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Objective: We developed a new computed tomography (CT)-based spatial normalization method and CT template to 
demonstrate its usefulness in spatial normalization of positron emission tomography (PET) images with [18F] fluorodeoxyglucose 
(FDG) PET studies in healthy controls.
Materials and Methods: Seventy healthy controls underwent brain CT scan (120 KeV, 180 mAs, and 3 mm of thickness) and 
[18F] FDG PET scans using a PET/CT scanner. T1-weighted magnetic resonance (MR) images were acquired for all subjects. By 
averaging skull-stripped and spatially-normalized MR and CT images, we created skull-stripped MR and CT templates for 
spatial normalization. The skull-stripped MR and CT images were spatially normalized to each structural template. PET 
images were spatially normalized by applying spatial transformation parameters to normalize skull-stripped MR and CT 
images. A conventional perfusion PET template was used for PET-based spatial normalization. Regional standardized uptake 
values (SUV) measured by overlaying the template volume of interest (VOI) were compared to those measured with 
FreeSurfer-generated VOI (FSVOI).
Results: All three spatial normalization methods underestimated regional SUV values by 0.3–20% compared to those 
measured with FSVOI. The CT-based method showed slightly greater underestimation bias. Regional SUV values derived from 
all three spatial normalization methods were correlated significantly (p < 0.0001) with those measured with FSVOI.
Conclusion: CT-based spatial normalization may be an alternative method for structure-based spatial normalization of [18F] 
FDG PET when MR imaging is unavailable. Therefore, it is useful for PET/CT studies with various radiotracers whose uptake is 
expected to be limited to specific brain regions or highly variable within study population.
Index terms: CT; Template; Spatial normalization; [18F] FDG PET
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INTRODUCTION

Classic method for measuring regional uptake in positron 
emission tomography (PET) images is based on manually 
drawn volume of interest (VOI) on PET images with or 
without a reference to magnetic resonance (MR) images 
overlaid on PET image. Although it is simple and easy, 
PET requires a great deal of manual work that can be 
complicated by inter- and intra-operator variability (1, 2). 
Therefore, most recent PET studies have utilized template 
VOI-based or exploratory voxel-based methods to avoid 
variability. Both VOI-based and exploratory voxel-based 
PET require a spatial normalization step to fit PET images 
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of cognitive dysfunction were excluded. Subjects with 
unexpected lesion in brain MR images were also excluded. 
Finally, a total of 70 subjects were included in this study 
(31 males and 39 females, age 59.7 ± 10.3 years, MMSE 
score 29.3 ± 1.1). Written-informed consents were acquired 
from all included subjects. This study was approved by the 
Institutional Review Board of our institution.

Acquisition of PET/CT and MR Images
In all subjects, axial T1-weighted brain MR images were 

obtained with three dimensional-spoiled gradient-recalled 
sequences at repetition time = 6.8 ms, echo time = 1.6 
to 11.0 ms, flip angle = 20°, 256 x 256 matrix, and slice 
thickness = 1 mm in a 3.0 Tesla scanner (Signa EXCITE, GE 
Medical Systems, Milwaukee, WI, USA).

Brain CT and [18F] FDG PET scans were performed with a 
Biograph 40 TruePoint PET/CT scanner (Siemens Medical 
Solutions; Malvern, PA, USA). Fifty minutes after intravenous 
injection of 375.0 ± 89.5 MBq of [18F] FDG, PET/CT was 
performed. A head holder was applied to minimize the head 
motion during the scan. After brain CT scan for attenuation 
correction, structural imaging (120 KeV, 180 mAs, and 3 mm 
of slice thickness), and 10 minutes of emission scan, 3D 
CT and PET images were reconstructed in 512 x 512 x 110 
matrix with 0.668 x 0.668 x 2 mm voxel size. The ordered-
subsets expectation maximization algorithm (iteration = 
6 and subset = 16) was used for the reconstruction of PET 
images.

Image Processing Steps

Creation of Skull-Stripped CT Template
All image processing steps were performed using 

Statistical Parametric Mapping 8 (SPM8; Wellcome Trust 
Centre for Neuroimaging, London, UK) implemented in 
MATLAB 7.1 (MathWorks, Natick, MA, USA). T1-weighted MR 
images corrected for inhomogeneity were segmented into 
gray matter, white matter, and cerebrospinal fluid (CSF). The 
segments of these three tissue types were binarized with a 
threshold of 0.5 to create mask images. Whole brain mask 
was created by merging gray and white matter masks. Skull-
stripped whole brain MR images were obtained by overlaying 
the whole brain mask images. To minimize the effect of 
skull and surrounding soft tissue on spatial normalization 
(7-9), we normalized skull-stripped whole brain MR images 
to skull-stripped Montreal Neurological Institute (MNI) 
152 MR template using normalization parameters to the 

to template space by using non-linear transformation 
algorithm (3). To accomplish spatial normalization, PET 
images can be directly normalized to ligand-specific 
PET template or indirectly normalized by applying 
transformation parameter with high resolution MR images to 
the MR template. Although spatial normalization using PET 
template is straightforward and robust, it is susceptible to 
local changes of uptake. In contrast, spatial normalization 
based on higher resolution structural MR images is more 
accurate. In addition, it works independently of uptake 
patterns in PET images (3, 4).

During the last decade, PET scanners with computed 
tomography (PET/CT) have become widely available. As CT 
and PET images are acquired sequentially in the same space, 
CT image can be used as a map for attenuation correction as 
well as a structural image to support PET image. Therefore, 
if we can use CT image for spatial normalization of PET 
images, additional structural brain imaging may not be 
necessary.

Two previous studies have reported spatial normalization 
of brain CT image by using skull-stripped or intensity-
transformed CT images (5, 6). Since there is a great 
difference of Hounsfield unit between the skull, brain 
tissue, and air, spatial normalization may be greatly 
influenced by skull in CT images. In addition, the skull 
and surrounding soft tissue may affect the result of spatial 
normalization of MR images (5, 7-9). Therefore, extracting 
brain tissue from the entire CT volume may be an important 
step to achieve optimal spatial normalization results. In 
the present study, we developed a modified technique 
for CT-based spatial normalization by using skull-stripped 
CT template and applied it for spatial normalization of 
[18F] fluorodeoxyglucose (FDG) PET images using healthy 
controls. The objective of this study was to demonstrate 
its usefulness in spatial normalization of PET images by 
comparing it to conventional PET and MR-based spatial 
normalization methods.

MATERIALS AND METHODS

Subjects
From January to June 2010, we enrolled healthy controls 

(age > 40 years) without history or signs of neurological 
illness for the establishment of image database of 
healthy controls. The Korean version of mini-mental state 
examination (MMSE) score (10) was used. Subjects with 
MMSE score less than 24 or those with subjective symptoms 
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whole brain and CSF masks. The whole brain and CSF masks 
of the 70 healthy subjects were averaged to create tissue 
probability maps for segmentation of CT images.

Native CT image has voxel values in Hounsfield unit 
which includes large amount of voxels of air with negative 
values that can disrupt spatial normalization of CT image 
in SPM8 (5). We adjusted the voxel values of CT images 
by adding a minimal voxel value to the entire volume to 
remove negative voxels prior to CT image processing. The 
CT images were coregistered to individual inhomogeneity-
corrected MR images. Mask images for the skull were created 
by binarization of voxels with a Z-score threshold of 1.5 
calculated within the entire volume of each coregistered 
CT image. The coregistered CT images and skull masks were 
spatially normalized by applying the same parameters 
normalized MR images. Spatially normalized CT images 
and skull masks of all 70 healthy controls were averaged 
to create a skull-unstripped CT template image and tissue 
probability map for the skull.

For proper extraction of whole brain with SPM 

segmentation tool, scalp tissue should be removed to reduce 
the number of tissue types. A template mask image which 
included skull, whole brain and soft tissues below eyebrow 
and occiput was designed by manually removing the scalp 
from skull-unstripped CT template. We inversely normalized 
this mask image to individual CT images by using inverse 
normalization parameters derived from spatial normalization 
of original CT images to skull-unstripped CT template. Scalp-
stripped CT images were created and segmented with SPM 
segmentation tool by using tissue probability maps for skull, 
whole brain, and CSF without bias correction. Segments 
for the whole brain were binarized with a threshold of 
0.5 to create whole brain mask. Skull-stripped CT images 
were extracted by using whole brain mask. Skull-stripped 
CT images were coregistered to individual MR images by 
using transformation parameters coregistering original CT 
to MR images. CT images were spatially normalized with 
parameters normalizing MR images. By averaging the skull-
stripped and spatially normalized CT images of the 70 healthy 
controls, we created a skull-stripped CT template for spatial 

Fig. 1. Image processing steps for acquiring skull-stripped CT template. 
(a) Inhomogeneity correction and segmentation of MR, (b) creation of whole brain mask, (c) creation of CSF mask, (d) extraction of whole brain 
with whole brain mask, (e) spatial normalization of whole brain extract to skull-stripped MNI template, (f) normalization of whole brain mask, 
(g) normalization of CSF mask, (h, i) creation of probabilistic template for whole brain and CSF, (j) coregistration to inhomogeneity-corrected 
MR, (k) extraction of skull, (l) spatial normalization of CT coregistered to MR, (m) spatial normalization of skull, (n) creation of probabilistic 
template for skull, (o) creation of CT template, (p) creation of template mask for scalp-stripping, (q) spatial normalization of original CT with 
normalization parameter normalizing CT to CT template, (r) inverse normalization of template mask for scalp-stripping to individual mask by 
using inverse normalization parameter, (s) creation of scalp-stripped CT with individual mask for scalp-stripping, (t) segmentation of scalp-
stripped CT into skull, whole brain and CSF by using skull, whole brain and CSF probabilistic templates, (u) creation of skull-stripped CT with 
whole brain segment, (v) skull stripped CT coregistered to MR, (w) spatial normalization of skull-stripped CT, (x) creation of skull-stripped CT 
template by averaging. CSF = cerebrospinal fluid, MNI = Montreal Neurological Institute
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normalization. The image processing steps for acquiring skull-
stripped CT template is summarized in Figure 1.

Spatial Normalization of PET Images
We normalized [18F] FDG PET images in the following three 

different methods: MR-, CT-, and PET-based. For CT-based 
method, individual CT images were scalp- and skull-stripped 
as described above. These skull-stripped CT images were 
spatially normalized to skull-stripped CT template. Since 
PET images were already coregistered to CT images, we 
applied this normalization parameter directly to PET images 
for spatial normalization. For MR- and PET-based spatial 
normalization, we used skull-stripped MNI MR template 
and MNI perfusion PET template, respectively. Individual 
PET images were coregistered to MR images and spatially 
normalized by using the same parameters used to normalize 
skull-stripped MR images to MR template as described 
above. The image processing steps for spatial normalization 
of PET image were illustrated in Figure 2. One example of 
spatial normalization was demonstrated in Figure 3.

Creation of Individual Specific VOI
We used individual specific VOI derived from FreeSurfer 5.1 

(Massachusetts General Hospital, Harvard Medical School; 
http://surfer.nmr.mgh.harvard.edu) as gold standard 
method to compare regional standardized uptake value (SUV) 
of each spatial normalization method. The T1-weighted MR 
images were resliced to 1 mm isovoxel space within 256 x 
256 x 256 matrix. They were corrected for inhomogeneity, 
processed for skull-stripping, and segmented into gray and 
white matter. Cortical gray matter was parcellated with a 
probabilistic labelling algorithm by inflating the boundary 
between the gray and the white matter with overlaying 
curvature information on the inflated surface (11, 12). 
Subcortical structures were segmented and labeled by 
probabilistic registration technique (13). We obtained 
whole brain mask images with 112 parcellated regions 
after merging anatomically related regions to create VOI 
mask (FreeSurfer-generated VOI; FSVOI) which contained 
7 cortical (frontal, parietal, occipital, temporal, medial 
temporal, cingulate, and insula cortices) and 4 subcortical 
regions (thalamus, caudate, putamen, and cerebellar 
cortex). Steps for applying FSVOI were illustrated in Figure 2.

Fig. 2. Image processing steps for three methods of spatial normalization and measuring regional SUV.
(a) Skull-stripping of original CT image, (b) spatial normalization of skull-stripped CT to skull-stripped CT template, (c) applying transformation 
parameter normalizing CT image for spatial normalization of PET image, (d) skull-stripping of original MR image, (e) spatial normalization of 
skull-stripped MR image to skull-stripped MR template, (f) coregistration of PET image to MR image, (g) applying transformation parameter 
normalizing MR image for spatial normalization of PET image, (h) spatial normalization of PET image with MNI PET template, (i) measuring 
regional SUV with modified AAL VOI template, (j) acquisition of FSVOI with FreeSurfer, and (k) measuring regional SUV by using FSVOI overlaid 
on PET image coregistered to MR. AAL = automated anatomical labeling, FSVOI = FreeSurfer-generated volume of interest, MNI = Montreal 
Neurological Institute, PET = positron emission tomography, SUV = standardized uptake value, VOI = volume of interest
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Measuring Regional SUV Values and Statistical Analysis
By using PMOD 3.1 (PMOD Technologies Ltd., Zurich, 

Switzerland), regional SUV values were measured by 
overlaying a modified automated anatomical labeling (AAL) 
template on PET images spatially normalized by three 
different methods. Individual FSVOI mask images were 
coregistered to PET images by applying the parameters used 
to coregister the resliced MR images created by FreeSurfer 
to individual CT images. Coregistered FSVOI masks were 
then overlaid on individual PET images to measure regional 

SUV values.
In Prism 5 (GraphPad Software, Inc., La Jolla, CA, USA), 

we used correlation analysis between SUV values measured 
with FSVOI and modified AAL VOI template on PET images 
spatially normalized by each normalization method. The 
variability of regional SUV values was estimated with 
coefficient of variation (COV).

A

B

C

Skull-stripped Normalized Normalized PET

Fig. 3. 57-year-old female subject showing results of MR- (A), CT- (B), and PET-based spatial normalization (C).
Segmentation tool in SPM software separated brain from skull and surrounding soft tissues in original MR and CT images, and each skull-stripped 
image can be successfully normalized to each template. All three spatial normalization methods showed similar results. PET = positron emission 
tomography, SPM = Statistical Parametric Mapping

Original
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RESULTS

Regional SUV values calculated by three different 
normalization methods are summarized in Table 1. 
The regional SUV values derived from all three spatial 
normalization methods were underestimated when compared 
to those measured with FSVOI, the gold standard. The 
underestimation bias was slightly greater in the CT-based 
method (MR-based, -1.7% to -15.8%; CT-based, -0.3% to 
-20.5%; PET-based method, -0.4% to -18.1%). The greatest 
difference in SUV value was found in cingulate cortex 
(-15.8% to 18.1%). Regional variability estimated with COV 
was similar in FSVOI for all three normalization methods 
(FSVOI: 15.8% to 19.5%; MR-based: 15.9% to 21.3%; CT-
based: 15.7% to 19.0%; PET-based: 15.7% to 18.3%).

Correlation analysis of regional SUV values measured 
with FSVOI and those measured with three different 

normalization methods are summarized in Table 2 and 
Figure 4, respectivley. The SUV values for the three 
methods of spatial normalization correlated significantly 
(p < 0.0001) with those measured with FSVOI. The MR-
based method showed the best correlation in the temporal 
cortex and cerebellum. The PET-based method showed the 
best correlation in the frontal, parietal, medial temporal, 
cingulate cortices, caudate, putamen, and thalamus. The CT-
based method showed the best correlation in the occipital 
cortex, with intermediate correlation in the caudate, 
putamen, thalamus, and cerebellum. However, there was 
no significant difference in regression coefficients among 
the three different methods, with each method showing 
very high regression coefficients in all regions. In addition, 
regional SUV values derived from MR- and CT-based methods 
and those measured with FSVOI were well correlated 
with those derived from conventional PET-based method 

Table 1. Regional SUV Values of [18F] FDG PET Images Using Three Different Normalization Methods
FSVOI MR-Based CT-Based PET-Based

Mean ± SD Mean ± SD Bias (%) Mean ± SD Bias (%) Mean ± SD Bias (%)
Frontal 4.75 ± 0.83 4.35 ± 0.74 -8.4 4.18 ± 0.70 -12.1 4.31 ± 0.74 -9.3
Parietal 4.38 ± 0.79 4.11 ± 0.74 -6.2 4.06 ± 0.72 -7.3 4.16 ± 0.75 -4.9
Occipital 4.42 ± 0.77 4.20 ± 0.73 -4.8 4.12 ± 0.72 -6.7 4.17 ± 0.72 -5.6
Temporal 4.03 ± 0.70 3.70 ± 0.61 -8.2 3.51 ± 0.58 -12.8 3.61 ± 0.60 -10.4
Medial temporal 3.25 ± 0.51 3.15 ± 0.50 -3.3 3.16 ± 0.50 -2.9 3.22 ± 0.51 -1.1
Cingulate 4.48 ± 0.81 3.77 ± 0.61 -15.8 3.56 ± 0.60 -20.5 3.67 ± 0.65 -18.1
Caudate 4.34 ± 0.84 3.97 ± 0.85 -8.4 4.01 ± 0.76 -7.4 4.05 ± 0.74 -6.6
Putamen 5.10 ± 0.90 4.76 ± 0.86 -6.6 4.81 ± 0.86 -5.6 4.72 ± 0.81 -7.4
Thalamus 4.13 ± 0.67 4.06 ± 0.73 -1.7 4.12 ± 0.72 -0.3 4.11 ± 0.70 -0.4
Cerebellum 3.37 ± 0.54 3.10 ± 0.48 -8.1 2.93 ± 0.46 -13.0 3.00 ± 0.47 -11.1

Note.— SUV values were calculated as regional radioactivity in kBq/mL x body weight in kg/injected dose in MBq. Percent differences 
between mean SUV values of FSVOI and those from each spatial normalization method are shown as bias. FDG = fluorodeoxyglucose, 
FSVOI = FreeSurfer-generated volume of interest, PET = positron emission tomography, SUV = standardized uptake value

Table 2. Correlation Analysis of [18F] FDG PET Regional SUV Values Measured with FSVOI and Those from Three Different 
Normalization Methods

MR-Based CT-Based PET-Based
Slope R2 Slope R2 Slope R2

Frontal 0.897 0.994 0.838 0.987 0.899 0.994
Parietal 0.925 0.989 0.906 0.983 0.945 0.990
Occipital 0.946 0.989 0.926 0.990 0.930 0.990
Temporal 0.872 0.993 0.830 0.991 0.852 0.989
Medial temporal 0.966 0.989 0.958 0.984 0.982 0.991
Cingulate 0.719 0.895 0.702 0.885 0.787 0.961
Caudate 0.974 0.944 0.887 0.963 0.865 0.971
Putamen 0.942 0.966 0.941 0.968 0.886 0.979
Thalamus 1.052 0.931 1.049 0.965 1.024 0.967
Cerebellum 0.884 0.977 0.840 0.972 0.854 0.957

Note.— FDG = fluorodeoxyglucose, FSVOI = FreeSurfer-generated volume of interest, PET = positron emission tomography, SUV = 
standardized uptake value
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A

B

C

D

MR-based CT-based PET-based

Fig. 4. Correlation analysis of [18F] FDG PET regional SUV values measured with FSVOI and those derived from three different 
normalization methods. A. Frontal. B. Parietal. C. Temporal. D. Putamen. FDG = fluorodeoxyglucose, FSVOI = FreeSurfer-generated volume of 
interest, PET = positron emission tomography, SUV = standardized uptake value
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(Supplement Fig. 1 in the online-only Data Supplement).

DISCUSSION

We found that the CT-based spatial normalization method 
was almost comparable to the conventional MR- and PET-
based methods in analyzing [18F] FDG PET images. Although 
all three methods of spatial normalization underestimated 
the regional SUV values compared to those measured with 
FSVOI, a little higher underestimation bias was observed 
in CT-based method. The regional SUV values derived from 
the three spatial normalization methods showed good 
correlation with those measured with FSVOI. Therefore, 
the CT-based spatial normalization can be an alternative 
method for spatial normalization of [18F] FDG PET based on 
structural imaging when MR imaging is unavailable.

Well-designed CT-based spatial normalization method was 
first proposed by Rorden et al. (5). They transformed voxel 
values of native CT images encoded in Hounsfield unit into 
three predefined levels by classifying CSF, brain tissue and 
skull. Thereby, spatial normalization was driven by density 
of brain tissue as well as skull. This method is simple with 
good results. However, as individual variation of skull and 
surrounding soft tissue may introduce a small amount of 
error during the spatial normalization. In addition, that 
method included non-brain tissue for spatial normalization. 
Furthermore, the intensity transformation using that method 
is rather artificial. It has been reported that the removing 
of voxels of non-brain tissues can increase the accuracy 
of spatial normalization (7-9). Therefore, we decided to 
develop a new CT-based spatial normalization method using 
skull-stripped CT template. Instead of transforming voxel 
values into different proportional levels, we transformed 
voxel values linearly by adding minimal values in the entire 
volume to remove negative voxels mostly representing 
air corrupting spatial normalization in SPM (5). Our CT-
based spatial normalization method included two key steps 
for image processing. First, tissue probabilistic templates 
for the skull, whole brain, and CSF were created. Second, 
tissues from scalp-stripped CT image with probabilistic 
templates were classified. Since classic brain extraction tool 
and region-growing technique were unsuccessful for skull-
stripping of CT images, we used segmentation tool included 
in the SPM software. Since CT image did not show clear 
difference of intensity between gray and white matter, we 
classified tissues into three compartments (skull, whole 
brain, and CSF) by using tissue probabilistic templates 

for each tissue type from the tissue masks derived from 
MR segments. However, this procedure failed to segment 
CT images of approximately 30% of subjects whose scalp 
tissues were prominent. By removing scalp tissue with a 
mask inversely normalized to CT image, we were able to 
obtain skull-stripped CT images for all subjects.

The regional SUV values derived from all three spatial 
normalization methods were underestimated by 0.3% to 
20.5% when compared to those derived from FSVOI. The 
underestimation bias was the smallest in the thalamus 
and medial temporal cortex, but was the greatest in the 
cingulate cortex. In this study, we used FSVOI as the gold 
standard for measuring regional SUV values. FreeSurfer 
is a validated tool for segmenting brain into gray and 
white matter. It is also useful for parcellating cortical and 
subcortical structures within gray matter. The FreeSurfer-
generated VOI and FSVOI coregistered to individual PET 
images covered as many gray matter voxels as possible by 
excluding non-gray matter voxels. The regional SUV values 
measured with FSVOI could be approximated to the real 
values when partial volume effect is disregarded. Therefore, 
FSVOI can be the best choice for measuring regional gray 
matter activity which has been used in previous studies (14, 
15). In contrast, the modified AAL template VOI overlaid 
on spatially normalized PET images cannot prevent the 
inclusion of neighboring voxels of white matter and CSF. 
Thus, regional SUV values measured with template VOI were 
inevitably underestimated. This underestimation bias was 
higher in the regions with greater spatial mismatch (e.g., 
cingulate cortex) or with higher probability for including 
non-gray matter tissues within template VOI (e.g., frontal 
and temporal cortices). Although the underestimation bias 
and the regression coefficients were greater in the CT-
based method than in the conventional MR- or PET-based 
methods, the differences of bias were less than 5%. All 
three spatial normalization methods gave similarly high 
regression coefficient values in all regions.

There are several limitations in this study. Firstly, the 
image processing steps required the creation of skull-
stripped CT template, which was much more complicated 
than other methods, thus requiring greater time. Secondly, 
despite greater effort, the CT-based method was still inferior 
to conventional methods in healthy subjects. Thirdly, only 
[18F] FDG PET images of healthy subjects were analyzed in 
this study. Therefore, this CT-based method still needs to 
be validated for subjects in various disease groups using 
different radiotracers. Nonetheless, the CT-based method 
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provided reliable results similar to the other two methods.
One greatest advantage of this CT-based spatial 

normalization technique is that this technique enables 
structure-based spatial normalization for brain PET studies 
of specific subjects for whom structural MR image is 
unavailable due to certain contraindications (e.g., cardiac 
pacemaker, deep brain stimulator implanted state, or 
claustrophobia). Another advantage of this CT-based method 
over PET-based spatial normalization is that we can avoid 
structural distortions that might occur in some specific 
tracers whose uptake is limited to very small areas of the 
brain. In addition, as SPM software was used for most of 
the image processing steps required for the creation of CT 
template and spatial normalization, additional specialized 
software is not required. Therefore, this CT-based spatial 
normalization method will be cost-effective and useful for 
PET/CT studies by avoiding additional MR scan required for 
the acquisition of structural image for spatial normalization.

In summary, the CT-based spatial normalization method 
was almost comparable to the conventional MR- and PET-
based spatial normalization methods in [18F] FDG PET 
studies in healthy controls. The regional SUV values derived 
from all three spatial normalization methods correlated 
significantly with those measured with FSVOI. Therefore, 
this CT-based spatial normalization method could be used 
as a reasonable alternative spatial normalization method 
based on structure. It could be useful for PET/CT studies 
with various radiotracers whose uptake is expected to be 
limited to specific brain regions or highly variable in study 
population. Further study is necessary for the validation of 
this CT-based method in patients with specific diseases and 
in PET studies using various radiotracers.

Supplementary Materials

The online-only Data Supplement is available with this 
article at http://dx.doi.org/10.3348/kjr.2014.15.6.862.
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