
I. Introduction

Recent advances in the field of biomedical informatics have 
led to the use of multiple models for pattern classification 
and regression. The incorporation of computational tech-
niques and artificial intelligence in medicine can be applied 
in the classification and prediction of disease [1,2]. For 
example, Spilker et al. [3] used mixture model analysis to 
categorize benign and malignant tumor subgroups in animal 
models. 
  Among many methods, the ‘divide-and-conquer’ principle, 
which is often used to address complex problems by dividing 
them into simpler problems whose solution can be com-
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bined to yield a final solution, is applied for the solution of 
complexities in data [4]. 
  In applying this principle, Jordan and Jacobs [5] proposed 
a modular neural network architecture called mixture of ex-
perts (ME). The mixture of experts contains two networks, 
one is called the ‘experts’ network, which is a population of 
simple linear classifiers; the other is called the ‘gating’ net-
work, which mixes the outputs of the expert network. The 
gating network receives input vector and produces a parti-
tion of unity at each point in the input space. The outputs of 
expert networks are combined by a gating network simul-
taneously trained to stochastically select the expert that is 
performing the best at solving the problem [6]. 
  To learn the algorithm for the ME model, Jordan and Ja-
cobs [5] proposed the expectation-maximization (EM) algo-
rithm, which is a general statistical approximation algorithm 
of Dempster et al. [7]. Using this algorithm, the learning 
process is separated to fit with the modular structure. Also, 
the EM algorithm can be extended to provide an effective 
training mechanism for the ME model based on a Gaussian 
probability assumption [7]. 
  Research in the area of using the ME model has been car-
ried for several years. Ubeyli [8] applied it to the diagnosis of 
breast cancer and diabetes, Subasi [9] used electroencepha-
lography signal classification for wavelet feature extraction, 
Corchado et al. [1] proposed decision support in the diag-
nosis of leukemia patients, and Raman et al. [10] presented 
an infinite mixture of experts model to find an unknown 
number of sub-groups within a given patient cohort based 
on survival analysis. Myoung et al. [11] applied the ME 
model to find hidden subgroups of liver cirrhosis using tran-
sient elastography data in patients with chronic liver disease. 
Shankaracharya et al. [12] also proposed ME modeling to 
identify prediabetic, diabetic, and non-diabetic individuals 
with high accuracy in 1,415 Indian patients.
  Preoperative chemoradiotherapy (CRT) has been widely 
used to decrease the local recurrence rate of locally advanced 
rectal cancer. Lim et al. [13] suggested that perfusion mag-
netic resonance imaging (MRI) of rectal cancer could be use-
ful for assessing tumoural Ktrans changes by CRT at three time 
points (2–5 days before CRT, end of the 2nd week of CRT, 
and 1–4 days before surgery). Also, they demonstrated that 
tumors with pre-CRT Ktrans values tended to respond favor-
ably to CRT, particularly in terms of downstaging criteria.
  On the basis of this data, we will apply a ME model to find 
subgroups with respect to various time trend patterns. How-
ever, it is necessary to modify the ME framework, because 
the classical ME model cannot be applied to repeatedly mea-
sured data. The main concept of the modified ME model is 

replaced with a linear mixed model in an alternative to the 
expert network. Then, we apply the EM algorithm for learn-
ing the modified ME model. In this study, date obtained 
from 39 patients with primary rectal carcinoma who were 
scheduled for preoperative CRT were used to test the modi-
fied model. Thus, we expect to classify patients who have 
various time trend patterns.
  This method has a further advantage in that a modified ME 
model can facilitate the classification of risk groups in medi-
cal decision making problems.
  The remainder of this paper is organized as follows. In the 
second section, the ME architecture is briefly explained, 
and the perfusion MRI data is described. The EM algorithm 
used for the modified ME architecture is presented. Also, the 
modified ME model is proposed for application to repeated 
measures data. In the third section, the results of applying 
the proposed ME model to the MRI data are reported. Fi-
nally, in the last section we give some concluding remarks 
and discuss extensions to the proposed model.

II. Methods

1. Perfusion MRI Data Overview
Preoperative CRT has been widely used to decrease the local 
recurrence rates of locally advanced rectal cancer. CRT can 
induce complete/partial pathological response and tumour 
downstaging due to vascular changes and cell death [14]. 
Lim et al. [13] monitored the permeability change effects of 
CRT in rectal cancer and assessed the usefulness of perfu-
sion MRI-based pharmacokinetic parameters as potential 
biomarkers to predict the response to CRT in locally ad-
vanced rectal cancer [13].
  In this study, this perfusion MRI data was analyzed. The 
data was obtained from 39 patients who were enrolled from 
September 2008 to February 2010, and each patient met the 
following criteria: clinical MR stage T3 or T4 (the tumor 
could be any N stage without evidence of distant metastases 
on other imaging techniques).
  All enrolled patients were examined using MR imaging 
at three time points: 2–5 days before CRT (pre-CRT MRI), 
at the end of the 2nd week of CRT (early-CRT MRI), and 
1–4 days before surgery (post-CRT MRI). The Ktrans (vol-
ume transfer constant) value was measured. It describes the 
transfer rate of the contrast agent from the blood plasma 
into the extravascular extracellular space (EES) by using 
Interactive Data Language (IDL; Research Systems, Boul-
der, Co, USA). Following surgery, a total of 19 patients did 
not show T-downstaging following CRT, while 20 patients 
showed T-downstaging, including 7 patients which had 
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complete pathological remission (Table 1). Figure 1 shows 
the temporal changes of Ktrans value in all patients. Lim et al. 
[13] concluded that perfusion MR imaging of rectal cancer 
can be useful for assessing tumoural Ktrans changes as a result 
of CRT, and tumors with high pre-CRT Ktrans values tend to 
respond favorably to CRT, particularly in terms of downstag-
ing criteria.

2. Mixture of Expert and EM-Algorithm
In this subsection, we briefly review the ME architecture [4] 
and the EM algorithm [5]. Figure 2 shows a graphical repre-
sentation of the ME in the expert network i = 2. This can be 
viewed as a tree-structured model. The ME model consists 
of i experts, which sit at the leaves of the tree. These experts 
maps the covariate space to output vector μi. It is assumed 
that different experts are solved in different local regions of 
the input space. Thus, this ME model uses the ‘divide-and-
conquer’ principle, which addresses a complex tasks by di-
viding it into simpler subtasks.
  The gating network receives the input vector x and identi-
fies scalar outputs that are likely to approximate the partition 

of unity at each point in the input space. The output of the 
gating network is the probability gi which weighs the contri-
butions of each expert network. Thus, the total output of the 
ME model is the convex weighted sum of all the output vec-
tors produced by the expert networks [11].
  All of the expert networks are linear with a single output 
nonlinearity which is referred to as ‘generalized linear’ [5,15]. 
The i-th expert network produces its output μi as a general-
ized linear function of the input x:

	  μi = f(Wix),		 (1)

  where Wi is a weight matrix, and function f(·) is a fixed 
continuous nonlinearity. Here, f(·) is generally chosen to be 
the logistic function or the identity function. These models 
are smoothed piecewise analogs of the corresponding gen-
eralized linear interactive modeling (GLIM) models [5]. The 
gating network is also a generalized linear function, and the 
i-th  output of the gating network gi is the multinomial logit 
or softmax function of ξi [4]:
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Table 1. Distribution of responders and non-responders after surgery according to the downstaging standards

Downstaging standard of  

tumour response

Responder Non-responder

cT4 cT3 Total cT4 cT3 Total

ypT4   0   0 0 1   0   1
ypT3   7   0 7 0 18 18
ypT2   1   3 4 0   0   0
ypT1   0   2 2 0   0   0
ypT0   2   5 7 0   0   0
Total 10 10 20 (51.3%) 1 18 19 (48.7%)

cT denotes preoperative chemoradiotherapy magnetic resonance stage, ypT denotes pathological tumour stage.

Figure 1. Temporal change in Ktrans by preoperative chemoradio-
therapy in all patients.

Figure 2. A mixture of experts model.
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intermediate variables, and vi is a weight vector. The overall 
output μ of the ME architecture is calculated as,
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3.	Modified Mixture of Experts
As described in subsection 2, the ME model has two com-
mon approaches for selecting expert networks. For regres-
sion problems, the experts are linear. For binary classifica-
tion problems, the experts are smoothed piecewise analogs 
of the corresponding GLIM models [5]. However, these 
models have constraints in that it is difficult to apply each 
expert network due to repeatedly measured data.
  Therefore, our choice of the modified expert network is 
considered a linear mixed effect model for modeling pur-
poses. For the repeated measurement problem, we consider 
the modified expert network as follows:

		  yi = Xiβ + Ziβi + εi,		  (7)

where β is the fixed effect of time, βi is random effect, εi~N(0, 
σ2) is the measured error. Parameter estimation in the modi-
fied ME model is a maximum likelihood learning problem, 
and the EM algorithm can be used to solve it.

III. Results

In this section, we report how we used the modified ME 
model to find subgroups with the Ktrans value in rectal cancer. 
Data was used as described by Lim et al. [13]. The Ktrans val-
ues of 39 patients who were scheduled for preoperative CRT 
were measured between September 2008 and February 2010. 
All patients were examined at three time points, and they 
were divided into responder/non-responder groups accord-
ing to downstaging criteria. As seen in Figure 1, the overall 
Ktrans value decreased slightly.
  We studied a modular architecture with k = 2 expert net-
works. That is, the ME comprised two local experts and a 
gating network. The output of each of the i-th experts was 
produced via a linear mixed effect model of the input. That 
is, μi = f(Wix) were linear mixed effect model with (x,θj), 
where θj is parameter vector. For the gating network, we 
have, which is gi(x,θ0) also a generalized linear function in 
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the classical ME model, and it is used by the generic softmax 
function. This architecture is shown in Figure 3.
  The initial values of the gating network, expert network, 
and variance were chosen randomly. All computations were 
performed by R-2.15.2 (software available at http://www.r-
project.org).
  Temporal changes in the Ktrans values of all patients are 
shown in Table 2. The p-values were calculated by repeated 
measurements using ANOVA and a two-sample t-test. At 
the end of the 2nd week of CRT, the mean Ktrans value of all 
patients was a little higher than that in the pre-CRT phase, 
but the difference was not statistically significant (p = 0.4846). 
In post-CRT phase, the Ktrans value showed a significant de-
crease (p ＜ 0.0001).
  The Ktrans values at each three time points showed a slight 
difference between the responders and non-responders 
group. The mean Ktrans value of the responder group was 

higher than that of the non-responder group except for the 
post-CRT phase (p = 0.6449).
  The modified ME model with two experts was fitted to 
these data, resulting in the estimates (ĝ1,ĝ2) = (0.2545, 0.7455) 
and (β̂0,β̂1) = (3.4463,−0.6496) with expert 1, and (β̂0,β̂1) = 
(1,6740,−0.2116) with expert 2 (Table 3). Here, ĝ1 denotes 
the i-th gating network, β̂0 is the baseline value of each ex-
pert, and β̂1 is the time slope of each expert. As a result, we 
see that parameter of expert 1 is higher than that of expert 2. 
Figure 4 shows the evolution of the parameters for the first 
and second expert networks. The solid line represents the 
first parameter β̂0, and the dashed line shows the second pa-
rameter β̂1. This results shows that this modified ME model 
converged within 5–6 steps. Figure 5 shows the temporal 
changes of the Ktrans values of the estimated two experts. In 
particular, the horizontal axis gives the time point (pre/early/
post-CRT), and the vertical axis gives the Ktrans value. These 
results along with Table 3 clearly show that expert 1 is char-
acterized by more temporal change of the Ktrans value than 
expert 2.
  A comparison of the estimated experts and responder/non-
responder groups according to T-downstaging criteria is 
shown in Table 4. In expert 1, the responder group is much 
larger than the non-responder group. However, the respond-
er group is smaller than the non-responder in expert 2. This 
show that expert 1 is more effectively treated responders 
compared with expert 2. 

IV. Discussion

The purpose of the present research was to apply the modi-

Table 2. Distribution of responders and non-responders after surgery according to the downstaging standards

Time point Overall group p-valuea Downstaging
p-valueb

Responder (n = 20) Non-responder (n = 19)

Pre-CRT 1.65 ± 0.76 - 1.93 ± 0.76 1.35 ± 0.67 0.0178
Early-CRT 1.74 ± 0.80   0.4846 2.08 ± 0.94 1.37 ± 0.39 0.0042
Post-CRT 1.00 ± 0.61 <0.0001 0.96 ± 0.64 1.05 ± 0.59 0.6449

Values are presented as mean ± standard deviation.
CRT: chemoradiotherapy.
aCalculated by repeated measures ANOVA, bcalculated by two sample t-test.

Figure 3. Configured mixture of experts structure for finding 
subgroups with Ktrans value in rectal cancer.

Table 3. Parameter estimation for the modified mixture of experts architecture in Ktrans data

Expert network  β̂ ± standard error (β̂0,β̂1) ĝi (n, %) σ̂2

Expert 1 (3.4463 ± 0.1869, −0.6496 ± 0.0863) (10, 0.2545) 0.3846

Expert 2 (1.6740 ± 0.1185, −0.2116 ± 0.0523) (29, 0.7455) 0.4196



135Vol. 19  •  No. 2  •  June 2013 www.e-hir.org

 Modified ME for the Diagnosis of Perfusion MRI in Locally Rectal Cancer Patients 

fied ME model to find subgroups with respect to various 
time trend patterns. In the modified ME model, linear mixed 
effect models were considered to take into account time 
trends for repeatedly measured data. The EM algorithm was 
used to estimate the suggested model. To classify subgroups 
in perfusion MRI data, two local experts and a gating net-
work were used in the configuration of the ME architecture. 

  The classification results and the values of statistical param-
eters were used to assess the performance of the proposed 
ME model. We also compared the estimated experts and re-
sponder/non-responder groups according to T-downstaging 
criteria. In conclusion, the advantage of using the proposed 
ME models lies in its flexibility and adaptability for repeat-
edly measured data, such as Ktrans value measured three times. 
The obtained results confirmed the validity of the classifiers 
for application in diagnostic decision support. The proposed 
model is expected to provide a robust method for subject clas-
sification without user intervention or bias. Future studies 
will be required to apply the nonlinear mixed effect model to 
repeatedly measured data. The number of experts was fixed 
to two groups (high risk/low risk) in this research, but we will 
be determined number of experts according to some criteria 
such as Akaike Information Criterion or Bayesian Informa-
tion Criterion in the next study. 

Table 4. Distribution of 39 patients of responder/non-responder 
based on T-downstaging criteria over the two estimated experts 
using the proposed method

Downstaging criteria Expert 1 Expert 2

Responder 7 (70) 13 (45)
Non-responder 3 (30) 16 (55)
Total 10 29

Values are presented as number (%).

Figure 5. Temporal change in Ktrans by preoperative chemoradiotherapy in estimated expert 1 (A) and expert 2 (B).

Figure 4. The performance of the modified mixture of experts model. (A) The evolution of the parameters for expert network 1 and (B) 
the evolution of the parameters for expert network 2.



136 www.e-hir.org

Sungmin Myoung

http://dx.doi.org/10.4258/hir.2013.19.2.130

Conflict of Interest

No potential conflict of interest relevant to this article was 
reported.

Acknowledgments

The author is grateful to Professor Joon Seok Lim of the 
Department of Radiology, Yonsei University Health System, 
Seoul, Korea, for providing valuable comments on this prob-
lem and data sets. This research was supported by the Basic 
Science Research Program through the National Research 
Foundation of Korea (NRF) funded by the Ministry of Edu-
cation, Science and Technology (2011-0013877).

References

1.	 Corchado JM, De Paz JF, Rodriguez S, Bajo J. Model of 
experts for decision support in the diagnosis of leuke-
mia patients. Artif Intell Med 2009;46(3):179-200.

2.	 Shortliffe EH, Cimino JJ. Biomedical informatics: com-
puter applications in health care and biomedicine. 3rd 
ed. New York (NY): Springer; 2006.

3.	 Spilker ME, Seng KY, Yao AA, Daldrup-Link HE, 
Shames DM, Brasch RC, et al. Mixture model approach 
to tumor classification based on pharmacokinetic mea-
sures of tumor permeability. J Magn Reson Imaging 
2005;22(4):549-58.

4.	 Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE. Adaptive 
mixtures of local experts. Neural Comput 1991;3(1):79-
87.

5.	 Jordan MI, Jacobs RA. Hierarchical mixtures of experts 
and the EM algorithm. Neural Comput 1994;6(2):181-
214.

6.	 Chen K, Xu L, Chi H. Improved learning algorithms for 

mixture of experts in multiclass classification. Neural 
Netw 1999;12(9):1229-52.

7.	 Dempster AP, Laird NM, Rubin DB. Maximum likeli-
hood from incomplete data via the EM algorithm. J R 
Stat Soc Series B Stat Methodol 1977;39(1):1-38.

8.	 Ubeyli ED. A mixture of experts network structure for 
breast cancer diagnosis. J Med Syst 2005;29(5):569-79.

9.	 Subasi A. EEG signal classification using wavelet feature 
extraction and a mixture of expert model. Expert Syst 
Appl 2007;32(4):1084-93

10.	 Raman S, Fuchs TJ, Wild PJ, Dahl E, Buhmann JM, 
Roth V. Infinite mixture-of-experts model for sparse 
survival regression with application to breast cancer. 
BMC Bioinformatics 2010;11 Suppl 8:S8.

11.	 Myoung S, Chang JH, Song K. A mixture of experts 
model for the diagnosis of liver cirrhosis by measuring 
the liver stiffness. Healthc Informs Res 2012;18(1):29-34.

12.	 Shankaracharya, Odedra D, Samanta S, Vidyarthi AS. 
Computational intelligence-based diagnosis tool for the 
detection of prediabetes and type 2 diabetes in India. 
Rev Diabet Stud 2012;9(1):55-62.

13.	 Lim JS, Kim D, Baek SE, Myoung S, Choi J, Shin SJ, et 
al. Perfusion MRI for the prediction of treatment re-
sponse after preoperative chemoradiotherapy in locally 
advanced rectal cancer. Eur Radiol 2012;22(8):1693-700.

14.	 Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny 
HC, Takahara T, et al. Diffusion-weighted magnetic 
resonance imaging as a cancer biomarker: consensus 
and recommendations. Neoplasia 2009;11(2):102-25.

15.	 McCullagh P, Nelder JA. Generalized linear models. 
New York (NY): Chapman and Hall; 1983.

16.	 Jordan MI, Xu L. Convergence results for the EM ap-
proach to mixture of experts architectures. Neural Netw 
1995;8(9):1409-31.




