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INTRODUCTION

Following the recent development in artificial intelligence, 
where deep learning has become the main methodology, 
the paradigm of medical image analysis is shifting from the 
previous clinical experience and knowledge-based feature 
engineering to the data-driven objective feature analysis 
of deep learning. Especially, as the application of various 
techniques developed for natural images to medical images is 
being accelerated, we are no longer simply adapting the natural 
image models to medical images but developing new methods, 
which encompasses the unique characteristics of the medical 
image domain. Furthermore, as the research on interpretability 
of decisions made by deep learning models and the way of 
incorporating clinical knowledge into the model progresses, 

we have started to obtain promising results that will allow 
clinical implementation of deep learning.  Among various deep 
learning models, convolutional neural networks (CNN) have 
become methodology of choice for visual recognition problems. 
CNN is a type of feed-forward artificial neural network, 
which learns hierarchical features by iterating convolution 
and pooling layers until the output prediction layer is reached.  
While the convolution layers learn specific patterns in the input 
or intermediate feature map with locally-connected shared 
weights, pooling layers reduce the feature map by spatially 
aggregating activations. In special cases where the output of the 
model is same as the input or its denoised version, we call the 
model as convolutional auto-enconder (CAE). 

In medical image analysis, machine learning methods have 
been used in various fields such as detection and classification 
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Recent advances in deep learning have brought many breakthroughs in medical 
image analysis by providing more robust and consistent tools for the detection, 
classification and quantification of patterns in medical images. Specifically, analysis of 
advanced modalities such as computed tomography (CT) and magnetic resonance 
imaging (MRI) has benefited most from the data-driven nature of deep learning. This 
is because the need of knowledge and experience-oriented feature engineering 
process can be circumvented by automatically deriving representative features from 
the complex high dimensional medical images with respect to the target tasks. In this 
paper, we will review recent applications of deep learning in the analysis of CT and MR 
images in a range of tasks and target organs. While most applications are focused on 
the enhancement of the productivity and accuracy of current diagnostic analysis, we 
will also introduce some promising applications which will significantly change the 
current workflow of medical imaging. We will conclude by discussing opportunities 
and challenges of applying deep learning to advanced imaging and suggest future 
directions in this domain.  
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of lesions, segmentation of organs, image registration, and 
similar image retrieval [1]. There were attempts to use CNN 
for the detection of pulmonary nodules and breast tissue 
microcalcifications since 1993, when the model had only just 
been proposed [2,3]. However, due to limitations of available 
data, model size, learning methodology, and computational 
resources, such attempts remained at an experimental stage. 
This was until the recent performance breakthrough of deep 
learning in image analysis, which led to renewed enthusiasm 
for applying deep learning in medical imaging. Particularly, 
after a team using a CNN based model won the ImageNet 
competition in 2012 by a significant performance gap and 
machines exceeded humans at an indirect comparison of 
image recognition task in 2015, the possibility of clinical 
implementation of deep learning became a major issue [4]. 
Similarly, in medical imaging, after a CNN based model won 
the mitotic cell detection task in breast biopsies at the 2012 
ICPR (International conference on pattern recognition), 
recent studies on diabetic retinopathy detection and skin 
cancer classification demonstrated that deep learning models 
trained with massive medical images can even surpass the 
performance of human specialist in diagnostic image analysis 
[5,6,7]. 

While early studies focused on 2D medical images, such 
as chest X-rays, mammograms and histopathological images 
where deep learning models developed for natural images 
could be directly applied, recent studies are looking towards 
applying deep learning on volumetric medical images. Among 
various volumetric imaging modalities, computed tomography 
(CT) which uses specialized x-ray equipment to produce cross-
sectional images of the body and magnetic resonance (MR) 
images which uses magnetic field to produce detailed images of 
soft tissues and organ structures are the most actively studied 
modalities due to their popularity in diagnostic imaging. 
However, not alone, the complexity and size of these volumetric 
images but also their contrast-enhanced or follow up images 
increase the difficulties of assessing these modalities and 
have restricted the capabilities of computer-aided systems for 
medical image analysis. In this regard, recent studies for CT 
and MR image analysis have shown significant potential of 
deep learning for the development of clinically useful systems 
for computer-assisted medical image assessment. In addition, 
since analysis of these modalities has a direct impact on the 
final diagnosis and treatment planning, it is expected that deep 
learning will play a key role in the development of precision 

medicine by the prediction of prognosis and survival for each 
patient. Therefore, efficient and accurate analysis techniques 
based on deep learning is becoming ever more important. 

To this end, in this paper, we will introduce various use 
cases of deep learning for analyzing CT and MR images. We 
will also discuss about the opportunities, future directions and 
remaining challenges. 

LESION DETECTION AND CLASSIFICATION

The most basic yet important task of radiologists is the 
assessment of exams by the detection and classification of 
specific patterns or lesions. Therefore, most computer-aided 
detection (CADe) and computer-aided diagnosis (CADx) 
systems have focused on improving the accuracy and 
productivity of the detection and classification tasks for medical 
images. Below, we will discuss the use of deep learning in the 
classification tasks of medical imaging in two levels: exam or 
image-level classification and lesion or region-level detection 
and classification. 

1. Medical Image/Exam Classification
Image level classifications usually aim to determine the 

presence of disease or a specific pattern. The goal in medicine is 
to utilize the medical images and reports as inputs and outputs 
of the deep learning model, respectively, to automatically 
learn important features and biomarkers. For example, a 
3D CNN model to determine the degree of Alzheimer’s 
disease progression from structural brain MR images has 
been proposed [8]. In the study, they used a transfer learning 
method where features learned through pre-training a CAE 
with a small number of source domain images were used to 
fine tune the target domain data, which was then used to train 
the actual classification model. Their method achieved a better 
classification performance than a supervised training method 
directly using the target domain data. 

In another study, a slice-level classification model was 
proposed to detect interstitial lung diseases (ILD) from chest 
CT scans [9]. Most of the existing ILD detection models 
require a patch-level manual annotation to train a patch-
based classification model. However, because ILD lesions are 
inherently a mixture of various patterns and have unclear 
borders, it is very labor intensive to obtain a large amount of 
patch-based annotations. Hence, the proposed study used a 
CNN model pretrained with natural images to create slice level 
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predictions for each CT scan, and because multiple ILD subtypes 
can exist in a single scan, they used a multi-label classification 
loss which resulted in a high classification accuracy. 

Recently, there have been studies focusing on visualizing the 
evidence of model predictions to overcome the limitations in 
explainability or interpretability, which has been pointed out as 
the weakness of deep learning models. Jamaludin et al. trained 
the multi-task learning model which detects several diseases 
simultaneously from spinal MR images and visualized salient 
regions in the image for corresponding predictions as ‘evidence 
hotspots’ as seen in Fig.1A [10]. This method visualizes the 
sensitivity of prediction by the change of input pixel value which 
can be computed as the partial derivative of model output with 
respect to every input pixel via back propagation. Although this 
model can visualize details at the pixel level and is relatively fast 
as it only requires single backpropagation, the output may not 
be intuitive and can be hard to understand because the salient 
pixels tends to be spread over a large area of the input image. 
To overcome this limitation, a visualization method based on 
prediction difference analysis which quantifies the difference 
between the output of the original image and the output when 
we marginalize out the region of interest, was proposed [11]. 
In essence, it is similar to the occlusion method in that they 
both look at the output difference as we apply changes to the 
region of interest [12]. However, while the naive occlusion 
method replaces the region of interest with simply zero values, 
the newly proposed method replaces the region with samples 
from the area surrounding the region of interest. This method 
produces a more intuitive and useful visualization of the 

evidence base of a model that classifies HIV positive cases and 
healthy cases from brain MRIs as seen in Fig.1B. 

2. Lesion Detection and Classification
Many methods have been proposed to overcome the fact that 

although we have an enormous repository of medical images, 
most of them lack expert annotations, which are very expensive 
and time consuming to produce. The most basic approach is to 
fine tune with a small set of labeled data after extracting relevant 
features from unlabeled data via unsupervised learning. Cheng 
et al. obtained a performance better than the current CADx 
system by pretraining a stacked denoising autoencoder (SDAE) 
to determine the malignancy of a lesion from chest CT images 
[13]. 

Another way to address the lack of annotations in medical 
images is to use CNN models pre-trained for natural images. 
Shin et al. tested several well-known CNN architectures 
and showed that such transfer learning approaches improve 
performance in CT patch based thoraco-abdominal lymph 
node detection and ILD classification [14].  

In lung nodule detection, which is a major target for CADe 
systems, the task is divided into candidate detection and 
false positive reduction. While it is possible to achieve high 
sensitivity in the candidate detection step due to the well-
known features in chest CT images, false positive reduction 
tends to be more challenging due to the variations in the 
nodule morphology and size. Hence, the false positive 
reduction stage is considered the determining stage of the final 
CADe performance. Dou et al. achieved a false positive rate 

Fig. 1A. Visualization of ‘evidence hotspot’ in spinal MRI [10]. 
Adapted with permission

Fig. 1B. HIV patient and normal control을 HIV patient and healthy 
control
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lower than that of the conventional method through a multi-
level contextual 3D CNN that discriminates nodules by fusing 
extracted features from multi-scale input patches [15]. 

Ciompi et al. proposed a single system that goes a step 
further than a CADe system by classifying nodules based 
on the morphology (solid, non-solid, part-solid, calcified, 
perifissural and spiculated) for automatic Lung-RADS 
reporting and malignancy estimation [16]. As seen in Fig 2, 
they performed data augmentation by extracting multiple view 
2D patches from 3D nodule candidate voxels and used a multi-
stream CNN architecture that fuses features extracted from 
multi-scale patches. The study showed a classifier performance 
better than that of support vector machines (SVM) based on 
hand-crafted features or features from unsupervised learning 
models. The result was within the inter-observer variability 
range of experts, hence providing a possibility of developing a 
Lung-RADS based automatic pulmonary nodule management 
system.

In a study by Ghafoorian et al., a CNN model was trained 
to detect lacunes from T1 and FLAIR brain MRI patches that 
are closely related to neurodegenerative disorders [17]. By 
changing the fully-connected layers of the trained patch-based 
model to convolution layers, they could effectively create a 
lacunes probability map of the whole brain MRIs. False positive 
reduction was then performed by training a multi-scale 3D 
CNN on the extracted candidate voxels. At this stage, they 
added the distance between the voxel and brain landmarks as 
contextual information to further enhance the false positive 
reduction and confirmed that the proposed CADe system 
improves diagnostic accuracy through an observer study.

LESION AND ANATOMICAL STRUCTURE 
SEGMENTATION

Segmentation in medical imaging is a crucial step in 
measuring the length or volume and assessing the morphology 
of an organ or lesion. It is not only an important research topic 
in itself but also an important process used for determination of 
region of interest and false positive reduction.

1. Anatomical Structure Segmentation
The goal of anatomical structure segmentation is to 

determine the presence or progression of disease through 
quantitative analysis of the volume and length data of 
segmented organs and organ substructures. For example, the 
size of the infant hippocampus is an important index for early 
brain development, however it is very difficult to accurately 
segment infant brains using the conventional predefined 
features used for adults because of poor tissue contrast on 
infant brain MR images. Guo et al. proposed a segmentation 
method where sparse patch matching was implemented based 
on features learned from the complementary information of T1 
and T2 weighted MR images by a stacked auto-encoder [18].  

Airway segmentation in thorax CT images can be used 
to support diagnosis by detection and quantification of 
bronchial wall thickening and changing lumen diameter. 
Airway segmentation can also increase the accuracy of the 
segmentation of other structures within the thorax and lower 
the false positive rate in lung nodule detection. Though there 
have been many proposals for airway segmentation, most 
studies have focused on achieving high sensitivity of detecting 
airways, which led to a high false positive rate [19]. To tackle 
this problem, Charbonnier et al. trained a CNN to classify 
leak candidates into airways and leaks from multiple initial 
airway segmentation results by changing the parameters 
of the segmentation algorithm [20]. By combining the 
classified results at the end, they could propose a method that 
successfully reduced false positives while maintaining airway 
detection sensitivity.  

Organ segmentation in abdominal CT and MR images is also 
an active area of research. Hu et al. trained a 3D CNN model 
to accurately segment livers with large variations in shapes or 
those that have fuzzy borders with adjacent organs or lesions 
[21]. They proposed a method where probability map produced 
by the 3D CNN model is used as a shape prior to a global 
energy function. 

Fig. 2. Multi-stream, multi-scale CNN architecture for pulmonary 
nodule classification [16]. Adapted with permission.
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For kidney segmentation in CT angiograms, Thong et al. 
trained a 2D patch based CNN to determine if the center 
pixel of the patch is part of the kidney [22]. By creating and 
interleaving pooling layers of various offsets, they could 
compensate the low-resolution feature maps of deep pooling 
layers and create a high-resolution probability map of the 
kidney.

Roth et al. proposed a two-stage method for the segmentation 
task of the pancreas [23].  During the detection stage, a 3D 
bounding box is created by the holistically-nested convolutional 
network on the axial, sagittal and coronal views of CT 
volumes. In the second stage, a more accurate final pancreas 
segmentation result is obtained by integrating the mid-level 
information of CNNs trained to segment the interior and 
boundary of the pancreas within the bounding box proposed in 
the first stage.     

Yu et al. proposed a 3D volumetric CNN for prostate 
segmentation on MR images where they expanded the U-net, 
widely used for 2D biomedical image segmentation, into 3D 
and added residual connections to combine multiple-scale 
information [24, 25]. 

Lastly, Poudel et al. proposed using a recurrent full-
convolutional network to segment the left ventricle from 
cardiac MR images [26]. Recurrent architectures model the 
spatial dependency between adjacent 2D short-axis slices, and 
this study showed improved segmentation results by sharing 
the high level global feature, which connects the encoder and 
decoder in a U-net structure, between these slices. 

2. Lesion Segmentation
Lesion segmentation is an important step for planning 

treatment and predicting prognosis. The major challenge in 
lesion segmentation rises because multiple lesions of various 
shapes can be located anywhere within the organ. Furthermore, 
because most of the organ is a non-lesion space, the inequality 
of class distribution makes the segmentation task even more 
challenging. To overcome such challenges, various methods 
have been proposed. 

Brosch et al. proposed a 3D encoder network for multiple 
sclerosis lesion segmentation in brain MR images [27]. They 
could accurately segment the lesion by fine tuning a U-net 
shaped encoder-decoder network based on an encoder 
pretrained by a stacked restricted Boltzmann machine. 

In a study done by Ghafoorian et al., a network architecture 
based on multi-scale T1 and FLAIR MR patches was proposed 

to segment and quantify white matter hyperintensities, 
which are related to various brain disorders [28].  When they 
compared various structures that combine data from multiple 
scales, the multi-scale late fusion with weight sharing (MSWS) 
structure, which shares the CNN feature extraction weights and 
fuses the features for the final segmentation, showed the best 
performance. They also used the 3D coordinates and distance 
to major anatomical landmarks of each patch to provide 
anatomical prior knowledge. They showed that the use of such 
explicit spatial location features in addition to the contextual 
features of the patches can achieve a more accurate lesion 
segmentation.  

Vivanti et al. proposed a method of liver tumor segmentation 
in follow up CT scans, which is composed of ROI (region of 
interest) selection based on deformable registration between 
the baseline and follow-up CT scans and a CNN trained to 
classify the voxels within the ROI as tumors and non-tumors. 
Finally, by removing segmentation leaks and holes, they could 
successfully segment tumors in follow up CT scans from 
baseline CT scans with high accuracy.  

The recently trending deep learning method known as the 
generative adversarial network (GAN) has also been actively 
applied in the medical domain. GAN is a form of artificial 
neural network which consist of two sub-networks such as 
generator and discriminator. Two sub-networks are trained in 
adversarial manner such that the fake examples generated by 
generator are indistinguishable from the real examples while the 
discriminator tries to maximize its discrimination performance. 
While GAN is mostly used for the creation of synthetic images 
in the field of natural image processing, it has shown promising 
results in segmentation and conversion of medical images. 

Fig. 3. Segmentation of aggressive prostate cancer lesion using 
GAN [29]. Adapted with permission.
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Kohl et al. proposed the GAN based segmentation method for 
the detection of aggressive prostate cancer in MR images [29]. 
As seen in Fig 3, a model is trained to distinguish between 
expert segmentations and model-generated segmentations. 
The results are then fed back to the training process of the 
generator. Through this process, the segmentation generator 
was trained to mimic the segmentations of experts and 
achieved a significant performance enhancement compared to 
the conventional segmentation methods. 

IMAGE REGISTRATION

Another important area in medical image processing is image 
registration. Possible applications in the clinical environment 
include, but are not restricted to, multi-temporal analysis of 
the various phases of a contrast CT, multi-temporal analysis 
between follow up images and multimodal analysis in PET/CT 
images. The large size of these images and the fact that clinical 
implementation requires a very strict standard on accuracy 
make it difficult for us to utilize the conventional methods 
of image registration on high dimensional medical images. 
With the recent developments in deep learning, there has been 
various efforts to apply these learning methods in the field of 
image registration.  

There are two main approaches to applying deep learning 
in image registration. One is using deep learning to estimate 
the similarity metric, which is then used to drive an iterative 
optimization strategy, as seen in Cheng et al. and Simonovsky 
et al. [30, 31]. In the study by Simonovosky et al., the problem 
is designed as a classification task, where a CNN is set to 
discriminate between alignment and misalignment of the two 
superimposed MRI brain images (T1 and T2 weighting of 
neonatal brains) [31]. The study of Cheng et al. is similar to this 
method in many ways, however, they used an autoencoder to 
pre-train the network [30]. 

Another approach is to use a deep regression network to 
directly predict transformation parameters between images. 
Miao et al. used such a method to directly predict the 
parameters of transformation between 3D CT images to 2D 
X-rays [32]. This method showed a significant improvement 
compared to the conventional intensity based method, where 
a digitally reconstructed radiograph is derived from the 3D 
image. 

Lastly, there are also studies which focus on improving the 
speed of the conventional intensity based methods which 

tend to be very computationally burdening [33]. This study 
proposed a deep encoder-decoder network that jointly uses 
the similarity measure and the relationship between patches 
and deformation parameters. When their network was applied 
to the LDDMM (Large Deformation Diffeomorphic Metric 
Mapping) method for registration of brain MRI images, 
they could greatly decrease the computational burden while 
maintaining the mathematical properties of the LDDMM 
model. The proposed model was up to 36 times faster than the 
conventional optimization based methods. 

The development of these various approaches to implement 
deep learning in the field of medical image registration shows a 
promising future. With better multi-temporal and multimodal 
image registration, we will be able to streamline the task of 
radiologists and clinicians by providing a direct and intuitive 
way of comparing medical images. Furthermore, accurate 
image registration will provide another class of medical data 
that can be utilized for various purposes, including conversion 
of images to different modalities and survival prediction.

IMAGE ENHANCEMENT AND SYNTHESIS

The enhancement or conversion of medical images are used 
to improve the accuracy of radiological reading or to utilize 
the information of different imaging modalities. As the image-
to-image translation in natural images develops, there are 
increased efforts to implement such technologies to medical 
imaging. 

1. Enhancement of Images
The quality of medical images is a very important factor in 

medical image analysis. However, to obtain high quality images, 
patients have to be exposed to high radiation doses or use extra 
expenses and time. That is why research in enhancing low dose 
CT images to the quality of normal dose CT images and low 
quality MR images to high quality images are being actively 
pursued.  

Chen et al. proposed adding a residual skip connection to a 
U-net form encoder-decoder network to enhance the quality 
of low-dose CT scans to that of normal dose CT scans [34]. 
Here, the encoder reduces noise and artifacts and the decoder 
restores the structural information within the CT image. Also, 
the residual skip connection supplements the details lost while 
passing through multiple convolution and deconvolution layers 
to eventually generate an enhanced CT image, much better 
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than that of a conventional enhancement method.  
In a study on enhancing 3T MR images to 7T MR images, 

Bahrami et al. proposed a method of using both appearance 
(intensity) and anatomical (brain tissue label) features [35]. 
They performed tissue segmentation on 3T MR images, 
and then they trained a 3D CNN that uses the intensity and 
segmentation labels from 3T MR images as the input and 
center voxel intensity of 7T MR image voxels as the output. 
This method not only produced an output very similar to 7T 
MRI quality but also worked robustly on images collected from 
different scanners. 

Oktay et al. proposed a super resolution method to 
reconstruct high quality 3D cardiac images from 2D cardiac 
MR slices [36]. In the study, they used a CNN structure that 
uses multiple view stacks from both short axis and long axis 
as the input. Instead of directly reconstructing high resolution 
MR images, they allowed the network to efficiently learn the 
difference between low resolution and high resolution images 
through residuals, thereby producing a cardiac MR image of 
much higher quality than that of the conventional method. 

2. Conversion to Different Modalities
With the objective of reducing the time and resource spent 

on extra exams and increasing accuracy of diagnosis and 
treatment plans, there have been various approaches to utilize 
deep learning in conversion between different image modalities.

Li et al. showed improvement in diagnostic accuracy of 
Alzheimer’s using positron emission tomography (PET) images 
estimated from MR images [37]. They trained a 3D CNN model 
to estimate the corresponding PET voxel form MRI voxels and 
observed that the diagnostic accuracy was higher when the 
estimated PET images were used in addition to the MR images. 

GAN can also be used in translation or conversion between 
images of different modalities, and Nie et al. used GAN to 
estimate CT images from MR images as seen in Fig. 4 [38]. 
Because the output CT image is blurry when we use a simple 

GAN loss to estimate CT images, they added a gradient 
difference loss function in the training process to maintain 
the intensity gradient between pixels in MRI. As a result, they 
obtained an image much sharper and closer to a real CT image 
than that of the conventional method. 

SURVIVAL ANALYSIS

Survival analysis is another field of research where a deep 
learning based approach can predominate compared to 
traditional approaches, which were based on handcrafted 
features and limited sets of selected imaging modalities.

Nie et al. presented a model for survival prediction of high-
grade glioma, applying a multi-channel 3D CNN model to 
automatically extract features from fMRI, DTI and T1 MRI 
images and a support vector machine for integrating non-image 
clinical features [39]. Although deeply-learned features showed 
a better result in predicting overall survival compared to hand 
crafted features, the best result was achieved by adopting both 
features. Researchers also proposed that features from fMRI 
and DTI images have more impact in functional, neurological 
and oncological applications.

Van der Burgh et al. incorporated clinical characteristics, 
structural connectivity and brain morphology based on high-
resolution diffusion-weighted and T1-weighted MRI images 
to build a highly accurate model for survival analysis in 
amyotrophic lateral sclerosis (ALS) patients as shown in Fig. 5 
[40].

Fig. 4. Conversion of MRI to CT using GAN [38]. Adapted with 
permission

Fig. 5. Example of a model adopting deep learning for survival 
analysis [40]. Adapted with permission.
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However, most of the earlier works present survival 
prediction into roughly divided groups. Long or short overall 
survival time, short, medium or long survivors, and future 
disease activity within two years [39, 40, 41]. These works have 
their limitation from its retroscopic nature and impractical 
categories of survival prediction.

Recently, Oak den-Rayner et al. implemented conceptual 
experiments on survival analysis to prove the concept of using 
features extracted from the medical image as a biomarker, 
especially from routine CT images [42]. This research suggests 
that a set of images could be solely manipulated and applied 
into a CNN to predict mortality, without any restrictions on 
specific disease entity or organ region. Even with small datasets 
and methods without novelty, the results show promising 
potential for future research on radiomics adopting deep 
learning.

CONCLUSION AND PERSPECTIVES

In this paper, we have reviewed examples of the deep learning 
based CT and MRI image analysis for various purposes. Beside 
these topics, there are many other examples: a methodology 
to estimate the uncertainty of the prediction that artificial 
intelligence model generates; principled way to integrate clinical 
or medical knowledge into the model training; development 
of content-based case retrieval system that searches images 
of similar diseases or conditions; efficient analysis of higher-
dimensional medical image, such as contrast enhanced images 
or follow-up images; and research on the privacy and security 
related to medical images when training and implementing 
artificial intelligence models [28, 43, 44, 45, 46]. These topics 
have not been thoroughly studied, and larger-scale studies 
are required. In addition, considering that it is relatively 
difficult and time-consuming to generate and collect lesion-
level annotation for high dimensional images, development of 
computer-assisted annotation tools and standardized protocols 
for lesion labeling are the most urgent topics to be studied. 

However, even widely used off-the-shelf technologies can 
be combined with a well-defined problem and high-quality 
data to bring the artificial intelligence based medical image 
analysis technologies into clinical practice. In the near future, 
artificial intelligence technology will not only handle medical 
images but also integrate and analyze various patient health 
information and genome information to achieve reduction 
of medical expenditure and improve the quality of life of 

patients through early detection of disease and prediction of 
prognosis and survival. Therefore, assuming the gatherings and 
collaborations among hospitals, companies, and clinical and 
artificial intelligence researchers will become more common, 
the implementation of data-driven precision medicine and its 
dissemination is highly likely to take place.
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