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  For successful restoration of visual function by a visual neural prosthesis such as retinal implant, 
electrical stimulation should evoke neural responses so that the information on visual input is properly 
represented. A stimulation strategy, which means a method for generating stimulation waveforms 
based on visual input, should be developed for this purpose. We proposed to use the decoding of visual 
input from retinal ganglion cell (RGC) responses for the evaluation of stimulus encoding strategy. This 
is based on the assumption that reliable encoding of visual information in RGC responses is required 
to enable successful visual perception. The main purpose of this study was to determine the influence 
of inter-dependence among stimulated RGCs activities on decoding accuracy. Light intensity variations 
were decoded from multiunit RGC spike trains using an optimal linear filter. More accurate decoding 
was possible when different types of RGCs were used together as input. Decoding accuracy was 
enhanced with independently firing RGCs compared to synchronously firing RGCs. This implies that 
stimulation of independently-firing RGCs and RGCs of different types may be beneficial for visual 
function restoration by retinal prosthesis.
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INTRODUCTION

  Retinal diseases such as retinitis pigmentosa and age-re-
lated macular degeneration induce gradual loss of vision, 
which can eventually lead to total blindness. A significant 
number of retinal ganglion cells (RGCs) forming the optic 
nerve, however, are often morphologically intact and re-
main functionally viable (Santos et al., 1997). The visual 
neural prosthesis, such as a retinal prosthesis, may be able 
to restore visual function by using electrical pulses to stim-
ulate RGCs to transmit visual information to the brain 
(Majji et al., 1999; Zrenner, 2002; Humayun et al., 2003; Rizzo 
et al., 2003; Merabet et al., 2005).
  For successful restoration of vision, the neural activities 
of electrically stimulated RGCs should contain information 
on spatial and temporal patterns of incoming visual input. 
Thus, it is necessary to determine how to generate electrical 
stimulation for effective sensory information transmission, 
just as the case of cochlear implant. We refer to the method 
of generating electrical stimulation based on the sensory 
input as encoding strategy. Quantitative information on in-
coming visual input can be reconstructed or ‘decoded’ from 

the neural activities of RGCs by spike train decoding algo-
rithms (Warland et al., 1997; Nicolelis, 1998). Using spike 
train decoding, it may also be possible to evaluate the effec-
tiveness of stimulus encoding strategies by comparing the 
actual and estimated input reconstructed from RGC re-
sponses, since a better encoding strategy should provide 
more reliable transmission of information on input stimuli. 
Recently, we established a method for the reconstruction 
of light intensity variation from multiple RGC responses, 
as a preliminary study for the evaluation of encoding strat-
egy (Ryu et al., 2007).
  In this paper, we investigated the influences of inter- 
dependence among the activities of RGCs and types of 
RGCs on the accuracy of decoding visual input. We com-
pared the accuracies of light intensity decoding when the 
group of RGCs showed independently-firing or synchro-
nously-firing characteristics. Inter-dependence among RGC 
activities was identified based on the ensemble response 
characteristics to light stimulus (Meister et al., 1995). 
Usually, nearby cells and the cells with the same firing 
property showed synchronously firing characteristics, and 
cells of different types showed independently firing patterns. 
We used each RGC group separately as the input of the 
decoding algorithm to reconstruct the light intensity varia-
tion, and compared the reconstruction accuracy for various 
light stimuli.
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Fig. 1. Temporal patterns of light 
stimulus intensity variation. Dotted: 
original stimulus, Solid: reconstructed
stimulus by spike train decoding. (A) 
ON-OFF stimulus (ON: 2 s, OFF: 5 s,
decoding from 4 ON RGCs), (B) Ga-
ussian random stimulus (decoding
from 5 ON RGCs). The light intensity 
(y axis) is represented with respect 
to the minimum and maximum inten-
sity (‘0’ and ‘1’ denote the minimum 
and the maximum intensity levels, 
respectively). Frame rate was 1 Hz. 

METHODS

  Details on experimental methods were previously de-
scribed (Cho et al., 2004). Retinas from two dark-adapted 
New Zealand white rabbits (male, weight: ∼2 kg) were iso-
lated after anesthesia. All animal use protocols were ap-
proved by the institutional animal care committee of 
Chungbuk National University (permission number: CA-25). 
Four patches of retina (near the center of visual field) were 
detached and cut to ∼5×5 mm and attached to a planar 
multielectrode array (MEA, Multichannel systems GmbH, 
Germany), so that the retinal ganglion cell layer faced the 
electrodes. The MEA contains 60 circular TiN electrodes 
with 200 μm interelectrode spacing. The radii of electrodes 
were 30 μm, and impedances were about 50 kΩ at 1 kHz. 
The MEA 60 recording system (Multichannel systems GmbH, 
Germany) was used for data acquisition. The data acquis-
ition system consists of a RS-232 interface for the synchro-
nization of stimulus and recording, an integrated 60-channel 
preamplifier and a bandpass filter system (MEA 1060, am-
plification gain: 1200, passband: 10∼3,000 Hz), and a PC. 
Raw data from the MEA were recorded with a sampling 
rate of 25 kHz/channel, stored using data acquisition soft-
ware (MC_Rack, Multichannel systems GmbH, Germany), 
and transformed into single unit spike trains by a spike 
extraction program (Offline Sorter, Plexon inc., TX, USA). 
In most cases, each electrode contained activities from only 
one RGC, although spike sorting was also performed. When 
it was difficult to sort spikes from a single-unit RGC due 
to spike overlap problem, we did not include the data from 
that RGC in data pool for further analysis.
  Continuously-modulated light was generated by a PC 
monitor, and then uniformly presented onto the MEA by 
a LCD beam projector and an inverted microscope (Nikon 
Diaphot, Japan). Stimulus presentation software, PRE-
SENTATION (Neurobehavioral Systems Inc., USA), was 
used for the generation of light intensity variation. The 
maximum light intensity was 1.37 μW/cm2. Two types of 
light intensity modulation were adopted: 1) ON-OFF stim-
ulus: repetition of 2 s on (i.e., highest brightness of the PC 
monitor) and 5 s off (i.e., lowest brightness of the PC mon-
itor) periods, 2) Gaussian random stimulus: random in-
tensity variation following Gaussian distribution (mean: 

70% of maximum intensity, std.: 3% of the mean intensity). 
The frame rate of the random stimulus presentation was 
changed from 1 to 8 Hz to examine the effect of the rate 
of light intensity variation on decoding accuracy. The time 
courses of light intensities are shown in Fig. 1 along with 
the reconstructed waveforms obtained from spike train 
decoding.
  The types of RGCs were identified from response charac-
teristics to repetitive ON-OFF stimulus, based on inspec-
tion of post stimulus time histograms (PSTH) (Nicolelis, 
1998). A simple criterion was used to classify the RGCs into 
three groups; ON, OFF, and ON-OFF cells. If an RGC 
showed a rapid increase in firing rate immediately after 
the application of ON stimulus, it was classified as an ON 
cell. If an RGC showed response characteristics opposite to 
this, it was classified as an OFF cell. The ON-OFF cell ac-
tively responded to both the onset and cessation of light. 
All the RGCs analyzed showed transient, rather than sus-
tained, response characteristics.
  To find the groups of RGCs with independently or syn-
chronously firing characteristics, a cross-correlation analy-
sis of spontaneous activities was performed (Ye et al., 
2008). We used cross-correlogram, which is a standard 
method of estimating the degree to which two spike trains 
are correlated. It is a histogram that shows how the spikes 
from a target cell are distributed in time with respect to 
the spikes from a reference cell (Nicolelis, 1998). Examples 
of cross-correlogram are shown in Fig. 2 ((A): two synchro-
nously firing cells, (B): two independently firing cells). If 
there is an evident peak in the cross-correlogram as the 
two cases shown in Fig. 2A, it is defined that the two cells 
are synchronously-firing cells. When there is no conspicuous 
peak in the cross-correlogram as the two cases shown in 
Fig. 2B, they are regarded as two independently-firing cells. 
Based on this, we formed cell groups consisting of three 
RGCs for the comparison of the independently-firing and 
synchronously-firing RGC groups. First, one RGC was chos-
en as a reference cell. Two cells showing strong correlation 
with the reference cell were selected. If these two cells 
showed strong correlation with each other also, they and 
the reference cell were collected as synchronously firing cell 
group. A strong correlation was defined as the peak amplitude 
of the cross-correlogram being higher than 4 spikes/bin, and 



Representation of Light-intensity by Independently Firing RGCs 223

Fig. 2. Examples of cross-correlo-
grams for two synchronously-firing (A),
and independently-firing (B) RGCs. 

Fig. 3. Structure of an optimal linear decoding filter for multiple RGC spike trains. 

the width of the peak being smaller than 10 ms (−5∼＋5 
ms from the center). Similar grouping was performed to 
form independently firing RGC groups by selecting two cells 
that showed no correlation between each other, as well as 
with the reference cell.
  Spike train decoding is a procedure to reconstruct, or to 
‘decode’ quantitative information encoded in the neural re-
sponses (spike train). Here we used an optimal linear filter 
for spike train decoding (Kim et al., 2006). From the time 
series of light intensity variation and RGC spike train re-
sponses, the coefficients of an optimal linear filter can be 
obtained by the least squares method (Kim et al., 2006). 
The structure of this decoding filter is illustrated in Fig. 3. 
Here the visual input, i.e. light intensity, is estimated from 
multiunit RGC firing rates by linear regression. 
  Spike trains were transformed into firing rate time series 
by counting the number of spikes within 50 ms time bins. 

The time series of firing rate and stimulus waveform are 
represented as matrices R and s as explained below to ob-
tain the filter coefficients by the least squares method, 
which determine the linear mapping of Fig. 3. The matrix 
R consists of multiple RGC responses and is expressed as 
follows:
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  Here rp(i) is the firing rate of the pth unit in the ith time 
bin and the length of time bin was fixed at 50 ms. L denotes 
the length of the training data. M and N are the number 
of filter taps (i.e., the number of delay elements in Fig. 3), 
and the number of units, respectively. s is a vector repre-
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Fig. 4. Variation of the decoding accuracy as 
a function of the number of filter taps. (A) 
ON cells (1~4 cells), (B) OFF cells (1∼4 
cells), (C) 2 ON cells and 2 OFF cells used 
together for the decoding. Each data point 
was obtained from 3 repeated trials of 
decoding from 100 s data. Error bars denote 
standard error.

senting the true stimulus (i.e. light intensity variation) and 
can be written as:

 ]1)-(     )1(  )0([  TLsss L=s       (2)

  The coefficients of this filter, f, are obtained by the 
least-squares methods as follows (Warland et al., 1997; Kim 
et al., 2006)
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  Here, fp(j) corresponds to the jth coefficient of the linear 
filter whose input is the firing rates of the pth RGC. From 

available recordings, the first half of the data was used for 
training the decoding filter, i.e. for the calculation of filter 
coefficients, and the other half was used for the reconstruc-
tion. Once the filter coefficients were obtained, the light 
stimulus intensity was reconstructed or ‘decoded’ as follows:
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  Here, u(i) is the estimated value of input stimulus at the 
ith time bin. The accuracy of decoding can be quantified by 
the similarity between the original and decoded light in-
tensity waveforms. Thus, to measure the similarity which 
provides the index of decoding accuracy, we calculated the 
correlation coefficient between the two waveforms, as did 
Wessberg et al. (2000).
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Fig. 5. (A) Variation of the decoding 
accuracy as a function of frame rate, 
for Gaussian random stimuli obtained
from 21 repeated trials (3 trials×7 cell
groups), (B) Comparison of the deco-
ding results of synchronously- firing 
and independently-firing RGCs, for 
Gaussian random stimuli (8 stimuli×
3 trials×7 cell groups).

RESULTS

  Neural activities from 75 RGCs could be reliably identi-
fied from four retinas (average number of RGCs per patch: 
18.75±7.67). Typical results of reconstructed light intensity 
waveforms obtained from spike train decoding are shown 
in Fig. 1, along with original ones. Fig. 4 shows the correla-
tion between the actual and decoded ON-OFF stimuli as 
a function of the number of filter taps, M. Each data point 
in Fig. 4 was obtained from 3 repeated trials of decoding 
from 100 s data. The errorbars denote standard error. The 
increase in decoding accuracy was saturated at 100∼140 
filter taps. Regardless of the cell type, the correlation be-
tween actual and reconstructed stimuli increased and be-
came saturated as more cells were employed (Fig. 4A, B). 
Furthermore, more accurate decoding was possible when 
both ON and OFF cells were used together (Fig. 4C). When 
both ON and OFF cells were adopted, further increase of 
decoding accuracy was observed up to about 10 cells (not 
shown). This result implies that more reliable transmission 
of visual information is feasible when different types of 
RGCs are simultaneously stimulated.
  Significant differences were observed in decoding accu-
racies for 4 ON cells compared to 2 ON cells＋2 OFF cells 
(t-test, p=0.0294). These results imply that more reliable 
transmission of visual information is feasible when differ-
ent types of RGCs are simultaneously stimulated. Also from 
the comparison of 4 OFF cells and 2 ON cells＋2 OFF cells, 
we could observe statistically significant difference (t-test, 
p=0.0242).

  To compare the decoding accuracies between the cases 
of adopting independently- and synchronously-firing cell 
groups, seven RGCs groups were identified for each case. 
More accurate decoding was possible for independently-fir-
ing RGC groups, compared to synchronously-firing groups. 
Fig. 5 shows the decoding results for Gaussian random 
stimuli obtained from 21 repeated trials per each frame 
rate (3 trials×7 cell groups) of decoding from 30 s data at 
various frame rates which cause the change of the rate of 
light intensity variation. As shown in Fig. 5 the decoding 
accuracy was generally higher when independently-firing 
cell groups were used for spike train decoding, at all frame 
rates. Statistical comparison showed that the correlation 
coefficient between the actual and reconstructed stimuli 
was larger when independently-firing RGC groups were 
adopted for decoding, compared to the case of using syn-
chronously-firing groups, and this was nearly statistically 
significant (t-test, p＜0.001).

DISCUSSION

  For successful restoration of impaired visual function by 
visual neural prosthesis such as a retinal implant, it is nec-
essary to determine how to generate electrical stimulation 
for reliable transmission of visual information (Stett et al., 
2000; Sekirnjak et al., 2006). We suggest decoding of visual 
input information from RGC responses as a method for 
evaluating the effectiveness of the stimulus encoding 
strategy. In this paper, we performed a first-round study 
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using light stimulation instead of electrical stimulation, 
and focused on the investigation of influence of the types 
of RGCs and correlation among RGCs on the light intensity 
decoding accuracy. Light stimuli intensity variations were 
estimated using an optimal linear filter obtained from given 
stimulus intensity variation and multiple single unit spike 
trains from RGCs. The decoding accuracy depended on RGC 
type and their inter-dependence. More exact decoding was 
possible when different RGC types were used together, and 
when the independently-firing RGC groups were used, com-
pared to synchronously firing groups.
  It can be stated that successful perception of visual in-
formation by electrical stimulation of retinal implant is ex-
pected when sufficient information on visual input is prop-
erly encoded within the neural responses of RGCs evoked 
by stimulation. Thus, better restoration of visual function 
is possible when we can more accurately decode the in-
formation on visual input from the RGC spike trains. 
Although visual information is perceived in the brain, the 
minimization of information loss at the transmission site 
(i.e., retina) should be a prerequisite for successful in-
formation retrieval at the receiving site (i.e., the brain). 
From spike train decoding, the accuracy of information 
transfer can be quantified, and a quantitative index on the 
effectiveness of stimulus encoding strategy can be obtained.
  More accurate decoding was possible as more cell activity 
is used as to decode the input. The accuracy of decoding 
simple ON-OFF intensity variation became saturated when 
it was decoded from more than four cells if they were of 
same type. However, the use of both ON and OFF cells fur-
ther increased performance. From this result, we infer that 
cells with different types (ON cells and OFF cells) convey 
independent information so that simultaneous stimulation 
of them may result in superior decoding accuracy. We used 
simple criteria for RGC classification, but further detailed 
criteria should be adopted for a more comprehensive study 
on how RGC types affect decoding accuracy. Thorough char-
acterization of the spatiotemporal receptive field of RGCs 
may be helpful for this purpose (Brown et al., 2000).
  The investigation of the effects of interdependence among 
the RGC activities on the accuracy of spike train decoding 
revealed that stimulations of independently-firing cell 
groups and RGCs of different types are more advantageous 
for reliable transmission of visual information to the brain. 
From this, we infer that superior perception of visual in-
formation may be obtained by stimulating independently 
firing RGC groups and the RGCs of different types, when 
retinal implants would be implemented. Two independently 
firing neurons may convey independent information on in-
put, whereas two neurons with closely correlated firing 
characteristics may carry redundant information. Thus it 
is plausible that more exact decoding is expected from the 
independently-firing RGC groups. 
  This preliminary postulation should be tested further. We 
only considered the encoding of temporal in this study. 
Further study is necessary for the consideration of spatial 
information as well as temporal information. For the devel-
opment of the encoding strategies for electrical stimulation 
pulse generation in retinal implants, studies of electrically 
stimulated RGC responses are necessary. Modulations of 
stimulus amplitude, duration, and pulse rate are candi-
dates for the modulation when encoding external visual in-
formation into electrical pulse trains, and thus, the decod-
ing accuracy should be investigated while changing these 
parameters.

  Many techniques have been recently proposed for spike 
train decoding (Brown et al., 2004) and more complicated 
algorithms may be used such as multilayer neural networks 
(Warland et al., 1997). However, the optimal linear filter 
is advantageous in that a unique solution for the given 
training data is obtained by a closed-form equation. The 
use of iterative learning does not give identical solutions 
for each training session. As suggested by Field and Chi-
chilnisky (2007), a better model of the nature of visual stim-
ulus encoding in the retina may help obtain an optimal de-
coding method.
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