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운동 직후 흡연이 젊은 성인 남성의 혈관기능에 미치는 영향
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Purpose: Recovery from exercise is a vulnerable phase that has been linked to increased susceptibility to sudden 
cardiovascular events. Cigarette smoking increases the risk of cardiovascular mortality and morbidity. We tested 
the hypothesis that postexercise cigarette smoking would attenuate hemodynamics and vascular function during 
recovery from exercise in young men. 
Methods: Thirteen habitual smokers (age, 22±3 years; body mass index, 25.1±3.6 kg/m2) participated in (1) cigarette 
smoking (0.6 mg nicotine) and (2) sham smoking (SHAM) immediately postexercise (30 minutes on a treadmill; 
40% to 60% of heart rate [HR] reserve) in a randomized order. Assessments were hemodynamics (HR, rate-pressure 
product [RPP], brachial and central artery blood pressures) and vascular function (arterial stiffness via carotid-femoral 
pulse wave velocity [PWV]; conduit vessel function via brachial artery flow-mediated dilation [FMD]). All variables 
were assessed at baseline, 10 minutes, and 30 minutes postexercise, except for FMD (baseline and 30 minutes 
postexercise). 
Results: Compared with the SHAM trial, cigarette smoking increased HR, RPP, and brachial and central blood 
pressures postexercise (interaction, p＜0.05). PWV reduced and FMD increased postexercise in the SHAM trial, 
while cigarette smoking attenuated exercise-induced improvements (interaction, p＜0.05). 
Conclusion: Cigarette smoking attenuated hemodynamic recovery and an improvement in arterial stiffness and 
conduit vessel function in young habitual smokers, thereby providing evidence for the negative effects of cigarette 
smoking during recovery from exercise. 
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Introduction

The favorable cardiovascular adaptations, including reductions 
in blood pressure and arterial stiffness, and an improvement in 
conduit vessel function, have been well elucidated following 
chronic endurance exercise training1,2; however, less is clear 
regarding the cardiovascular responses to acute aerobic exercise. 
In particular, the recovery period following acute aerobic exercise 
involves dynamic alterations in several physiological processes, 
which either return toward or decrease below a preexercise state, 
as well as are enhanced postexercise2. For instance, while reductions 
in brachial and central blood pressure following acute moderate- 
intensity aerobic exercise have been reported in young adults3,4, 
unequivocal information exists regarding postexercise changes 
in arterial stiffness and in conduit vessel5,6. Thus, additional in-
vestigation into the recovery period following acute aerobic exer-
cise is clearly warranted, as it may offer not only a window of 
opportunity to maximize physiological changes in order to optimize 
long-term benefits, but also provide insight into potential factors 
that may attenuate the recovering cardiovascular system postexer-
cise.

Importantly, the recovery period from exercise has also been 
linked to increased susceptibility to cardiovascular instability and 
sudden cardiovascular events (i.e., fatal tachycardia or sudden 
myocardial infarction) in vulnerable populations7. While several 
factors may contribute to cardiovascular instability during recovery 
from exercise, cigarette smoking may play an important role. 
Indeed, cigarette smoking is a modifiable cardiovascular risk factor 
that has been associated with arterial stiffening8-10 and conduit 
vessel dysfunction11 at rest, as well as impaired vasodilatory 
capacity during exercise12. Interestingly, even one cigarette smoking 
may acutely induce the activation of sympathetic tone13 and the 
reduction of nitric oxide bioavailability following increased in-
flammation and oxidative stress14. Therefore, it is possible that 
cigarette smoking may also attenuate the recovering cardiovascular 
system after acute exercise. Indeed, only a few studies, to date, 
have evaluated the impact of preexercise cigarette smoking on 
postexercise arterial stiffness, myocardial stress, and heart rate 
(HR) recovery in young adults9,15,16, but none have reported any 
information on conduit vessel function. Since chronic cigarette 
smokers tend to have a smoke immediately after leisure-time 

physical activity or exercise, the present study sought to test the 
hypothesis that postexercise cigarette smoking would attenuate 
hemodynamics, arterial stiffness, and conduit vessel function during 
recovery from moderate-intensity aerobic exercise in young men. 

Methods

1. Ethical approval

All experimental procedures and protocols were approved by 
the Institutional Review Board of University of Seoul (UOS IRB 
No. 2019-30). All aspects of the study conformed to the standards 
set by the Declaration of Helsinki, except for registration in a 
database. All experimental procedures were explained to participants 
in writing and verbally, and written informed consent was obtained 
from all participants prior to study participation.

2. Participants

Thirteen male habitual smokers volunteered to participate in 
this study. The self-reported smoking history was 6.8±2.8 years 
and 10±4 cigarettes per day (range, 6–20 cigarettes per day) 
and none of them smoked e-cigarettes. All participants were free 
from any known cardiovascular, metabolic, renal, or respiratory 
disease, and none were using any cardiovascular medications, 
nonsteroidal anti-inflammatory drugs, antihistamines, or multivitamin/ 
antioxidant supplements. None were physically active, having 
not engaged in regular aerobic exercise for the past 6 months 
(i.e., ＜60 minutes of moderate-to-vigorous physical activity per 
week based on a self-reported physical activity questionnaire). 

3. Experimental design

Using a cross-over design, all participants were assigned to 
either (1) cigarette smoking or (2) sham smoking (SHAM) immediate-
ly postexercise in a randomized order in two separate study visits, 
separated at least by 72 hours (Fig. 1). For both visits, participants 
arrived at the laboratory in the morning (between 8:00 and 10:00 
A.M.) following an overnight fast (12 hours) and were instructed 
to abstain from alcohol, caffeine, and cigarette smoking (8 hours), 
as well as exercise (24 hours) for minimizing confounding effects. 
All data collection took place with participants in the supine 
position in a thermoneutral environment (∼22℃–24℃). 
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Fig. 1. Experimental design. HRR:

heart rate reserve.

Upon arrival, all participants rested in the supine position for 
10 minutes, after which baseline, preexercise measurements were 
obtained. Then, all participants exercised on a treadmill for 30 
minutes at a moderate intensity (40%–60% of HR reserve [HRR]) 
in congruence with a previous study which reported increases 
of vascular function following a bout of aerobic exercise in young 
adults17. Warm-up and cool-down were performed with light- 
intensity treadmill walking (25%–30% of HRR) for 5 minutes 
each. Exercise intensity was monitored via a wireless HR monitor 
(RS800CX; Polar Electro, Kempele, Finland). Immediately after 
exercise cessation, all participants smoked either one cigarette 
(0.6 mg of nicotine) or a sham cigarette (nicotine-free, filtered 
straw without lighting), with the same frequency and duration 
of puffs. Then, measurements were obtained in the supine position 
at 10 minutes and 30 minutes postexercise, except for brachial 
artery flow-mediated dilation (FMD), which was obtained at 
baseline and 30 minutes postexercise only. 

4. Anthropometrics, body composition, and blood lipid 
profile

During the first study visit, all participants underwent assess-
ments of anthropometrics, body composition, and a venous blood 
draw for descriptive characteristics. Body composition was deter-
mined using the bioelectrical impedance analysis (Inbody 3.0; 
Biospace, Seoul, Korea). A venous blood draw was obtained 
from the distal phalanx of the left hand with a lancing device 
(Accu-chek Soft Clix; Roche Diagnostics GmbH, Mannheim, 
Germany) and analyzed for blood lipid profiles (clinical chemistry 
analyzer, Samsung LABGEOPT10; Samsung Healthcare, Seoul, 
Korea). 

5. Hemodynamics

Resting brachial blood pressure and HR were measured twice 
at a 2-minute interval using an automated blood pressure monitor 
(JPN601; OMRON Healthcare Corp., Kyoto, Japan). Central blood 
pressure, the pressure to which the heart, kidneys, and major 
arteries are exposed18, was estimated from radial pressure wave-
forms that were collected for 10 to 12 seconds using applanation 
tonometry with a high-fidelity strain-gauge transducer (Millar 
Instruments, Houston, TX). These radial waveforms were further 
transformed algorithmically using a validated generalized transfer 
function to estimate central blood pressure (SphygmoCor, AtCor 
Medical, Sydney, NSW, Australia). If blood pressure values 
differed by ＞10 mm Hg, another measurement was obtained, 
and the average value was used for subsequent analysis. Then, 
rate-pressure product (RPP), an indicator of myocardial oxygen 
demand, was calculated as the product of HR and brachial systolic 
blood pressure (SBP).

6. Arterial stiffness

Carotid-femoral pulse wave velocity (PWV), a marker of arterial 
stiffness, was measured in accordance with established guidelines19. 
A high-fidelity strain-gauge transducer (Millar Instruments, 
Houston, TX, USA) was used to obtain pressure waveforms for 
a 10-second epoch from the right common carotid artery and 
the right femoral artery as previously described20. The peak of 
an in-phase R wave, as obtained from sequential electrocardiogram 
monitoring (CM5 configuration) was used as a timing marker. 
The foot of the pressure wave was identified automatically, 
removing potential observer bias, using an algorithm that detects 
the initial upstroke via a line tangent to the initial systolic upstroke 
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Table 1. Descriptive characteristics 

Variables Data 

No. of participants 13

Age (yr) 22.3±3.4

Body mass index (kg/m2) 25.1±3.6

Body fat (%) 19.8±7.5

Systolic blood pressure (mm Hg) 120±8

Diastolic blood pressure (mm Hg) 72±9

Glucose (mg/dL) 101±7

Triglycerides (mg/dL) 147±113

Total cholesterol (mg/dL) 150±27

High-density lipoprotein cholesterol (mg/dL) 55±10

Low-density lipoprotein cholesterol (mg/dL) 65±16

Values are presented as mean±standard deviation.

point of the pressure tracing and an intersecting horizontal line 
through the minimum point. The distances from the carotid artery 
to the carotid artery and from the suprasternal notch to the femoral 
artery were measured as straight lines using a tape measure. The 
distance from the carotid artery to the carotid artery was then 
subtracted from the suprasternal notch-femoral segment to correct 
for differences in propagation direction along the arterial path 
length, and PWV was computed automatically using the equation: 
Δ distance (m) /Δ time (sec).

7. Conduit vessel function

The brachial artery FMD testing for the assessment of conduit 
vessel function was performed in accordance with established 
guidelines21. Briefly, the longitudinal image of the brachial artery 
and mean blood velocity were imaged midway between the 
antecubital and axillary regions for 1 minute via ultrasonography 
(ARIETTA 60; Hitachi Aloka Medical, Tokyo, Japan) using a 
high-frequency (7.5 MHz) linear array probe (L441; Hitachi Aloka 
Medical). Then, a blood pressure cuff, which was positioned below 
the antecubital crease and distal to the ultrasound Doppler probe, 
was inflated to 250 mm Hg for 5 minutes. After cuff deflation, 
data were recorded continuously for 3 minutes. Images of vessel 
diameter and mean blood velocity were recorded and analyzed 
offline using automated edge-detection software (FMD Studio, 
Cardiovascular Suite; Quipu, Pisa, Italy). Brachial artery FMD 
was quantified as the maximal change in brachial artery diameter 
after cuff deflation, expressed as an absolute increase (Δ diameter 
[mm]) and a percentage increase from preocclusion values (%FMD). 
Shear rate was calculated as follows: shear rate (s−1)=mean blood 
velocity×8/vessel diameter. Shear rate area-under-the-curve (AUC) 
until peak vasodilation was also determined using the trapezoid 
rule. The same trained investigator, who was blinded to the study 
time points and experimental trials, performed and analyzed FMD 
measurements in all participants.

8. Statistical analysis

Statistical analyses were performed using IBM SPSS software 
(version 25.0; IBM Corp., Armonk, NY, USA). Normality was 
confirmed with the Shapiro-Wilk test. The Student paired t-tests 
were used to compare baseline differences between cigarette 
smoking and sham smoking. All outcome variables were assessed 

with a two-way repeated measures analysis of variance (time×trial). 
FMD was also adjusted for shear rate AUC by conducting repeated 
measure analysis of covariance (ANCOVA). In case of a significant 
interaction, post hoc tests with Bonferroni correction were per-
formed. Data are presented as mean±standard deviation. Statistical 
significance was established at a p-value of ＜0.05.

Results

Baseline descriptive characteristics are provided in Table 1. 
Preexercise and postexercise hemodynamics are presented in Table 
2. At baseline, resting HR, RPP, and brachial and central SBP 
and diastolic blood pressure (DBP) were not different between 
the two trials (p＞0.05). HR increased from baseline at 10 minutes 
postexercise and returned toward baseline at 30 minutes post-
exercise in the SHAM trial, whereas HR remained elevated above 
baseline in the cigarette smoking trial and was higher in the 
cigarette smoking trial than in the SHAM trial throughout post-
exercise recovery (interaction, p＜0.05). RPP increased from 
baseline in the cigarette trial only and was higher in the cigarette 
smoking trial than in the SHAM trial throughout postexercise 
recovery (interaction, p＜0.05). Brachial SBP decreased at 30 
minutes postexercise in the SHAM trial and was lower in the 
SHAM trial than in the cigarette smoking trial throughout 
postexercise recovery (interaction, p＜0.05). Brachial DBP as 
well as central systolic and DBP decreased at 30 minutes 
postexercise in the SHAM trial, but increased at 10 minutes 
postexercise in the cigarette smoking trial and was higher in 
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Table 2. Effects of postexercise cigarette smoking on hemodynamics during recovery from exercise

Variable Trial Baseline Post 10 min Post 30 min
p-value

Time Trial Interaction

Brachial SBP (mm Hg) Cigarette 120±9 124±1‡ 118±11†,‡ 0.001 0.003 0.027

Sham 118±8 115±8 111±7*,†

Brachial DBP (mm Hg) Cigarette 73±8 79±11*,‡ 75±11†,‡ 0.002 0.009 0.001

Sham 72±9 72±9 69±9

Central SBP (mm Hg) Cigarette 103±8 107±10‡ 102±9†,‡ 0.001 0.004 0.006

Sham 101±7 99±8 96±7*,†

Central DBP (mm Hg) Cigarette 74±8 82±12*,‡ 76±11†,‡ 0.001 0.004 ＜0.001

Sham 73±9 73±9 70±10†

Heart rate (beats/min) Cigarette 61±7 79±14*,‡ 71±13*,†,‡ ＜0.001 0.008 ＜0.001

Sham 61±8 68±9* 65±8

RPP Cigarette 7,284±1,238 9,787±2,036*,‡ 8,908±1,842*,‡ ＜0.001 ＜0.001 ＜0.001

Sham 7,288±1,294 7,838±1,503 7,218±1,297

Values are presented as mean±standard deviation.
SBP: systolic blood pressure, DBP: diastolic blood pressure, RPP: rate-pressure product. 
*p＜0.05: different from baseline, †p＜0.05: different from 10 minutes postexercise, ‡p＜0.05: different from the sham trial.

Fig. 2. Effects of postexercise cigarette smoking on (A) carotid-femoral pulse wave velocity (PWV) and (B) brachial artery

flow-mediated dilation (FMD). Values are presented as mean±standard deviation. *p＜0.05, different from baseline; †p＜

0.05, different from the sham trial.

the cigarette smoking trial than in the SHAM trial through 
postexercise recovery (interaction, p＜0.05). 

Preexercise and postexercise arterial stiffness and conduit vessel 
function are presented in Fig. 2 and Table 3. At baseline, carotid- 
femoral PWV and brachial artery FMD variables were not different 
between the two trials (p＞0.05), except for shear rate AUC. 
Carotid-femoral PWV decreased from baseline at 30 minutes 
postexercise in the SHAM trial only and was lower in the SHAM 
trial than in the cigarette smoking trial throughout postexercise 
recovery (interaction, p＜0.05) (Fig. 2A). Resting brachial artery 
diameter, resting shear rate, and time to peak vasodilation did 

not change from baseline at 30 minutes postexercise in any trials 
(p＞0.05 for all) (Table 3). Peak brachial artery diameter increased 
from baseline at 30 minutes postexercise similarly in both trials 
(p＜0.05) (Table 3). Brachial artery FMD, assessed by both 
absolute change in brachial artery diameter (Table 3) and the 
peak percentage change (Fig. 2B), increased at 30 minutes 
postexercise in the SHAM trial, but not in the cigarette smoking 
trial (interaction, p＜0.05). Shear rate AUC was different between 
trials only at baseline and increased from baseline at 30 minutes 
postexercise in the SHAM trial only (interaction, p＜0.05) (Table 
3). Percent FMD divided by shear rate AUC was not different 
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Table 3. Effects of postexercise cigarette smoking on conduit vessel function during recovery from exercise

Variable Trial Baseline Post 30 min
p-value

Time Trial Interaction

Resting diameter (mm) Cigarette 3.98±0.46 4.02±0.49 0.717 0.695 0.256

Sham 4.00±0.43 3.98±0.44

Resting shear rate (sec−1) Cigarette 378±142 331±84 0.242 0.122 0.740

Sham 319±126 286±115

Peak diameter (mm) Cigarette 4.22±0.49 4.24±0.54 0.030 0.583 0.185

Sham 4.21±0.46 4.30±0.49*

Absolute FMD (mm) Cigarette 0.24±0.15 0.23±0.11 0.021 0.297 0.031

Sham 0.21±0.09 0.33±0.17*

Percent FMD (%) Cigarette 6.00±3.77 5.67±2.54 0.042 0.257 0.029

Sham 5.47±2.80 8.16±4.37*

Shear rate AUC Cigarette 16,073±8,315† 20,715±10,698 0.840 0.518 0.005

Sham 22,516±10,374 17,009±7,393*

Time to peak vasodilation (sec) Cigarette 64±17 66±17 0.862 0.230 0.833

Sham 60±22 59±15

Percent FMD (%)/
shear rate AUC ratio (10−3 AU)

Cigarette 0.46±0.33 0.36±0.29 0.668 0.362 0.959

Sham 0.72±1.76 0.59±0.44

ANCOVA-corrected percent FMD (%) Cigarette 6.00±3.77 5.67±2.54† 0.734 0.643 0.053

Sham 5.47±2.80 8.16±4.37*

Values are presented as mean±standard deviation.
FMD: flow-mediated dilation, AUC: area-under-the-curve, AU: axillary unit, ANCOVA: analysis of covariance. 
*p＜0.05: different from baseline, †p＜0.05: different from the sham trial.

between trials at any time points and did not change postexercise 
(p＞0.05) (Table 3). Adjusting for shear rate AUC using ANCOVA, 
percent FMD was also no longer statistically significant (inter-
action, p=0.053) (Table 3). 

Discussion

The main findings of this study were two-fold. First, acute 
cigarette smoking immediately after aerobic exercise attenuated 
hemodynamic recovery, as evidenced by sustained elevations in 
HR, RRP, and brachial and central blood pressures. Second, the 
delayed hemodynamic recovery was accompanied by attenuation 
in an exercise-induced reduction in arterial stiffness and improve-
ment in conduit vessel function (via brachial artery FMD). Taken 
together, these findings highlight the negative ramification of 
postexercise cigarette smoking on hemodynamics, arterial stiffness, 
and conduit vessel function during recovery from moderate-in-
tensity aerobic exercise in young men.

1. Postexercise cigarette smoking on hemodynamic 
recovery

The dynamic alterations in hemodynamics following an acute 
bout of moderate-intensity aerobic exercise have been well studied, 
including HR recovery and postexercise hypotension2. In the 
present study, we observed delayed HR recovery, coupled with 
elevated RPP throughout exercise recovery in the cigarette smoking 
trial compared with the sham trial (Table 2), demonstrating the 
negative impact of postexercise cigarette smoking on autonomic 
function and myocardial oxygen demand. Our findings are in 
agreement with previous work that has identified elevations in 
HR and RPP during and following 3 minutes isometric handgrip 
exercise when the participants smoked one cigarette 10 minutes 
prior to exercise initiation16. The delayed autonomic recovery 
following exercise in the cigarette smoking trial may be attributed, 
in part, to an increase in sympathetic dominance and delayed 
parasympathetic reactivation13. Plasma catecholamine concentrations 
have also been reported to increase following acute cigarette 
smoking and remained elevated for 30 minutes afterwards22, and 
this sympathetic activation is thought to be mediated by nicotine23. 
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Given that delayed autonomic recovery, which contributes to an 
increase in myocardial oxygen demand, has been associated with 
an increased risk of future hypertension and mortality24,25, our 
findings of delayed autonomic recovery and increased myocardial 
oxygen in the cigarette smoking trial suggest that cigarette smoking 
should be avoided to minimize susceptibility to cardiovascular in-
stability and the risk of sudden cardiovascular events following 
exercise. 

In a previous study, cigarette smoking has been reported to 
acutely increase brachial and central blood pressures for appro-
ximately 15 minutes22. Our findings extend those of the previous 
study22 by demonstrating that cigarette smoking immediately after 
exercise attenuated the reductions in brachial and central blood 
pressures following exercise (Table 2). The reduction in brachial 
blood pressure following acute aerobic exercise is typically ac-
companied by a reduction in total peripheral resistance that is 
not completely offset by an increase in cardiac output2,26. It is 
likely that cigarette smoking, which increases sympathetic acti-
vation and release of catecholamines27, may have attenuated the 
reductions in brachial blood pressure following exercise, due to 
an increase in total peripheral resistance and an elevation in HR28. 
In an animal study, acute cigarette smoking induces an increase 
in vasoconstriction that is mediated, in part, via release of a 
vasoconstrictor thromboxane A229, demonstrating another potential 
mechanism by which postexercise cigarette smoking may have 
attenuated the reduction in brachial blood pressure in the present 
study. In contrast to brachial blood pressure, central blood pressure 
is the pressure to which the heart, kidneys, and major arteries 
are exposed18 and is a better predictor of future hypertension 
and cardiovascular mortality30. In the present study, we found 
elevations in central blood pressure following exercise in the 
cigarette smoking trial (Table 2). Since the heart is exposed to 
central blood pressure, our findings of elevations in central blood 
pressure induced by cigarette smoking are in support of the rise 
in myocardial oxygen demand after exercise. The mechanisms 
by which cigarette smoking increases central blood pressure after 
exercise are unclear, but may be mediated, in part, by an increase 
in arterial wave reflection and a reduction in pulse pressure 
amplification8,31. Taken together, extending previous studies, our 
findings of attenuated postexercise reductions in brachial and 
central blood pressure provide new evidence for the ability of 

cigarette smoking to mitigate the hypotensive benefits associated 
with acute aerobic exercise. 

2. Postexercise cigarette smoking on arterial stiffness 
and conduit vessel function

Increased arterial stiffness and conduit vessel dysfunction are 
independent predictors of future cardiovascular events, indepen-
dently of traditional cardiovascular risk factors32,33. While chronic 
aerobic exercise has been demonstrated to provoke favorable 
changes in vascular health, including reduced arterial stiffness 
and improved conduit vessel function34, the acute impacts of 
moderate-intensity aerobic exercise on arterial stiffness and conduit 
vessel function are less clear. In the present study, we found 
a reduction in PWV and an increase in brachial FMD in the 
sham trial (Fig. 2), suggesting exercise-induced improvements 
in arterial stiffness and conduit vessel function. In contrast to 
our findings, a previous study observed no change in PWV 
following acute moderate-intensity exercise in healthy men, 
demonstrating no evidence of exercise-induced improvement in 
arterial stiffness5. However, conduit vessel function, assessed via 
brachial artery FMD, has been reported to transiently improve 
following acute moderate-intensity exercise5,6, which is in 
agreement with findings from the present study. The mechanisms 
by which acute moderate-intensity exercise improved arterial 
stiffness and conduit vessel function are multifactorial but may 
be mediated, in part, via shear stress-induced production of nitric 
oxide from the endothelial cells and vascular smooth muscle cell 
relaxation5,35.

Importantly, although the unfavorable effects of both chronic 
and acute cigarette smoking on arterial stiffness14,21 and conduit 
vessel function11 have been documented, no studies, to date, have 
evaluated impact of postexercise cigarette smoking on arterial 
stiffness and conduit vessel function. Extending these previous 
studies, our findings of no changes in arterial stiffness and conduit 
vessel function following acute exercise in the cigarette smoking 
trial (Fig. 2) suggest that cigarette smoking may abolish an 
improvement in arterial stiffness and conduit vessel function 
provoked by exercise. The potential mechanism underlying it 
could be mediated by cigarette smoking-induced increases in 
inflammation and the associated production of reactive oxygen 
species, and the resultant reduction in nitric oxide bioavailabil-
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ity36,37. In addition, given the importance of shear stimulus in 
mediating the FMD response38, we controlled for the difference 
in shear rate AUC for the FMD response (Table 3). Although 
we lost statistical significance with the percent FMD and shear 
rate AUC ratio (p=0.959), ANCOVA-corrected percent FMD 
approached significance (p=0.053). It is important to note that 
shear rate appears to explain up to a third of between-person 
variability in the FMD response39, and, thus, the loss of statistical 
power when controlling for the shear stimulus may be, due, in 
part to high variability in the shear rate AUC data in the present 
study. Nevertheless, our findings of attenuated improvement in 
conduit vessel function in the cigarette smoking trial (Fig. 2B) 
provide new evidence for the potential of cigarette smoking to 
dampen the positive effects of acute exercise on arterial stiffness 
and conduit vessel function. 

We acknowledge experimental considerations that may be 
perceived as limitations to the present study. First, our participants 
were habitual male smokers, which limits our ability to infer 
about potential sex differences or postexercise responses in non- 
smokers. Second, we did not directly assess cardiorespiratory 
fitness in our participants. Given that regular participation in 
physical activity has been reported to attenuate any adverse effects 
of cigarette smoking on vascular function10, future studies should 
explore if individuals with high fitness levels are protected against 
cigarette smoking-induced transient impairment in hemodynamics 
and vascular function following exercise. 

Cigarette smoking immediately after exercise attenuated 
hemodynamic recovery and an improvement in arterial stiffness 
and conduit vessel function in young habitual smokers. Together, 
these findings provide evidence for the adverse effects of cigarette 
smoking on hemodynamic and vascular function during recovery 
from exercise.
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