite [24]. It projects the 
nature of each chromosome, and the energy value that deter-
mines the elite is calculated using the CHARMM force field 
chosen as the objective function: 

	 Etot = Ebs + Eab + EUB + Eid + Eta + EVdW + Ecc	 (1)

  • Etot: Total energy (fitness)
  • Ebs: Energy of stretching bond
  • Eab: Energy of bending angle 
  • EUB: Energy of Urey-Bradley 
  • Eit: Energy of improper dihedrals
  • Eta: Energy of torsion angle
  • EVdW: Energy of van der Waals 
  • Ecc: Energy of charge-charge [18]

8.	Selection 
The selection operator elitism, selects the best chromosome 
with minimal energy as elite. In each generation the elite 
may be replaced by the low-energy chromosome for genetic 
operations.

9.	Self-Organizing Crossover Operator (SOCO)
To refine the search space, the crossover operator which is 
normally fixed in standard genetic algorithm (SGA) is self-
organized. The least optimal rate is initially chosen for ex-
ecution without termination at the convergence point, and 
it is increased uniformly until it reaches the optimal upper 
limit [25], or the rates are modified from high to low [26]. 
The reported range of the rate (0.70 to 0.85) is considered for 
self-organization.

  The working principle of SOCO 
  • Select crossover point with the initial rate
  • Perform single-point crossover operation
  • Genes from two parents within the crossover point are inter-

changed to reproduce children
  • Model the protein structure using TINKER [27] 
  • Calculate the energy value to select the elite
  • Repeat the process with uniform interval

The crossover operation is pictorially represented in Figure 2.

10. Self-Organizing Mutation Operator (SOMO)
The purpose of mutation is to transform the chromosome to 
change the conformation and to prevent the population from 
stagnating at any local optimum. With a fixed mutation rate, 
the search space is compressed, which leads to premature 
convergence, and it may not be possible to predict the opti-
mal solution. Self-organization is used to avoid this, and the 
mutation rate is self-configured. Only the constrained values 
are considered for the test problem since slight changes may 
occur in the sequential order of amino acids, which in turn 
may change the entire structure [17].
  The working principle of the SOMO operator is:	
  • Select mutation point with initial rate
  • Mutate the gene value 
  • Model the protein structure using TINKER 
  • Calculate the energy value to select the elite
  • Repeat the process with uniform interval
  The mutation operation is pictorially represented in Figure 3.

III. Results

The efficiency of the developed algorithm is implemented on 
a biological problem, PSP, using two peptides as test case for 

Figure 3. Self-organizing mutation operation. 
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Met-enkephalin and NNFGAIL.

1.	Met-enkephalin
Met-enkephalin (PDB ID: 1PLW) was chosen because it 
plays a crucial role in generating tissue damage signals as 
initiated by both peripheral and central nervous system 
(CNS). Also, it is a simple pentamer used as a test case to 
measure the efficiency of various ab initio methods. Unlike 
natural crossover and mutation observed in real cellular 
chromosomes, randomness is restricted in SGA, where it is 
designed to propagate in a defined architecture due to fixed 
values. This limitation is relaxed by defining the rate range 
so that better results can be produced by switching between 
the intervals. The rate ranges of 0.75−0.85 and 0.025−0.075 
were adopted for crossover and mutation to execute the 
developed SOGA, whereas the rates are 0.85 and 0.075 in 
SGA. Accordingly, three generations were produced using 
predefined rates as shown in Tables 1 and 2. With the inher-

ent limitations of SGA in choosing a crossover rate, peptide 
conformations are generated, and a huge deviation of en-
ergy is observed as seen in the plot. However, in the SOGA 
approach, predicted conformations are maintained in a 
standard low-energy distribution as shown in Figures 4 and 
5. The best values scored by the protein structure indicate 
that it provides much better confirmation against a native-
structure using NMR. Also similar backbone confirmation is 
indicated by a root mean square deviation (RMSD) value of 
0.0009. Eventually, differences in side chain orientations are 
also clearly seen; this improves the backbone dihedral an-
gles, which is very clear from Ramachandran plot shown in 
Table 3 and Figure 6 [28]. On closer view, differences in the 
orientation of side chains (Y1, F3, and M5) of the predicted 
and native structures clearly indicate better side chain selec-
tion. The overall results confirm the performance efficiency 
of SOGA-PSP to predict refined peptide structures free from 
steric hindrances. 

Table 1. 1PLW - elite selection with minimal energy value for SGA

Generation 1

Crossover rate = 0.85

Mutation rate = 0.075

Generation 2

Crossover rate = 0.85

Mutation rate = 0.075

Generation 3

Crossover rate = 0.85

Mutation rate = 0.075

Crossover Mutation Crossover Mutation Crossover Mutation

−171.59229 −172.18845 −170.64494 −172.14163 −170.39186 −172.1935
−172.37836 −172.92455 −173.84797 −172.43567 −173.67424 −172.92455
−176.90749 −174.42711 −174.65798 −175.00852 −173.49961 −174.42711
−216.58899 −221.72898 −209.17892 −221.27071 −216.07702 −221.72898
−260.99627 −264.63671 −253.83570 −263.58868 −264.26139 −264.63671
1932.59728 1.02E+08 868.97016 1928.20332 869.13149 1923.52245
−231.63577 15488.3 −265.44626 1932.6694 −232.02055 −257.46188
−210.76364 −210.17976 −204.82853 −215.72846 −207.79661 −210.17976
−172.20762 −199.82153 −204.37479 −206.31075 −196.51983 −199.82153
−172.20762 −201.17168 −194.72876 −200.07026 −201.80910 −201.17168
−230.42117 −234.48144 −218.00101 −234.48144 −218.00101 −234.48144
−228.74409 −267.76956 −234.93003 −270.99066 −234.93003 −267.76956
−239.68646 −244.67124 −268.80995 −233.03179 −268.32918 −244.67124
−212.88365 −213.63925 −217.97674 −219.25625 −219.36322 −212.98686
−195.23965 −199.66229 −207.06528 −211.30368 −197.757744 −192.25972
−177.59569 −181.43619 −195.45288 −193.35084 −165.66421 −188.1002
−215.40841 −275.42566 −274.54747 −274.34997 −278.86180 −275.42566
−238.12503 −237.77215 −194.64695 −240.54593 −236.54583 −256.89867
−253.12312 −237.77513 −272.02328 −266.73044 −234.20797 −266.05603
−235.96314 −195.0875 −203.91085 −204.21397 −230.62773 −197.82337

1PLW: Met-enkephalin, SGA: standard genetic algorithm.
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2.	NNFGAIL Segment from Islet Amyloid Polypeptide (3DGJ)
  NNFGAIL is a fragment of human islet amyloid polypeptide 
(IAPP or amylin) of 37-residue hormone found in pancreatic 

extracts of type 2 diabetics. It plays a role in the function of 
the pancreas and contributes to glycemic control [29]. The 
structure of the peptide was predicted using SOGA; as a result, 

Table 2. 1PLW - elite selection with minimal energy value for SOGA (highlighted)

Generation 1

Crossover rate = 0.75

Mutation rate = 0.025

Generation 2

Crossover rate = 0.80

Mutation rate = 0.05

Generation 3

Crossover rate = 0.85

Mutation rate = 0.075

Crossover Mutation Crossover Mutation Crossover Mutation

−171.10760 −172.23923 −170.94641 −172.21268 −170.42172 −159.52444
−172.94472 −172.7326 −173.84371 −172.59388 −173.24245 −172.45245
−177.76095 −178.73269 −178.49301 −178.66430 −176.70001 −178.28913
−217.06141 −214.21062 −218.215 −214.31990 −213.57530 −213.52977
−264.86048 −271.23110 −239.45125 −242.10899 −270.96874 −271.23110
1932.52061 −254.92830 −270.09628 −260.45899 −268.65440 −255.29472
−231.63577 −233.83280 −277.30329 −255.00251 −232.59092 −257.26083
−210.76364 −205.27317 −255.68121 −204.74780 −199.19133 −192.53621
−198.43299 −197.903 −208.97408 −208.26187 −104.79681 −215.86607
−213.17293 −203.34033 −201.86809 −205.3305 −199.16423 −223.84774
−231.17293 −218.07886 1230.15828 −220.39921 −252.87856 −224.11319
−231.31206 −198.28606 −227.4667 −248.02747 −268.43895 −224.57840
−245.40767 −241.76029 −266.1819 −257.68881 −268.43895 −255.31500
−252.08365 −218.53758 −229.47055 −225.29209 −221.35872 −254.22995
−255.1311 −229.94733 −205.4311 −201.26061 −213.76205 −221.35872
−203.00470 −234.91466 −210.63538 −208.74070 −205.70740 −198.67929
−281.94584 −270.4918 −274.61564 −285.30224 −275.09863 −197.87270
−238.12503 −240.61146 −240.99259 −241.30708 −203.20855 −285.49187
−269.17322 −258.58849 −204.05672 −271.12167 −266.59104 −201.05081
−223.19976 −261.49866 −213.1576 −200.04069 −204.93426 −264.38387

1PLW: Met-enkephalin, SOGA: self-organizing genetic algorithm.

Figure 4. (A) 1PLW - graphical schema of energy variations of crossover in standard genetic algorithm (SGA). (B) Graphical schema of 
energy variations of mutation in SGA.
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Figure 5. (A) 1PLW - graphical schema of energy variations in crossover of self-organizing genetic algorithm (SOGA). (B) Graphical 
schema of energy variations in mutation of SOGA.

Figure 6. (A) Native structure and its 
Ramachandran plot of 1 
PLW, (B) Predicted structure 
and its Ramachandran plot. 
(C) Differences between the 
native and predicted struc-
tures on superimposition.
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the energy of the structure was comparatively minimal which 
indicates better conformation as shown in Table 4 and Figure 7. 
On superimposing with the native structure, an RMSD value 
of 0.939 was obtained and 5 hydrogen bonds were formed, a 
most important factor for structure stability. Furthermore, as 
an advantage out of two hydrogen bonds of X-ray structure, 
one is conserved. This conservation is also seen in the Ram-
achandran plot (Table 5 and Figure 8).On further examina-

tion, the differences in the orientation of the side chains of the 
predicted and native structures indicate that better side chain 
selection is achieved with the proposed approach.

IV. Discussion 

It is well known that the prediction of protein structures 
through wet lab or experimental methods is very expensive 

Table 4. 3DGJ - elite selection with minimal energy value for SOGA (highlighted)

Generation 1

Crossover rate = 0.75

Mutation rate = 0.025

Generation 2

Crossover rate = 0.80

Mutation rate = 0.05

Generation 3

Crossover rate = 0.85

Mutation rate = 0.075

Crossover Mutation Crossover Mutation Crossover Mutation

−281.19281 −278.02795 −281.84365 −281.84365 −280.75352 −275.70773
−278.92144 −265.13230 −278.88138 −278.88138 −263.13612 −275.01806
−272.38611 −263.94010 −276.08350 −268.26382 −264.01089 −264.05983
−292.70103 −302.48385 −293.87336 −281.76799 −302.74224 −302.74224
−255.36956 −251.58781 −252.07568 −252.07568 −253.29922 −253.29922
−292.60674 −278.72430 −292.82043 −292.82043 −293.62817 −293.62817
−270.31410 −265.06665 −269.86710 −269.86710 −266.22684 −266.26840
−280.97149 −292.38454 −269.04647 −269.04647 −285.85525 −285.85525
−279.69023 −295.65093 −275.60934 −282.21989 −281.19843 −281.19843
−282.48866 −278.70978 −282.53619 −282.53619 −275.24063 −275.24063
−266.11218 −268.82571 −270.72094 −271.79699 −266.16514 −244.31593
−265.87125 −268.05299 −257.67895 −257.67895 −275.57600 −266.74591
−266.17720 −270.56018 −275.94368 −275.97891 −277.89890 −277.89890
−248.01801 −239.58074 −259.06633 −259.53144 −235.51707 −234.21624
−280.79328 −279.98272 −279.69149 −279.69149 −283.42990 −283.42990
−268.82144 −276.02419 −286.53978 −282.86298 −276.93297 −276.93297
−290.67117 −290.02132 −283.28249 −283.28249 −286.38617 −286.37940
−274.93633 −270.26848 −273.70065 −273.70065 −270.32572 −270.32572
−278.83112 −272.68608 −288.25009 −288.22309 −275.70786 −275.70773
−278.24753 −274.51539 −272.78755 −272.78755 −269.64582 −269.64582

3DGJ: islet amyloid polypeptide, SOGA: self-organizing genetic algorithm.

Table 5. Ramachandran plot of predicted and native structures 
of 3DGJ

Protein
Region 

structure
Favored 

(%)

Additional 
allowed  

region (%)

Disallowed  
region (%)

  3DGJ Predicted
 structure

75.0 25.0 0

Native
 structure

75.0 25.0 0

3DGJ: islet amyloid polyptptide.

Table 3. Ramachandran plot of predicted and native structures 
of 1PLW

Protein
Region 

structure
Favored 

(%)

Additional 
allowed  

region (%)

Disallowed  
region (%)

  1PLW Predicted
 structure

100.0 0 0

Native
 structure

33.3 66.7 0

1PLW: Met-enkephalin.
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Figure 7. (A) 3DGJ - graphical schema of energy variations in crossover of self-organizing genetic algorithm (SOGA). (B) Graphical 
schema of energy variations in mutation of SOGA.

Figure 8. (A) Native structure and Ra-
machandran plot of 3DGJ. (B) 
Predicted structure and its 
Ramachandran plot. (C) Dif-
ferences between the native 
and predicted structures on 
superimposition.
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and time consuming. Hence, the challenge was taken up in 
this study to develop a novel algorithm, SOGA implemented 
on PSP. The proposed algorithm was proved to be better, and 
the result obtained demonstrated that it outperforms the 
approaches taken in previous work [18]. It also avoids the 
previously mentioned drawbacks of other approaches, which 
proves the relative efficiency of the algorithm. Furthermore, 
energy is minimized to a greater extent, and the RMSD value 
reflects a similar backbone conformation against native 
structures. The strength of this research also lies in consider-
ing only torsion angles as input. In general, the best mecha-
nism adopted for PSP contributes much to the modeling of 
loops, which are the most common and functionally impor-
tant substructures. Using current methods like homology 
modeling or database search, the loops are modeled with 
less accuracy. As SOGA-PSP has been shown to be a better 
method to predict the structure of proteins, and it can also 
be extended to loop modeling.
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