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  K＋-Cl−-cotransport (KCC) has been reported to have various cellular functions, including 
proliferation and apoptosis of human cancer cells. However, the signal transduction pathways that 
control the activity of KCC are currently not well understood. In this study we investigated the possible 
role of phospholipase A2 (PLA2)-arachidonic acid (AA) signal in the regulatory mechanism of KCC 
activity. Exogenous application of AA significantly induced K＋ efflux in a dose-dependent manner, 
which was completely blocked by R-(＋ )-[2-n-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H- 
inden-5-yl]oxy]acetic acid (DIOA), a specific KCC inhibitor. N-Ethylmaleimide (NEM), a KCC activator- 
induced K＋ efflux was significantly suppressed by bromoenol lactone (BEL), an inhibitor of the calcium- 
independent PLA2 (iPLA2), whereas it was not significantly altered by arachidonyl trifluoromethyl-
ketone (AACOCF3) and p-bromophenacyl bromide (BPB), inhibitors of the calcium-dependent cytosolic 
PLA2 (cPLA2) and the secretory PLA2 (sPLA2), respectively. NEM increased AA liberation in a dose- 
and time-dependent manner, which was markedly prevented only by BEL. In addition, the NEM- 
induced ROS generation was significantly reduced by DPI and BEL, whereas AACOCF3 and BPB did 
not have an influence. The NEM-induced KCC activation and ROS production was not significantly 
affected by treatment with indomethacin (Indo) and nordihydroguaiaretic acid (NDGA), selective 
inhibitors of cyclooxygenase (COX) and lipoxygenase (LOX), respectively. Treatment with 5,8,11,14- 
eicosatetraynoic acid (ETYA), a non-metabolizable analogue of AA, markedly produced ROS and 
activated the KCC. Collectively, these results suggest that iPLA2-AA signal may be essentially involved 
in the mechanism of ROS-mediated KCC activation in HepG2 cells.
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INTRODUCTION

  Since K＋-Cl−-cotransport (KCC) has been first described 
in red blood cells as a swelling-activated K＋ efflux mecha-
nism (Lauf et al., 1992; Cossins and Gibson, 1997), func-
tional and physiological evidence has also shown for the 
existence of KCC in various types of tissues (Adragna et 
al., 2004), such as epithelia (Greger and Schlatter, 1983; 
Amlal et al., 1994), endothelium (Perry and O'Neill, 1993), 
vascular smooth muscle (Adragna et al., 2000), heart (Yan 
et al., 1996), skeletal muscle (Weil-Maslansky et al., 1994), 
and neurons (Rivera et al., 1999). KCC has been implicated 
not only in regulatory volume decrease (Lauf et al., 1992), 
but also in transepithelial salt absorption (Amlal et al., 1994), 
myocardial K＋ loss during ischemia (Yan et al., 1996), blood 
pressure control (Adragna et al., 2006), regulation of neuronal 
Cl− concentration (Rivera et al., 1999), and renal K＋ secre-
tion (Ellison et al., 1985). Interestingly, recent reports have 

suggested that KCC is expressed in a variety of human cancer 
cells. KCC has been reported to down-regulates E-cadherin/ 
β-catenin complex formation by inhibiting transcription of 
E-cadherin gene and accelerating proteosome-dependent 
degradation of β-catenin protein, which promotes epithelial- 
mesenchymal transition, thereby stimulating tumor pro-
gression (Hsu et al., 2007a). In addition, upregulation of 
KCC has been shown to be required for proliferation and 
invasiveness induced by insulin-like growth factor 1 in 
breast cancer cells (Hsu et al., 2007b), and cervical and 
ovarian cancer cells (Shen et al., 2004). On the other hand, 
KCC activation appeared to induce apoptotic cell death in 
hepatoma cells (Kim et al., 2001).
  The alkylating agent N-ethylmaleimide (NEM) has been 
shown to activate KCC in erythrocytes (Lauf et al., 1992; 
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Adragna et al., 2004). Since inhibition of protein phospha-
tases prevents the swelling- and NEM-induced KCC activa-
tion (Bize et al., 1998; Kaji and Tsukitani, 1991; Starke and 
Jennings, 1993), dephosphorylation of the cotransporter 
has been suggested to be required for its activation. On the 
other hand, many studies using inhibitors of protein tyro-
sine kinase have proved evidence that tyrosine phosphor-
ylation may be also involved in controlling the KCC activity 
(Flatman et al., 1996; Weaver and Cossins, 1996). Although 
these phosphorylation and dephosphorylation reactions 
may play an important role in the mechanism of KCC acti-
vation, the signal transduction pathways that control the 
activity of KCC are currently not well understood.
  Previously we have reported that KCC is functionally 
present in HepG2 human hepatoblastoma cells, and that 
reactive oxygen species (ROS) are implicated in the mecha-
nism of KCC activation (Kim and Lee, 2001). Arachidonic 
acid (AA) has been reported to play a role in the generation 
of ROS in a variety of cells (Shiose and Sumimoto, 2000; 
Luchtefeld et al., 2003; Kim and Dinauer, 2006). AA is 
released from membrane phospholipid by three main types 
of phospholipase A2 (PLA2), the low-molecular-weight se-
creted PLA2 (sPLA2), the calcium-dependent cytosolic PLA2 
(cPLA2) and calcium-independent PLA2 (iPLA2) (Leslie, 
2004). Thus, in this study we investigated whether AA has 
a role in ROS-mediated KCC activation in HepG2 cells. In 
addition, we examined more specifically which subtype(s) 
of PLA2 is(are) involved in the mechanism of AA-mediated 
KCC activation.

METHODS

Materials

  The HepG2 human hepatoma cell line was purchased 
from American Type Culture Collection (Rockville, MA). 
The powders for Eagle's minimum essential medium, tryp-
sin solution, sodium pyruvate, NEM, BEL, BPB, Indo, 
NDGA, DPI, and all salt powders were obtained from 
Sigma-Aldrich (St. Louis, MO). DIOA, AACOCF3 and ETYA 
were purchased from BIOMOL Research Laboratories 
(Plymouth Meeting, PA). [3H]AA was from GE Healthcare 
(Buckinghamshire, UK). PBFI/AM and DCFH-DA were from 
Molecular Probes, Inc. (Eugene, OR). Fetal bovine serum and 
antibiotics (penicillin and streptomycin mixture) were pur-
chased from GIBCO (Grand Island, NY). The stock solu-
tions of drugs were sterilized by filtration through 0.2 μm 
disc filters (Gelman Sciences: Ann Arbor, MI).

Cell culture

  HepG2 cells were grown at 37oC in a humidified in-
cubator under 5% CO2/95% air in an Eagle's minimum 
essential medium supplemented with 10% fetal bovine serum, 
200 IU/ml penicillin, 200 μg/ml of streptomycin and 1 mM 
sodium pyruvate. Culture medium was replaced every other 
day. After attaining confluence the cells were subcultured 
following trypsinization.

Measurement of intracellular K＋ concentration ([K＋]i)

  Intracellular K＋ levels were monitored with the K＋- 
sensitive fluorescent dye, PBFI/AM (Minta and Tsien, 
1989). Cells were washed, and resuspended at a density 

of 4×105 cells/ml in Krebs-Ringer buffer. The cells were 
loaded with 5 μM PBFI/AM in Krebs-Ringer buffer con-
taining 0.02% pluronic F-127, a nonionic surfactant, for 2 
h at 37oC. Unloaded dye was removed by centrifugation at 
150 g for 3 min. The dual-wavelength excitation method 
for measurement of PBFI fluorescence was used. Fluorescence 
was monitored at 500 nm with excitation wavelengths of 
340 and 380 nm in a stirred quartz cuvette. In the results 
relative changes in [K＋]i were reported as the 340：380 
fluorescence ratios.

Measurement of AA release

  AA release was determined by measuring [3H]AA released 
into the surrounding medium from HepG2 cell suspensions 
labeled with [3H]AA (Van Der Zee et al., 1995). Cells were 
incubated at 37oC with 3 μCi [3H]AA for 18 h. Over this 
time, cells incorporated an average of 80% of the added 
[3H]AA. After incubation, cells were washed three times 
with Tyrode solution containing 3.6% fatty-acid-free bovine 
serum albumin to remove unincorporated [3H]AA. Then, 
the cells were incubated at 37oC for 15 min before being 
subjected to experimental conditions. At the end of the 
stimulation period, the supernatant was obtained. [3H]AA 
released was quantified by liquid scintillation spectrometry.

Measurement of intracellular ROS

  Relative changes in intracellular ROS in HepG2 cells 
were monitored using a fluorescent probe, DCFH-DA (LaBel 
et al., 1992). DCFH-DA diffuses through the cell membrane 
readily and is hydrolyzed by intracellular esterases to non-
fluorescent 2',7'-dichlorofluorescin (DCFH), which is then 
rapidly oxidized to highly fluorescent DCF in the presence 
of ROS. The DCF fluorescence intensity is proportional to 
the amount of ROS formed intracellularly (Shen et al., 
1996). Cells were washed twice and resuspended at a con-
centration of 4×105 cells/ml in Hank’s solution. For loading 
DCFH-DA into the cells, cells were incubated with the dye 
for 2 h at a final concentration of 5 μM at 37oC. Fluorescence 
was monitored at 530 nm with excitation wavelength of 485 
nm in a stirred quartz cuvette.

Data analysis

  All experiments were performed four times. Data were 
expressed as mean±standard error of the mean (SEM) and 
were analyzed using one way analysis of variance (ANOVA) 
and Student-Newman-Keul's test for individual compari-
sons. P values less than 0.05 are considered statistically 
significant.

RESULTS

Activation of KCC by AA in HepG2 cells

  To identify whether AA activates KCC in HepG2 cells, 
we examined the effect of AA on K＋ efflux which is re-
garded as a hallmark of KCC activation (Kim and Lee, 
2001; Adragna et al., 2004). AA (1∼10 μM) induced a slow 
and sustained decrease in [K＋]i in a concentration-dependent 
manner which was significantly prevented by treatment 
with DIOA (100 μM), a specific KCC inhibitor (Garay et 
al., 1988), as depicted in Fig. 1. These results indicate that 
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Fig. 1. AA activates KCC in HepG2 
human hepatoblastoma cells. The 
data (A) show changes in [K＋]i as a 
function of time, measured by using 
the K＋-sensitive fluorescent dye PBFI/
AM. In the data, PBFI fluorescence 
ratios are directly proportional to
[K＋]i. The arrow shows the time point 
for addition of AA (10 μM). DIOA 
(100 μM), a KCC inhibitor, was added
10 min before AA treatment. Quan-
titative changes (B) were expressed 
as percent changes of the maximum 
decrease in PBFI fluorescence ratio 
induced by the drug compared to con-
trol condition in which the cells were 
treated with a drug-free vehicle. Each 
column represents the mean value of 
four replications with bars indicating
SEM. *p＜0.05 compared to control, 
#p＜0.05 compared to AA alone.

Fig. 2. Effects of PLA2 inhibitors on the KCC activation induced by NEM in HepG2 human hepatoblastoma cells. The data (A) show changes
in [K＋]i as a function of time, measured by using the K＋-sensitive fluorescent dye PBFI/AM. The arrows show the time points for addition
of NEM (100 μM). AACOCF3 (10 μM), BEL (10 μM) and BPB (10 μM) were added 10 min before NEM treatment. Quantitative changes 
(B) were expressed as percent changes of the maximum decrease in PBFI fluorescence induced by the drug compared to control condition
in which the cells were treated with a drug-free vehicle. Each column represents the mean value of four replications with bars indicating 
SEM. *p＜0.05 compared to control, #p＜0.05 compared to NEM alone.

AA can activate KCC the HepG2 cells.

Role of PLA2-AA signal in the mechanism of KCC 
activation

  AA is found esterified in the membranes of mammalian 
cells and later released via PLA2 hydrolysis of the acyl bond 
at the sn-2 position (Waite, 1996). Thus, to examine the 
possible role of PLA2-AA signals in the mechanism of KCC 
activation, we investigated the effects of known PLA2 in-
hibitors on the K＋ efflux induced by NEM which has been 
shown to activate KCC in numerous cells, including HepG2 
cells (Lauf et al., 1992; Kim and Lee, 2001; Adragna et al., 
2004). In these experiments we used AACOCF3, BEL and 
BPB as inhibitors of cPLA2, iPLA2 and sPLA2, respectively 
(Narendra Sharath Chandra et al., 2007). As illustrated in 
Fig. 2, BEL (10 μM) significantly inhibited the NEM (100
μM)-induced K＋ efflux. However, AACOCF3 (10 μM) and 
BPB (10 μM) did not have an influence on the NEM- 
induced K＋ efflux. The effects of these drugs on the KCC 
activity may not be due to their non-specific actions changing 

cell volume, because we added them to the cells as a form 
of the concentrated stock solution. Thus, these results suggest 
that iPLA2-AA signal may play an essential role in the 
mechanism of KCC activation.

No involvement of AA metabolites in the mechanism 
of KCC activation

  AA serves as the precursor for prostanoid and leukotriene 
production via the actions of cyclooxygenase (COX) and lip-
oxygenase (LOX), respectively (Harizi et al., 2008). To clarify 
the role of these enzyme products in KCC activation, we 
investigated the effects of Indo, a non-selective COX in-
hibitor (Bakalova et al., 2002) and NDGA, a general LOX 
inhibitor (Tang et al., 1996) on the K＋ efflux induced by 
NEM. As depicted in Fig. 3, pretreatment with either 
Indo (30 μM) or NDGA (50 μM) failed to affect the NEM 
(100 μM)-induced K＋ efflux. These results suggest that AA 
metabolites may not have a role in the mechanism of KCC 
activation.
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Fig. 3. Effects of inhibitors of COX and LOX on the KCC activation induced by NEM in HepG2 human hepatoblastoma cells. The data 
(A) show changes in [K＋]i as a function of time, measured by using the K＋-sensitive fluorescent dye PBFI/AM. The arrows show the time 
points for addition of NEM (100 μM). Indo (30 μM) and NDGA (50 μM) were added 10 min before NEM treatment. Quantitative changes
(B) were expressed as percent changes of the maximum decrease in PBFI fluorescence induced by the drug compared to control condition
in which the cells were treated with a drug-free vehicle. Each column represents the mean value of four replications with bars indicating 
SEM. *p＜0.05 compared to control.

      

Fig. 4. Time-course of [3H]AA release induced by NEM (A) and the effects of PLA2 inhibitors on the NEM-induced [3H]AA release (B) 
in HepG2 human hepatoma cells. (A) HepG2 cells were labeled with medium containing [3H]AA and then treated with either vehicle or 
NEM (100 μM) for a designated time. Assay for [3H]AA release was done by scintillation counting method as described in Method section.
(B) NEM was treated with or without various drugs for 60 min. In these experiments AACOCF3 (10 μM), BEL (10 μM) and BPB (10 μM)
were used as a specific inhibitor of the cPLA2, iPLA2 and sPLA2, respectively. These inhibitors were added 10 min before NEM treatment. 
Results are expressed as percent change of control condition in which cells were treated with a drug-free vehicle. All the data points 
represent the mean values of four replications with bars indicating SEM.

NEM, a KCC activator induces AA release through 
activation of iPLA2

  The results from above experiments implicate that iPLA2- 
AA signal may mediate KCC activation induced by NEM. 
To confirm this role of iPLA2-AA signal, we examined 
whether NEM, a KCC activator indeed liberates AA meas-
uring [3H]AA released into the surrounding medium from 
HepG2 cells labeled with [3H]AA using liquid scintillation 

spectrometry. As shown in Fig. 4A, NEM (100 μM) pro-
foundly increased AA release within 30 min in the cells. 
To further identify which subtype of PLA2 is involved in 
the process, we studied the effects of specific inhibitors of 
three different types of PLA2 on the NEM-induced AA 
release. As depicted in Fig. 4B, BEL (10 μM) significantly 
inhibited the NEM-induced [3H]AA liberation, whereas 
AACOCF3 (10 μM) and BPB (10 μM) did not. These results 
imply that NEM-induced KCC activation may be due to 
iPLA2-mediated AA liberation in HepG2 cells.
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Fig. 6. Effects of inhibitors of COX and LOX on the ROS generation induced by NEM in HepG2 human hepatoblastoma cells. The data 
(A) show changes in ROS levels as a function of time, which was measured by DCF fluorescence method. The arrows show the time points 
for addition of NEM (100 μM). Indo (30 μM), a COX inhibitor and NDGA (50 μM), a LOX inhibitor were added 10 min before NEM treatment. 
In the data (B) results are expressed as fold increase compared to the initial DCF fluorescence intensity. Data points represent the mean
values of four replications with bars indicating SEM.

Fig. 5. Effects of PLA2 inhibitors and DPI on the ROS generation induced by NEM in HepG2 human hepatoblastoma cells. The data 
(A) show changes in ROS levels as a function of time, which was measured by DCF fluorescence method. The arrows show the time points 
for addition of NEM (100 μM). DPI (50 μM), an inhibitor of NADPH oxidase, and PLA2 inhibitors, AACOCF3 (10 μM), BEL (10 μM) and 
BPB (10 μM) were added 10 min before NEM treatment. In the data (B) results are expressed as fold increase compared to the initial 
DCF fluorescence intensity. Data points represent the mean values of four replications with bars indicating SEM. *p＜0.05 compared to 
control condition in which the cells were incubated with NEM-free medium, #p＜0.05 compared to NEM alone.

Role of iPLA2-AA signal in ROS-mediated KCC 
activation

  It has been previously shown that ROS are involved in 
the mechanism of NEM-induced KCC activation (Kim and 
Lee, 2001). To clarify the role of AA in ROS-mediated KCC 
activation, we investigated the effects of the PLA2 inhibitors 
on the NEM-induced ROS production. As illustrated in Fig. 5, 
BEL (10 μM) significantly inhibited the NEM (100 μM)- 
induced ROS generation measured by DCF fluorescence. 
However, AACOCF3 (10 μM) and BPB (10 μM) did not have 
an influence. In addition, DPI, an inhibitor of the NADPH 
oxidase (Kim et al., 2000) almost completely suppressed the 
NEM-induced ROS increase, which is consistent with the 
results of a previous study (Kim and Lee, 2001), demon-
strating that the NADPH oxidase mediates the NEM-in-
duced ROS production. Taken together, these results in-

dicate that iPLA2-AA signal may be essentially involved in 
the NADPH oxidase-mediated ROS production and in turn, 
KCC activation.
  AA metabolites did not have a role in the mechanism of 
KCC activation as shown in Fig. 3. To clarify whether AA 
metabolites are not involved in the NEM-induced ROS pro-
duction, we investigated the effects on the NEM-induced ROS 
production of Indo and NDGA, COX and LOX inhibitors, 
respectively. As depicted in Fig. 6, pretreatment with either 
Indo (30 μM) or NDGA (50 μM) failed to affect the NEM 
(100 μM)-induced ROS generation. These results further 
suggest that AA metabolites may not play a role in ROS 
production associated with KCC activation.

ETYA mimics the effects of AA on ROS production and 
KCC activation

  To confirm that AA itself rather than its metabolites 
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Fig. 7. Effects of ETYA, a non-
metabolizable analogue of AA, on 
the KCC activation (A, C) and ROS 
generation (B, D) in HepG2 human 
hepatoblastoma cells. The data (A, B) 
show changes in [K＋]i and ROS 
levels as a function of time, respec-
tively. The arrows show the time 
points for addition of ETYA (10 μM).
In these experiments DIOA (100 μM)
and DPI (50 μM), were added 10 min 
before ETYA treatment. Quantitative 
changes were expressed as percent 
changes of the maximum decrease in 
PBFI fluorescence (C) and fold in-
crease compared to the initial DCF 
fluorescence intensity (D) compared 
to control condition in which the 
cells were treated with a drug-free 
vehicle. Each column represents the 
mean value of four replications with 
bars indicating SEM. *p＜0.05 
compared to ETYA alone.

serves as a key player for ROS-mediated KCC activation, 
we tested whether ETYA, a non-metabolizable analogue of 
AA (Kehl, 2001) can mimic the effects of AA on the level 
of ROS and intracellular K＋ concentration. As depicted in 
Fig. 7A and C, treatment with ETYA (10 μM) significantly 
induced K＋ efflux, which was significantly blocked by pre-
treatment with DIOA, a specific KCC inhibitor. In addition, 
ETYA (10 μM) profoundly increased ROS level, which was 
suppressed by pretreatment with DPI, a NADPH oxidase 
inhibitor. These effects of ETYA were comparable to those 
of AA shown in Fig. 1. These results strongly suggest that 
AA itself may be involved in the mechanism of ROS-medi-
ated KCC activation.

DISCUSSION

  KCC appears to respond to a variety of physiological 
stimuli in erythrocytes, including cell swelling, H＋ and 
urea (Lauf et al., 1992; Adragna et al., 2004). In normal 
high K＋-containing erythrocytes, KCC activation will result 
in net KCl efflux. KCC may contribute to cell shrinkage 
following swelling, and has therefore been implicated in 
regulatory volume decrease (Adragna et al., 2004). In addition 
to these physiological roles, inappropriate activation of 
KCC in red blood cells leads to excessive KCl loss, cell 
shrinkage and elevation of hemoglobin concentration (Olivieri 
et al., 1992; Joiner, 1993), leading to deleterious rheological 
effects, including increased vascular resistance (Stuart and 
Ellory, 1988). Recently KCC appears to be involved not only 

in cancer cell proliferation and invasion (Shen et al., 2004; 
Hsu et al., 2007a; Hsu et al., 2007b), but also in apoptotic 
cell death (Kim et al., 2001). Therefore, KCC seems to be 
important in both physiological and pathophysiological 
processes, but regulatory mechanism of KCC is not much 
understood. From the results of this study we suggest that 
iPLA2-AA signal may be importantly involved in the mecha-
nism of KCC activation. As far as we know, we report, for 
the first time, the role of iPLA2-AA signal in the regulatory 
mechanism of KCC activity.
  ROS have been shown to be required for the NEM-induced 
KCC activation in HepG2 cells (Kim and Lee, 2001). Other 
studies have also implicated that ROS are involved in the 
regulation of KCC activity in red blood cells (Muzyamba 
et al., 2000; Gibson et al., 2003). NEM appeared to generate 
ROS by activation of the NADPH oxidase (Kim and Lee, 
2001) which is known to exist in HepG2 cells (Ehleben et 
al., 1997; Cool et al., 1998). In this study we demonstrated 
that AA itself generated ROS through activation of the 
NADPH oxidase in HepG2 cells. In other cellular systems 
AA has also been reported to activate the NADPH oxidase 
(Curnutte, 1985; Wong et al., 2003; Block et al., 2006; Hii 
and Ferrante, 2007; Kim et al., 2008). Since eicosanoids can 
be produced by AA metabolism via the actions of COX and 
LOX (Harizi et al., 2008), they are supposed to activate the 
NADPH oxidase. Although COX-1 genetic deletion and a 
LOX inhibitor have been reported to attenuate activation 
of the NADPH oxidase (Zhang et al., 2006; Choi et al., 2008), 
the results of this study suggest that eicosanoids may not 
play a role in regulation of activity of the NADPH oxidase 
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in HepG2 cells. Collectively, KCC activity in HepG2 cells 
seems to be regulated by the NADPH oxidase-mediated 
ROS generation linked to iPLA2-AA signal.
  NEM that reacts with and oxidizes sulfhydryl groups, has 
been reported to have many cellular actions, such as in-
hibition of platelet aggregation (Leoncini and Signorello, 
1999a), modulation of norepinephrine release from hippo-
campus synaptosomes (Wurster et al., 1990), and activation 
of KCC (Lauf et al., 1992; Adragna et al., 2004). These 
actions of NEM may result from the alkylation of specific 
cysteine residues present in certain signal-coupling proteins, 
including G-proteins (Hoshino et al., 1990). Although the 
dephosphorylation process seems to be required for the 
NEM-induced KCC activation (Kaji and Tsukitani, 1991; 
Starke and Jennings, 1993; Bize et al., 1998), the results 
of this study suggest that it may be due to AA released 
by activation of iPLA2. In the present study we did not 
investigate how NEM induces activation of iPLA2, resulting 
in release of AA in HepG2 cells, and it remains to be de-
termined in the future study. However, it can be speculated 
that this action of NEM may be achieved by either direct 
structural modification or indirect stimulation of the 
enzyme. Although NEM has been shown to activate PLA2 
through elevation of intracellular Ca2＋ level (Leoncini and 
Signorello, 1999b) in platelets, this mechanism may be ex-
cluded, because activation of iPLA2 does not require ele-
vation of intracellular Ca2＋ level (Leslie, 2004). Specifically, 
activation of iPLA2 has been reported to be regulated by 
ATP in pancreatic β-cells (Ramanadham et al., 2004), p38 
mitogen-activated protein kinase (MAPK) in vascular smooth 
muscle cells (Yellaturu and Rao, 2003), and depletion of 
intracellular Ca2＋ store in smooth muscle cells (Wolf et al., 
1997). For the mechanism of the NEM-induced iPLA2 acti-
vation in HepG2 cells, these possibilities may not be 
excluded.
  In conclusion, in this study we suggest that iPLA2-AA 
signal may be importantly involved in the mechanism of 
KCC activation. Considering that KCC has a role in growth 
and death of human cancer cells, these findings may con-
tribute to understanding of the strategy for management 
of human cancers.
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