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Knockdown of RCAN1.4 Increases Susceptibility to FAS-mediated
and DNA-damage-induced Apoptosis by Upregulation of p53 Expression
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Despite the potential importance of the human regulator of calcineurin 1 (RCAN-1) gene in the
modulation of cell survival under stress, little is known about its role in death-inducing signal
pathways. In this study, we addressed the effects of RCAN1.4 knockdown on cellular susceptibility
to apoptosis and the activation of death pathway proteins. Transfection of siRNAs against RCAN1.4
resulted in enhanced Fas- and etoposide-induced apoptosis, which was associated with increased
expression and translocation of Bax to mitochondria. Our results suggest that enhanced expression
and activation of p53 was responsible for the upregulation of Bax and the increased sensitivity to
apoptosis, which could be reversed by p53 knockdown. To explain the observed upregulation of p53,
we propose a downregulation of the ubiquitin ligase HDM2, probably translationally. These findings
show the importance of appropriate RCAN1.4 expression in the modulation of cell survival and reveal

a link between RCAN1.4 and p53.
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INTRODUCTION

The human regulator of calcineurin 1 (RCAN-1) gene
(also known as Down syndrome candidate region-1, Adapt78,
calcipressinl, or modulatory calcineurin-interacting protein
1) was first isolated near the portion of the Down Syndrome
Critical Region on chromosome 21, which was purported
to contain genes responsible for many features of Down syn-
drome (Fuentes et al., 1995). The RCAN-1 gene consists of
seven exons, and exons 1~4 can be alternatively spliced
to yield four transcripts (RCAN1.1 through RCAN1.4).
Among these, only RCAN1.1 and RCAN1.4 have been de-
tected in various tissues and cells (Fuentes et al., 1997).
Expression of each isoform is differently regulated. RCAN1.4
transcription is inducible by diverse stimuli including growth
factors, cytokines, and oxidative stress, whereas RCAN1.1
expression is likely to be constitutive (Harris et al., 2005).

Abnormal expression of RCAN-1 has now been associated
with Alzheimer’s disease (Ermak et al., 2001) and Down
syndrome (Fuentes et al., 2000), which are commonly char-
acterized by neurodegeneration. However, whether elevated
expression of this gene is causally implicated in the patho-
logical changes of these disorders remains unclear (Harris
et al., 2005; Head et al., 2007). Forced induction of RCAN1.1
protects neuronal cells against potentially lethal calcium
and oxidant challenges (Ermak et al., 2002). Consistently,
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upregulation of RCAN-1 expression has been associated
with protection against thapsigargin-induced apoptosis
(Zhao et al., 2008). In the same context, T helper type 1
cells from RCAN-1"'" mice showed enhanced apoptosis
(Ryeom et al., 2003; Sanna et al., 2006). Similarly, targeted
deletion of both RCAN1.1 and RCAN1.4 induces apoptosis
of endothelial cells rather than proliferation by the stim-
ulation of vascular endothelial cell growth factor (Ryeom
et al., 2008). These findings suggest a positive role for RCAN-1
in cell survival under certain conditions.

In contrast to these reports, primary neurons obtained
from RCAN-1"'" mice display an increased resistance to
cell death under oxidative stress. Moreover, RCAN-1 over-
expression in these cells increases susceptibility to oxida-
tive stress, which has been suggested as a potential patho-
genic mechanism in neurodegeneration of Alzheimer’s dis-
ease and Down syndrome (Porta et al., 2007). Taken together,
these conflicting reports suggest a complex role for dosages
of this gene in cell survival or death under stress conditions.

The tumor suppressor p53 is a transcription factor with
a central role in the regulation of apoptosis, particularly
under stress conditions. More than 100 genes are known
to be directly activated by p53, many of which promote
apoptosis (Vousden and Lu, 2002). One key negative regu-
lator of p53 is the mouse double minute 2 (Mdm2) protein
(Kubbutat et al., 1997; Kubbutat et al., 1998). MDM2 and
p53 regulate each other through an autoregulatory feed-
back loop that maintains low p53 activity in nonstressed

ABBREVIATIONS: RCAN-1, regulator of calcineurin 1; MDM2,
mouse double minute 2; Smac, second mitochondria-derived activator
of caspase; Cox IV, cytochrome oxidase subunit IV; Bad, Becl-2-
associated death promoter; Bax, Bcl-2-associated X protein; ATM,
ataxia telangiectasia mutated kinase.
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cells (Wu et al., 1993). The p53 operates in transcription
of the MDM2 gene and, in turn, the MDM2 protein inhibits
many of the biochemical activities of p53 (Prives, 1998):
MDM2 binds to the p53 transactivation domain and di-
rectly inhibits its transcriptional activity, exports p53 out
of the nucleus, and promotes proteasome-mediated degra-
dation of p53 by functioning as an E3 ubiquitin ligase. Thus
the balance between MDM2 and p53 is determinative to
cell survival under stress condition.

In this study, we showed that knockdown of RCAN1.4
increases cellular susceptibility to apoptosis induced by Fas
ligand or genotoxic stress caused by etoposide, which was
coincident with upregulation of p53 and downregulation of
MDM2 expression.

METHODS
Chemicals and antibodies

Etoposide was purchased from Calbiochem (San Diego,
CA). An activating anti-Fas antibody (clone CH11) was pur-
chased from Millipore (Temecula, CA). Antibodies for cas-
pase-3, -8 (1C12), and -9, cytochrome c¢ (136F3), PARP-1
(46D11), Bax, Bad, p53, phospho-p53 (Ser-15), and phos-
phor-ATM (Ser-1981) were purchased from Cell Signaling
Biotechnology (Beverly, MA). An anti-HDM2 (human ortho-
log of MDMZ2) antibody was obtained from Santa Cruz
Biotechnologies (Santa Cruz, CA).

Cell culture

U8TMG cells (human glioblastoma cells; American Type
Culture Collection) were maintained in minimum essential
medium supplemented with 0.1 mM nonessential amino
acids, 1.0 mM sodium pyruvate, and 10% fetal bovine serum
under an atmosphere of 5% COs at 37°C.

Plasmid construction

A full-length human homologue of MDM2 (wt-HDMZ2)
and its deletion mutant encoding amino acids 1~440
(HDM2440A) were amplified from a ¢cDNA purchased from
KRIBB (Daejeon, Korea) and subcloned into pcDNAS3.1 us-
ing the Directional TOPO Expression Kit (Invitrogen). We
engineered a Cys-to-Ala substitution at the zinc-coordinat-
ing residue C464 in wt-HDM2 (HDM2C464A) using the
QuikChange Site-Directed Mutagenesis Kit (Stratagene).
These mutant proteins are stabilized because of a lack of
self-ubiquitination and degradation (Fang et al., 2000). The
insert sequences of all constructs were confirmed by
sequencing. Plasmid transfection was performed using
FuGENEGHD (Roche) according to the manufacturer’s in-
structions.

RNA interference

Small interfering RNAs targeting sequences on exon 4
(siDSCR1*®) and 3’ UTR (siDSCR1"***) regions of RCAN1
mRNA are 5-CUGUGUGGCAAACAGUGAUATAT-3', and
5'-GUAUCACCUUUCCCAGAUUATAT-3', respectively. An
siRNA targeting p53 mRNA was purchased from Santa
Cruz Biotechnologies (Santa Cruz, CA). Cells (3x10°/well in
a 6-well culture dish) were transfected with the siRNA (40
pmol/well in a 6-well plate) using Lipofectamine RNAIMAX

(Invitrogen) according to the manufacturer’s instructions.
Real-time quantitative RT-PCR analysis

The mRNA from the cells was prepared using the RNeasy
Plus Mini Kit (Qiagen, Germany) according to the manu-
facturer’s instructions. Transcriptional levels of p53 and
HDM2 were determined by a one-step quantitative RT-PCR
protocol using the FullVelocity SYBR® Green QRT-PCR
Master Mix (Stratagene) and an iQ5 Real-Time PCR
Detection System (Bio-Rad). Primers for p53, MDM2, and
GAPDH were as follows: p53 sense, 5'"TCAACAAGATGTT-
TTGCCAACTG-3', and antisense, 5'-ATGTGCTGTGACTG-
CTTGTAGATG-3'; MDM2 sense, 5'-GGAGCAGGCAAATG-
TGCAATACCA-3', and antisense, 5'-ATGGCTTTGGTCTA-
ACCAGGGTCT-3'; and GAPDH sense, 5'-TGATGACATC-
AAGAAGGTGG-3', and antisense, 5'-GGCCTCCAAGGAG-
TAAGAAA-3'.

Luciferase assay

A p53 promoter-luciferase reporter plasmid (p53-Luc)
was obtained from Stratagene (La Jolla, CA) and a Renilla
luciferase reporter plasmid (pTK-Luc) from Promega (Madi-
son, WI). Cells (5x10*well in a 24-well plate) were trans-
fected with 10 pmol of siRNA using Lipofectamine RNAIMAX.
After 24 h, the cells were transfected with 0.4 g of p53-Luc,
and 0.1 x#g of pTK-Luc using FuGENEG6HD (Roche).
Twenty-four hours after the final transfection, luciferase
activity was measured with a MiniLumat luminometer
(Berthold Technologies GmbH, Bad Wildbad, Germany) us-
ing a Dual-Luciferase reporter assay system (Promega) ac-
cording to the manufacturer’s instructions.

Caspase activity

The cytosolic enzymatic activity of caspase-3, -8, and -9
was measured essentially as described in the manufac-
turer’s protocol (Caspase-Glo Assay, Promega). Cells were
transfected with siRCANs or a negative control siRNA.
Forty-eight hours after the transfection, cells were treated
with activating anti-Fas antibody for 6 h or etoposide for
16 h under serum-free conditions. Subsequently, cells were
incubated for 30 min at room temperature with an equal
volume of caspase-specific substrates (Ac-DEVD-pNA for
caspase-3, Ac-LETD-pNA for caspase-8, and Ac-LEHD-pNA
for caspase-9) in the buffer provided. The amount of light
emitted was measured using a Victor3 (PerkinElmer, USA).

Cell apoptosis assay

Cells were suspended using 0.05% trypsin-EDTA and
washed with phosphate-buffered saline (PBS) by centrifu-
gation at 3,000 g for 5 min. The cells were then resuspended
in the binding buffer (10 mM HEPES, pH 7.4, 140 mM
NaCl, and 2.5 mM CaClg) and incubated with FITC-con-
jugated Annexin V and propidium iodide (PI) (Annexin
V-FITC Kit; Roche Applied Science), according to the manu-
facturer’s protocol. The numbers of apoptotic cells were
monitored with a FACSCalibur flow cytometer (BD, USA).

Mitochondria isolation

Mitochondria were isolated using a mitochondria isolation
kit (MITO-ISO1; Sigma) following the manufacturer’s rec-



Knockdown of RCAN1.4 Increases Susceptibility to Apoptosis 485

ommended conditions. Briefly, cells were collected and ho-
mogenized by passage 5 times through a 26-gauge needle
in extraction buffer (50 mM HEPES, pH 7.5, 1 M mannitol,
350 mM sucrose, and 5 mM EGTA). The homogenate was
centrifuged at 600 g for 5 min at 4°C to separate out the
nuclear pellet. Then, the supernatant was centrifuged at
11,000 g for 10 min at 4°C for separation of the mitochon-
drial pellet from the cytosolic fraction. The pellet was re-
suspended and spun again at 11,000 g for 10 min. Cox IV
was used to confirm the identity of the mitochondrial
fraction. a-tubulin was used to show the absence of cytosol
contamination.

Western blot analysis

Immediately after the treatments were completed, cultures
were lysed in an appropriate volume of lysis buffer (50 mM
Tris pH 7.5, 150 mM NaCl, 1% Triton X-100, 5 mM sodium
fluoride, 1 mM sodium orthovanadate, and protease inhibitor
mixture). After insoluble material had been removed by
centrifugation, the supernatants were mixed with 3x Laemmli
sample buffer and denatured for 5 min at 90°C. The pro-
teins were separated by SDS-PAGE (7% or 12%) and trans-
ferred to nitrocellulose membranes. The membranes were
blocked for 1 h at room temperature in 1% (w/v) Hammersten-
grade casein in PBS containing 0.05% Tween 20 followed

by immunoblotting with appropriate antibodies in 0.5%
casein in PBS. The blots were incubated with horseradish
peroxidase-conjugated anti-IgG secondary antibody (Sigma),
washed three times with PBS containing 0.05% Tween 20,
and then visualized using the SuperSignal West Dura
chemiluminescence substrate (Pierce). The band intensity
was analyzed using an LAS-3000 image analyzer (Fujifilm,
Tokyo, Japan).

RESULTS

RCAN1.4 knockdown enhances anti-Fas antibody- or
etoposide-mediated apoptosis of USTMG cells

Because the level of RCAN-1 is associated with cell death
under stressful conditions, we examined the effect of sup-
pressing its expression on cell response to apoptosis-induc-
ing stimuli. For this, we designed siRNAs targeted to two
different RCAN1.4 mRNA sites (siRCAN*” and siRCAN').
Transfection of SiRCAN™ or siRCAN"* into U87-MG cells
resulted in an approximately 80% and 90% reduction in
RCAN1.4 mRNA levels, respectively, as reported previously
(Lee et al., 2009). Treatment with anti-Fas antibody (clone
CH-11) for 5 h induced apoptosis, and early apoptotic cells
were quantified by FACS analysis of Annexin V- and PI-
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stained cells. Among control siRNA- and siRCAN"**®.trans-
fected cells, 11.6% and 20.2%, respectively, were Annexin
V positive, suggesting an enhanced Fas-mediated apoptosis
by RCAN1.4 knockdown (Fig. 1A). Similarly, RCAN1.4
knocked-down cells exhibited increased cleavage of cas-
pase-3, -8, and -9 to active products, and PARP-1 to an
85-kDa fragment in an siRNA dose-dependent manner after
treatment with anti-Fas antibody (Fig. 1B). Genotoxic stress
caused by treatment with etoposide yielded similar results
(data not shown). In addition, enhanced activation of cas-
pase-3, -8, and -9 was detected in the in vitro assay using
cell lysates from RCAN1.4 knocked-down cells after Fas an-
tibody or etoposide treatments (Fig. 1C).

RCANI1.4 knockdown enhances mitochondria-mediated
apoptosis

In a further attempt to investigate the molecular mecha-
nism underlying RCAN1.4 knockdown-mediated enhance-
ment of apoptosis, we examined the involvement of the mi-
tochondria-related apoptosis molecules, cytochrome ¢ and
Smac. Western blot analysis showed that siRCANs strongly
enhanced the release of these molecules from mitochondria
to cytosol after anti-Fas antibody or etoposide treatments
(Fig. 2A). To further confirm the importance of mitochon-
dria in the induction of apoptosis, we examined the involve-
ment of Bad and Bax, the best-characterized Bel-2 family
proteins involved in the regulation of apoptotic cell death.
Translocation of these proteins from cytosol to mitochondria
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Fig. 4. RCAN1.4 knockdown increases p53 expression while decreasing HDM2 expression. (A) Forty-eight hours after transfection with
three doses of siRCAN?? (5, 20, or 40 pmol/well in a 6-well plate), whole lysates from the cells were subjected to immunoblot analysis
for the indicated proteins. (B, C) Forty-eight hours after transfection with siRCAN®, p53 and HDM2 transcript levels were measured
by real-time RT-PCR. (D) Twenty-four hours after transfection with siRCAN*® or siCon, cells were transfected with a vector containing
wild-type (wt-HDM2) or mutants (C464A and 440A) of HDM2. Twenty-four hours after the final transfection, whole lysates from the cells
were subjected to immunoblot analysis with an antibody specific to HDM2.

increases outer mitochondrial membrane permeabilization,
allowing the apoptotic effectors cytochrome ¢ and Smac to
leak from the mitochondria (Hsu et al., 1997; Wolter et al.,
1997). As Fig. 2B shows, translocation of Bax to mitochon-
dria was enhanced in RCAN-1.4 knocked-down cells com-
pared with control cells, while translocation of Bad did not
differ between the two groups.

An elevated p53-Bax axis is responsible for the en-
hanced response to apoptosis

Western blot analysis of whole cell lysates revealed that
transfection with siRCANs upregulated expression of Bax
and p53, while HDM2 expression was downregulated in a
steady state and after anti-Fas antibody or etoposide treat-
ments (Fig. 3A). Furthermore, the RCAN1.4 knockdown en-
hanced etoposide-mediated phosphorylation at serine 15 of
p53, which is associated with functional activation of p53
in DNA-damaged cells, suggesting increased activation of
p53 by RCAN1.4 knockdown. To confirm this, we carried
out a promoter assay to evaluate whether knockdown of
RCAN1.4 increased the transcriptional activity of p53. As
Fig. 3B shows, the luciferase activity in siRCAN*"-transfected
cells was elevated 3-fold compared to control. Because p53
transcriptionally regulates Bax expression (Miyashita et
al., 1994), we next tested whether increased p53 activation
was responsible for Bax expression upregulation in RCAN1.4
knocked-down cells. Cotransfection of siRNA against p53
blocked the increased Bax expression (Fig. 3C). In addition,
p53 knockdown attenuated etoposide-induced cleavage of cas-
pase-3 and PARP-1 after treatment with etoposide (Fig. 3D).
These results suggest that elevated expression of p53 in
RCAN1.4 knocked-down cells is responsible for the enhanced
apoptosis.

Notably, RCAN1.4 knocked-down cells showed attenu-
ated etoposide-mediated phosphorylation of ATM (Fig. 3A),
which acts as an upstream kinase for serine 15 of p53 in
response to DNA damage (Banin et al., 1998; Canman et
al., 1998). This result suggests that the accentuated phos-

phorylation of p53 in RCAN1.4 knocked-down cells is not
attributable to increased DNA damage compared to control
cells after etoposide treatment.

RCAN1.4 knockdown decreases HDM?2 expression

We next confirmed that transfection of siRCAN® in-
creased pb3 expression while decreasing HDM2 levels in
a dose-dependent manner (Fig. 4A). To test how knockdown
of RCAN1.4 affects p53 and HDM2 expression at the tran-
scriptional step, we examined mRNA levels of these pro-
teins using real-time PCR analysis. In contrast to protein
levels, HDM2 mRNA levels were elevated by knockdown
of RCAN1.4, while p53 mRNA levels remained unchanged
(Fig. 4B and 4C). Because HDM2 negatively regulates the
protein stability of p53, we addressed the mechanism re-
sponsible for the low HDM2 protein level in spite of its high
transcription. Expression vectors carrying metabolically
stable mutants of HDM2 were transfected into U87-MG
cells. The protein expression of these mutants was higher
than in the wt-HDM2. However, RCAN1 knockdown atte-
nuated all protein expression to a similar extent (Fig. 4D),
suggesting that the low expression of HDM2 is not attribut-
able to its protein instability.

DISCUSSION

Although RCAN1 expression levels have been associated
with cell survival under stress, the functional role of this
protein in death-inducing signaling remains unclear. In this
study, we demonstrated that RCAN1.4 knockdown increases
susceptibility of U87-MG cells to anti-Fas antibody- and
etoposide-induced apoptosis. This finding is in accordance
with those of previous reports observing increased apopto-
sis in CD4" T cells from RCAN1-null mice after CD3 stim-
ulation (Ryeom et al., 2003). McKeon and colleagues sug-
gested that the elevated expression of Fas ligand underlies
a mechanism for the cell death seen in the RCAN1-deficient
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T cells (Ryeom et al., 2003). However, this idea is not appli-
cable in our case because enhanced apoptosis was also ob-
served under genotoxic stress caused by etoposide. On the
other hand, Bad activation resulting from enhanced de-
phosphorylation by hyperactivated calcineurin has been
proposed as a mechanism for the apoptosis observed in vas-
cular endothelial cells from RCAN1-deficient mice (Ryeom
et al., 2008). Because RCAN1 is known as an endogenous
inhibitor of calcineurin (Fuentes et al., 2000; Rothermel et
al., 2000), this explanation is plausible for our case. However,
we observed no increase in Bad translocation to mitochon-
dria in RCAN1.4 knocked-down cells.

On the other hand, our results showed increased ex-
pression of the pro-apoptotic Bel-2 protein Bax and its trans-
location to mitochondria, resulting in the more pronounced
leaking of apoptotic effectors in RCAN1.4 knocked- down
cells. Increased Bax expression was the result of increased
activation of p53, a positive transcriptional regulator of Bax.
Although we detected upregulation of p53 protein expre-
ssion, mRNA levels were not elevated in RCAN1.4 knocked-
down cells compared with control cells. Thus, we did not
completely solve the mechanism by which RCAN1.4 knock-
down increases p53 protein levels in this study, but our
results indicate downregulated HDM2 levels as a possible
explanation for stabilization of the p53 protein.

HDM2 mRNA levels were higher by about 2-fold in
RCAN1.4 knocked-down cells compared with control cells.
Increased p53 activation may be responsible for this in-
crease because HDM2 is a transcriptional target of p53
(Barak et al., 1993). In studies to test the protein stability
of HDM2, we found no enhanced degradation of HDM2 pro-
tein (data not shown). In addition, RCAN1.4 knockdown al-
so downregulated expression of metabolically stabilized
mutants of HDM2. Thus, low HDMZ2 levels were not the
result of inhibition of its transcription.

Recently, we reported that knockdown of RCAN1.4 results
in downregulation of global translation (Lee et al., 2009)
when translation of some susceptible mRNAs is preferen-
tially inhibited. In this context, HDM2 mRNA is considered
as a “weak” mRNA that is outcompeted by “strong” mRNAs
when the rate of translation initiation is reduced (De
Benedetti and Graff, 2004).

This hypothesis and other possible mechanisms for stabi-
lization of p53 protein, including acetylation, methylation,
and phosphorylation, remain to be studied. In summary,
the results we have presented here establish the impor-
tance of proper expression of RCAN1.4 in cell survival un-
der apoptosis-inducing conditions and reveal a link between
RCAN1 and p53.
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