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INTRODUCTION

About 50 years ago, the satellite cell was discovered through 
electron microscopic inspection of skeletal muscle. Satellite cells 
are mono-nucleated and located in the edge of the skeletal myofi-
bers. These cells were imposed for their association with muscle 
regeneration. Satellite cells maintain dormant state in the mature 
muscle and are activated mitotically during muscle injuries, and 
finally differentiated to myoblasts. It contributes to the myofibrils 
resulting in muscle recovery from the injury [1]. Collins proved 
that satellite cells have both differentiation and self-renewal ability 
[2]. Sequentially, Kuang et al. established that the muscle stem cells 
achieve self-renewal through asymmetrical divisions. Also, satel-
lite cells did not consist of only adult stem cells, rather both adult 
stem cells and committed progenitor cells [3]. 

Muscular dystrophies include many diseases, which have skele-
tal muscle wasting and limit mobility of patients. Among that, Du-
chenne muscular dystrophy (DMD), fragility of respiratory mus-

cles and absence of dystrophin protein in the cardiac muscle re-
sults in respiratory or cardiac failure and early death [4]. The un-
derlying pathogenesis is already investigated, but the treatment 
has not been established yet. However, research has accumulated 
these days and clinical trials are also being performed now. 

There are roughly four methods to research DMD treatments, 
1) gene therapy replacing the mutated gene, 2) cell therapy which 
replace affected cells or using bone marrow-derived stem cells and 
mesoangioblasts, 3) repairing the endogenous gene using exon 
skipping, skipping premature termination, and 4) drug therapy 
which compensates for lack of dystrophin, promotes function in 
dystrophic muscle, improves muscle hypertrophy and minimizes 
muscle wasting, uses histone deacetylase inhibitors or NO-releas-
ing anti-inflammatory drugs [5]. In this article, cell therapies in 
DMD are focused in a review and current clinical trials using cell 
therapy are introduced. 
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Muscle stem cells, which are known as satellite cells have heterogeneous components of 
committed myogenic progenitors, non-committed satellite cells, and mesenchymal stem 
cells. This distinguishing organization of self-renewal and differentiation capacities encour-
ages the remarkable regenerative ability of skeletal muscles. Lately it has been proved that 
the satellite cell is the derivation of muscle regeneration and with the self-renew function, 
it roles as a true muscle stem cell. Therefore, stem cell therapy using satellite cells is consid-
ered to be ideal therapy for muscular dystrophies, which is deficient in specific muscle pro-
tein and causes muscle degeneration. Especially, Duchenne Muscular Dystrophy (DMD), 
which is caused by mutations at the dystrophin gene, has been targeted by much research. 
In this article the satellite cell characteristics, regulation of cell function, and stem cell ther-
apy for DMD and the present progressive clinical trials will be reviewed.
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SATELLITE CELL IDENTIFICATION AND 
CHARACTERISTICS

In 1961, Mauro first observed the presence of the satellite cells 
(SCs) in frogs through electron microscopy [6]. The mononucleat-
ed SCs were located in the periphery of the skeletal myofibers. Lat-
er, this cell type was also detected in humans, and their functions 
in muscle regeneration were established [7]. Location of SCs, which 
is adjacent to the myofibrils, implicated their involvement in tissue 
regeneration (Fig. 1). In muscle recovery, SCs enlarge, begin to pro-
liferate and fuse to the multinucleated myofibrils [8]. More specifi-
cally, amount of undifferentiated cells are increased and the cells 
are lined up at the periphery of damaged fibers. During regenera-
tion, precocious myogenic progenitors are substituted as mature 
myoblasts. Afterwards, undifferentiated cells start to join with the 
regenerated fibers. After the regeneration, the SCs go through self-
renewing mitosis for maintaining their amount in the tissue. Many 
studies using H3-thymidine proved both the satellite cell section 
and differentiated nuclei in growing muscle [1]. Therefore, the abil-
ities of SCs which can be asymmetrically divided and its self-re-
newal traits were confirmed. Fig. 1 shows the self-renewal and dif-
ferentiation capacity of satellite cells. 

In the adult skeletal muscle, satellite cells keep quiescence with 
mitosis and are localized between the basal lamina and the sarco-

lemma of muscle fibers. At dormant state, SCs expressed limited 
amount of gene and protein translation but they can be activated 
in response to stress, which is induced by injury, weight bearing, 
or the myo-degenerative disease [9]. What triggers the activation 
of SCs is still largely unknown but recent studies suggest some fac-
tors. For example, if there is inhibition of synthesis of sphingosine-
1-phosphate, which is needed for the satellite cell to enter the cell 
cycle, muscle regeneration is surprisingly ceased [10]. Moreover, 
extrinsic mechanical stretch which leads to nitric oxide (NO) syn-
thesis induces hepatocyte growth factor (HGF) release and SCs 
activation [11]. NO gas also encourages expression of Follistatin, 
which antagonizes Myostatin, an inhibitor of myogenesis express-
ed by dormant SCs [12]. In result, SCs can be activated from quies-
cence. Microenvironment-secreted growth factors such as fibro-
blasts growth factors and p38α/β MAPK also can activate SCs. 
FGFs can induce pro-myogenic MAPK signaling pathways and if 
p38α/β is abrogated, cell-cycle exit is delayed and expression of 
cell-cycle regulators are adjusted [13]. 

Studies with radioisotope labeled SCs in growing muscle dem-
onstrated that half of the daughter cells differentiate into myonuclei 
while the other half stay as constant dividing SCs [14]. This result 
suggests SCs have the ability of self-renewal. This capability of SCs 
has been clearly proved. Moreover, their myogenic differentiation 
and self-renewal functions are evidence of SCs as adult stem cells. 

Fig. 1. The self-renewal and differentiation capacity of satellite cells. Activated satellite cells are differentiated into myoblasts and then fuse with 
each other to create de novo myofibers. In de novo myofibers, nucleuses are centralized. 
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REGULATION OF SATELLITE CELL FUNCTION

1. Niche regulation

Stem cell niche means the microenvironment where stem cells 
are localized and it controls the fate and function of stem cells. As 
to satellite cells, the stem cell niche can regulate the asymmetric di-
vision and commitment of daughter cells without disturbing the 
stem cell homeostasis in the niche [15]. Because satellite cells are lo-
cated along the myofibers below the basal lamina, the muscle fiber 
is one of the most important elements of the stem cell niche. All 
signals such as chemical, mechanical and electrical from the host 
fiber have been proved to be associated with the regulation of SCs 
function. The basal lamina also plays as an important role in the 
niche. It accounts for a major part of the extracellular matrix and is 
mainly made up of laminin, collagen, and proteoglycans [9]. There-
fore, adhesion to the basal lamina is essential for the maintenance 
of stem cell characters. Another element of the niche is the micro-
vasculature that supplies SCs and interstitial cells which interact 
with SCs [16]. In humans, 68% of satellite cells are localized within 
5 μm from capillaries or vascular endothelial cells at both dormant 
and activated conditions [17]. Meanwhile, asymmetric division of 
the stem cell depends on cell polarity, which is achieved through 
cell to cell or cell to ECM interactions within the niche. Each side 
of SCs expresses different molecules – integrin α7β1 receptors on 
basal lamina side, M-cadherin on apical side – and this asymmet-
ric allocation lets SCs form a structural basis for polarity and leads 
to the cell fate differences. This asymmetric cell division would 
also promote the fusion of the differentiating daughter cells [16]. 

Also, cytokines such as Il-1α, IL-13, TNF-α, and IFN-γ which is 
secreted by T cells are promoting factors of proliferation of muscle 
stem cells during muscle regeneration. In the study by Fu et al., 
these 4 cytokines were injected together into regenerating muscle 
of Rag1-/- mice and they helped in both decreasing muscle stem 
cell proliferation and correcting the impaired regenerative respons-
es. In addition, muscle stem cells with these cytokines comparably 
participated more in muscle recovery than freshly isolated muscle 
stem cells. These results implicate that the muscle stem cells that 
expanded with the cytokines in vitro could achieve properties of 
undifferentiated progenitor cells [18].

2. Signaling pathway

In several decades, many signaling pathways such as Wnt, Notch, 
Bone morphogenetic protein (BMP), TGF-β are proved to be in-

volved in activation of satellite cells. As well as activation, modulat-
ing pathways specific to muscle stem cells have also been demon-
strated. Maintenance of dormant state, reversible quiescence and 
self-renewal, asymmetric destination, symmetric proliferation of 
stem cells are defined [19].

Notch signaling is needed to preserve the dormant state of satel-
lite cells, suggesting that niche-derived Notch ligand should bind 
to a Notch receptor on the dormant satellite cell [20]. In this study, 
Rbp-j which is the downstream transcripton factor in the Notch 
pathways was eliminated from adult stem cells in normal muscle. 
This caused activation and ectopic differentiation of stem cells even 
if it did not enter the cell cycle and bypassed the transient amplify-
ing progenitor stage [20]. Consequently, RBP-J plays as a restrictor 
of cell cycle entry and a mediator of Notch signaling [21]. 

Referred from in vitro experiments, it is supposed that multiple 
signaling pathways are associated with quiescence of the satellite 
cell. So far, Ang1/Tie2 [22], P38/MAPK [13], myostatin [23], Notch-3 
[24], Spry1 [25], are proved to be involved in satellite cell cycles.

Although many signaling pathways that regulate stem cell func-
tion of satellite cells are revealed, there might be more unknown 
pathways [19]. During the cell cycle, many signaling molecules are 
repeatedly used. Representatively, Numb is used both to decide 
asymmetric fate and maintain progenitor cells [26]. Therefore, clas-
sical Wnt, notch and BMP signals might also be used in another 
way to regulate stem cell functions [19].

3. Epigenetic regulation of satellite cell function

Regulation of the SC’s function is focused at the epigenetic level, 
which has cellular and physiological phenotypic trait variations 
caused by external or environmental factors that alter gene expres-
sion without modifications in the DNA sequences. It involves DNA 
methylation, histone modification, etc. Right after the identifica-
tion of SCs, differences in chromatin organization between adult 
muscle and growing muscle accord with their shift from a dormant 
to an activated state [27]. The regulators of epigenetics are media-
tors of DNA methylation and demethylation, histone acetylases, 
methylases, miRNAs and so on [19]. These factors would contrib-
ute many changes in aged satellite cells that describe age-related 
declines in function and rejuvenation through exposure to the sys-
temic environment [28]. So far, Pax7 functions with the Wdr5-
Ash2L-MLL2 histone methyltransferase complex to methylate his-
tone H3 lysine 4 at the Myf5 locus [29], and regulation of the re-
pressive PRC2, EZH2 to control Pax7 expressions are established.
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BIOMARKERS INVOLVED IN MUSCLE RECOVERY BY 
SATELLITE CELLS

Many biomarkers have been investigated so far. The most im-
portant molecule is Pax7, which regulates self-renewal in satellite 
cells and maintains myogenic potential. Pax7 is a transcription 
factor involved in the embryonic development of muscle stem cells 
and is expressed in both dormant and activated state of satellite 
cells [30]. It also regulates the expression of Myf5, which is associ-
ated with the embryonic myogenesis and stem cell differentiation 
[31]. Pax3 controls proliferation of the satellite cells along with Pax7 
[32]. In addition to those, Barx2 [33], M-cadherin [34], c-Met [35], 
α7-integrin [36], CD34 [37], CXCR4 [38], syndecan-3, syndecan-4 
[39], caveolin-1 [40], calcitonin receptor [41], lamins A and C, and 
emerin [42] are also expressed biomarkers in stem cells.

Above all, Pax7 is a uniform marker of muscle stem cells. When 
muscle injury occurs, Pax7+ satellite cells enter into the cell cycle 
and start to differentiate. Some of those cells return back to the 
dormant state to supply the cell pool. At that state, the satellite cell 
lacks MyoD. But during activation and progression, satellite cells 
begin to expresss MyoD and Myf5 protein, and finally have Myo-
genin which is the marker of differentiaton [19]. 

CURRENT STEM CELL-BASED THERAPY IN DMD 
PATIENTS

In recent studies, muscle stem cells have been proved to have 
self-renewable ability at the single-cell level and stem cell functions 

[19]. Therefore, satellite cells are being examined to treat muscle 
diseases. Among many skeletal muscle diseases, some muscular 
dystrophies which repeat degeneration and regeneration may con-
sume pre-existed precursors.

Especially, DMD is a result of frame shift mutations of dystro-
phin gene located in the locus Xp21 and about 1/3,500 male birth 
is affected [4]. If mutations of dystrophin genes occurred, it causes 
the loss of functional protein on muscle fibers and consequently, 
the fibers become fragile and necrotize to death. Satellite cells can 
regenerate the deteriorated fibers but the new muscle fibers still 
have no dystrophin and will be degenerated once more (Fig. 2). As 
degeneration-regeneration cycles repeated, satellite cells will be se-
nescent and lose their ability of proliferation, differentiation and 
muscle regeneration [43]. It leads to muscle weakness progressively 
and eventually the patients could not even use respiratory muscles. 
Cardiac defects that develop are the most frequent causes of death. 
Because current treatments of DMD is limited to management of 
inflammation [44], many studies focus at the regenerative func-
tion of satellite cells.

Cell therapy is infusing normal myoblasts and strengthening 
dystrophin expression on myofibers, so it is considered as one of 
the possible treatments of DMD. There are two methods in cell 
therapy, autologous graft and heterologous graft. Autologous graft 
is using patient’s own muscle progenitor cells, but the mutations 
should be corrected before re-engraftment. The implanted pro-
genitor cells can be involved in the muscle regeneration process 
and provide the corrected gene to tissue. The advantage of autolo-
gous graft is lack of immune response against dystrophin. But the 

A B

Fig. 2. Dystrophin (red) is not expressed in mdx mouse. (A) C57BL/10ScSn control mouse. (B) C57BL/10ScSn-Dmd< mdx> .
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proliferation capacities of cells are limited, so these confines should 
be considered. Whereas heterologous graft using progenitors of 
normal donors does not require gene correction, thus, continuous 
immunosuppression is needed. Consequently, neither of these me-
thods is perfect for DMD treatment [45]. 

Besides the graft methods, the insufficient migration and death 
of the myoblasts are also reasons for the negative results seen in 
studies [46]. Some countermeasures such as increasing in number 
of myoblasts injected to the muscle or effect of radiation to defect 
muscle for boosting the release of myogenic factors are suggested 
but are still in doubt [47]. 

Many other cell therapies are currently undergoing. Substitut-
ing mutated cells is a process that involves injecting into dystro-
phic muscle and leads to the expression of dystrophin by myofi-
bers. The limitation of this method is delivering myoblasts sys-
temically by local injection [48]. Normal bone marrow-derived 
stem cells also can be used to regenerate skeletal muscle fibers. 
With this, bone marrow mesenchymal stem cells have little myo-
genic differentiation ability but could be altered to be more myo-
genic with high levels of intracellular Notch protein [49]. Donor 
mesoangioblasts which are intra-arterial transplanted can improve 
dystrophic muscle. When mesoangioblasts are transplanted to 
dogs, expression of dystrophin increased up to 70% of the muscle 
fibers and they had normal contraction force and mobility [50].

PRESENT PROGRESSIVE CLINICAL TRIALS OF CELL 
THERAPY IN DMD PATIENTS

Recently, many clinical trials in DMD patients have progressed. 
Of that, some trials with cell therapy are introduced in this review.

1. �NCT02241434, stem cell therapy in DMD

Neurogen Brain and Spine Institute have fulfilled clinical trials 
from January, 2009. This phase 1 trial is aimed to see the effect of 
autologous bone marrow mononuclear cell therapy in DMD pa-
tients and 500 patients are now enrolled. It has single group as-
signment, open label test and recipients are 3 to 25 year old males 
and females from India. Primary completion data is manual mus-
cle testing, which will be collected in January, 2016.

2. �NCT01834040, study safety and efficacy of BMMNC for the 

patient with DMD

Chaitanya hospital, India is now carrying out a phase 1, 2 clini-

cal trial from September, 2014. 30 DMD patients who are 4 to 20 
year old males/females whom have consented to bone marrow-de-
rived autologous cell therapy are enrolled. This Study is performed 
as a single arm, single center trial to check the safety and efficacy 
of BMMNC (100 million per dose) for the patients with DMD. In-
tervention method is intralesional/intravenous injection of autolo-
gous stem cells and the primary outcome is improvement seen in 
daily living scales planned to September, 2016. Secondary outcome 
is improvement of muscular dystrophy seen in specific functional 
rating scales.

3. �NCT02285673, efficacy of umbilical cord mesenchymal stem cells 

in DMD

From November, 2013, Acibadem university is carrying out 
phase 1/2 clinical trials which identify the efficacy of umbilical 
cord mesenchymal stem cells in DMD patients and whether the 
wild type gene can be transferred to patients. 10 patients who are 7 
to 20 year old males are enrolled who need partial respiratory sup-
port during the day (less than or equal to stage 1 NIH, liver, renal 
and cardiac function). Primary outcome is seen by DMD gene ex-
pression that will be collected in February, 2015.

4. �NCT02196467, transplantation of myoblasts to DMD patients

In Centre Hospitalier Universitaire de Québec, DMD patients 
who are males and older than 16 years are enrolled from May, 2014 
to examine whether the transplantation of normal myoblasts throu-
ghout one muscle (the extensor carpi radialis) of the patients is safe 
and whether it will improve the strength of that muscle. The ulti-
mate aim of this study is to evaluate the safety of a procedure of 
high-density injections of donor myoblasts throughout a muscle 
(under immunosuppression by tacrolimus). This study will be im-
plemented by single group assessment in a double blind manner 
and the estimated primary completion date is January, 2018. 

5. �NCT01834066, study safety and efficacy of bone marrow derived 

autologous cells for the treatment of muscular dystrophy

In Chaitanya hospital, 25 patients who have consented to bone 
marrow derived autologous cell therapy and who are 6 to 25 years 
old are enrolled to this trial from September, 2014. The interven-
tion method is intralesional transfer of autologous stem cell (MNCs) 
per dose, 6 doses in 3 months. Anticipated primary outcome is sig-
nificant improvement in muscle strength by using kinetics muscle 
testing or by using MMT score. Secondary outcome is seen by im-
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provement of daily living scales and baselines in EMG, which will 
be collected in November, 2016.

CONCLUSION 

Therapeutic research for DMD has been rapidly developed in 
recent years. Many clinical trials have been started now and results 
will be available soon. However, there are still some limitations re-
maining. First, strategies to repair the dystrophin gene are avail-
able only for some mutations and cell and gene therapies have cost 
problems. Also, local delivery of the therapeutic agent is needed to 
minimize side effects and maximize the effect of agents, but clini-
cal benefit can only be performed using systemic delivery [5]. Sat-
ellite cells still have a long way to go, but so far, numerous and bril-
liant research are being implemented even now.
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