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  In the present study, we aimed to identify the synergistic effects of concurrent treatment of low 
concentrations of cilostazol and probucol to inhibit the oxidative stress with suppression of inflam-
matory markers in the cultured human coronary artery endothelial cells (HCAECs). Combination of 
cilostazol (0.3∼3μM) with probucol (0.03∼0.3μM) significantly suppressed TNF-α -stimulated 
NAD(P)H-dependent superoxide, lipopolysaccharide (LPS)-induced intracellular reactive oxygen species 
(ROS) production and TNF-α release in comparison with probucol or cilostazol alone. The combination 
of cilostazol (0.3∼3μM) with probucol (0.1∼0.3μM) inhibited the expression of vascular cell adhesion 
molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) more significantly than did 
the monotherapy with either probucol or cilostazol. In line with these results, combination therapy 
significantly suppressed monocyte adhesion to endothelial cells. Taken together, it is suggested that 
the synergistic effectiveness of the combination therapy with cilostazol and probucol may provide a bene-
ficial therapeutic window in preventing atherosclerosis and protecting from cerebral ischemic injury.
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INTRODUCTION

  Atherosclerosis is a chronic inflammatory process with 
increased oxidative stress by which the adhesion of mono-
cytes to the vascular endothelium and their subsequent mi-
gration into the vessel wall are increased (Libby, 1995; 
Ross, 1993). In the inflammatory and proliferative responses 
of the endothelium, adhesion molecules (VCAM-1), chemo-
kines (MCP-1) and cytokines (interleukin-1β and tumor 
necrosis factor-α) are secreted by the activated endothelial 
cells in the atherosclerotic lesions (Bevilacqua et al, 1994; 
Reape et al, 1999). VCAM-1 has been reported to exert a 
dominant role in the initiation of atherosclerosis (Cybulsky 
et al, 2001; Dansky, 2001). An increased MCP-1 expression 
was also demonstrated to be implicated in the monocyte 
adhesion to the endothelium (Gu et al, 1998).
  Cilostazol was first introduced to inhibit phosphodiester-
ase type 3 and to suppress cyclic AMP degradation (Kimura 
et al, 1985). Recently, cilostazol has been demonstrated to 
scavenge the hydroxyl and peroxyl radicals (Kim et al, 
2002; Choi et al, 2002), and to increase the K+ currents in 
SK-N-SH (human brain neuroblastoma) cells by opening 
the maxi-K channels (Hong et al, 2003). Most recently, cil-

ostazol was reported to exert a cell-protective effect by sup-
pressing remnant lipoprotein particle (RLP)-stimulated 
NAD(P)H oxidase-dependent superoxide formation and cy-
tokine (TNF-α and IL-1β) production in the human um-
bilical vein endothelial cells (Shin et al, 2004). Park et al. 
(2005) identified the anti-inflammatory action of cilostazol, 
in that cilostazol inhibits RLP-stimulated increased mono-
cyte adhesion to HUVECs concurrently with suppression 
of expressions of VCAM-1 and MCP-1.
  Probucol, a potent lipid-soluble antioxidant, has been re-
ported to prevent atherogenesis by acting as an antioxidant 
and suppressing the oxidative modification of low density 
lipoprotein (LDL) (Carew et al, 1987; Kuzuya et al 1993). 
In line with these facts, probucol was demonstrated to de-
crease mononuclear cell adhesion to vascular endothelium 
in the cholesterol-fed rabbit both in vitro and in vivo studies 
(Ferns et al, 1993; Faruqi et al, 1994). Interest in probucol 
has been raised by Tardif et al. (1997) who demonstrated 
that probucol significantly reduces the rate of coronary ar-
tery restenosis after coronary angioplasty in humans. 
Zapolska-Downar et al. (2001) have further demonstrated 
the anti-atherogenic effect of probucol, in that probucol 
downregulates adhesion of monocytes in association with 
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Fig. 1. Effects of cilostazol alone and
in combination of cilostazol with pro-
bucol on the NAD(P)H-dependent su-
peroxide production in the HCAECs
stimulated by TNF-α (50 ng/ml). The
significant effect was evident by cilo-
stazol in combination with probucol.
Results are expressed as mean±S.E.M.
of four experiments. *p＜0.05, **p＜
0.01, ***p＜0.001 vs. cilostazol alone.
Significant differences were shown 
between cilostazol alone and cilostazol
plus probucol 0.03μM or cilostazol 
plus 0.1μM probucol groups by two-
way repeated measures ANOVA.

reduced VCAM-1 expression.
  Both cilostazol and probucol have been approved to be 
safe and efficient in their respective therapeutic categories 
with some different and similar action mechanisms. Never-
theless, some hitherto uncharacterized untoward effects 
may limit their long-term uses in clinics. It has been re-
ported that probucol may lower high density lipoprotein 
level in plasma (Johansson et al, 1995) and rarely prolong 
the Q-T interval with proarrhythmic risk (Reinoehl et al, 
1996). Cilostazol was reported to show side effects such as 
headache in some patients (Mallikaarjun et al, 1999). To 
provide a beneficial therapeutic window with fewer side ef-
fects, we examined the combination therapy with low con-
centrations of cilostazol and probucol in the in vitro exper-
iment. Thus, in the present study, we determined effects 
of low concentration of cilostazol and probucol in combina-
tion on the TNF-α-stimulated NAD(P)H-dependent super-
oxide, lipopolysaccharide (LPS)-induced intracellular ROS 
production, TNF-α release, expression of VCAM-1 and 
MCP-1 and monocyte adhesion to the endothelial cells, and 
their effects were compared with the effect of the mono-
therapy. It is highly likely that the combination therapy 
may provide new therapeutic window in coronary artery 
restenosis and ischemic brain injury with few side effects.

METHODS

Cell cultures

  HCAEC (Cambrex, Walkersville, MD) were cultured in 
the endothelial cell basal media-2 (EGM-2) Bullet kit media 
(Clonetics, BioWhittaker, San Diego, CA). Cells were grown 
to confluence at 37oC in 5% CO2 and used for experiments 
at not greater than passage 6. U937 (CRL-1593.2; American 
Type Culture Collection, Manassas, VA) cells were cultured 
in RPMI 1640 medium containing 10% fetal bovine serum 
(FBS).

Measurement of superoxide anion

  Endothelial homogenates (100μg protein/well) were placed 
into the luminometer (Microlumat LB96P, EG & G 
Berthold). Immediately before recording chemiluminescence, 
NADH and NADPH (final concentration, 100μM each) were 
added, and dark-adapted lucigenin (bis-N-methylacridinium 

nitrate, 5μM) was added via an autodispenser. Each ex-
periment was performed in triplicate.

Assay of intracellular ROS

  Measurement of intracellular ROS was based on ROS- 
mediated conversion of non-fluorescent DCFH-DA into 
DCFH. DCFH is able to react with ROS, and to be rapidly 
oxidized to the highly fluorescent 2,7-dichlorofluorescein. 
The intensity of fluorescence reflects the level of oxidative 
stress. Cells were incubated in the dark for 2 hours at 37oC 
in 50 mM phosphate buffer, pH 7.4, containing 5μM 
DCFH-DA. The quantity of DCFH fluorescence was meas-
ured at an emission wavelength of 530 nm and an ex-
citation wavelength of 485 nm by using FLUOstar OPTIMA 
(BMG LABTECH GmbH, Germany). 

VCAM-1 assay

  Cells were seeded 2×104 cells/well in 96-well tissue cul-
ture plates containing TNF-α for 4 hours. After treatment 
with 2% paraformaldehyde, cells were incubated for 1 hour 
with antibodies specific to human VCAM-1 (R&D Systems, 
Minneapolis, MN) and then further incubated for 1 hour 
with secondary antibody. The second antibody binding was 
detected by reaction of tetramethylbenzidine with H2O2 
(TMB Substrate Reagent Set; BD Biosciences). Absorbance 
at 450 nm was measured using ELISA reader. 

MCP-1 and TNF-α assay

  The amounts of MCP-1 and TNF-α in HCAECs super-
natants were measured with ELISA kits (R&D Systems, 
Minneapolis, ML) according to the manufacturer's protocol.

Adhesion assay

  For the adhesion assay, HCAECs were plated on six-well 
dishes at a density of 1.2×105 cells/well. On the next day, 
cells received EGM-2 with 0.5% FBS plus drug 15 min be-
fore stimulation with TNF-α and then were exposed to 
TNF-α for 4 hours. Thereafter, human monocytoid U937 
cells (3×105 cells/well) were added to each monolayer and 
incubated under rotating conditions (63 rpm) at room tem-
perature. After removing non-adhering cells, monolayers 
were fixed with 1% paraformaldehyde. The number of ad-
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Fig. 2. Inhibitory effect of cilostazol in combination with probucol 
on the intracellular ROS levels stimulated by in the HCAECs LPS
(1μg/ml). LPS-stimulated intracellular ROS was significantly 
decreased by cilostazol plus 0.1 μM probucol in combination. ***p
＜0.001 vs. cilostazol alone. Results are expressed as mean±S.E.M.
of four experiments. Significant differences were shown between 
cilostazol alone and cilostazol plus 0.1μM probucol groups by 
two-way repeated measures ANOVA.

Fig. 3. Effects of cilostazol and probucol alone and their
combination on the TNF-α formation stimulated by in 
the HCAECs LPS (1μg/ml). Increased TNF-α by LPS
was significantly decreased by cilostazol and probucol 
in combination. Results are expressed as mean±S.E.M.
of three experiments. **p＜0.01, ***p＜0.001 vs. vehicle,
#p＜0.05 vs. 0.3μM probucol alone, †p＜0.05 vs. 0.3μM
cilostazol alone, §§p＜0.01 vs. 1μM cilostazol alone.

herent cells was counted in six different fields using an ocu-
lar grid (0.01 mm2 per field).

Drugs

  Cilostazol {6-[4-(1-cyclohexyl-1H-tetrazol-5-yl) butoxy]-3, 
4-dihydro-2(1H)-quinolinone} and probucol [4,4'-(isopropyli-
denedithio)bis(2,6-di-tert-butylphenol)] were donated by 
Otsuka Pharmaceutical Co. Ltd., and both were dissolved 
in dimethyl sulfoxide as a 10 mM stock solution. 

Statistical analysis

  The results are expressed as mean±S.E.M. The compar-
ison of changes in superoxide, intracellular ROS and 
VCAM-1 between groups was analyzed by repeated meas-

ures ANOVA, followed by Turkey's multiple comparison 
tests as a post hoc comparison. Differences were analyzed 
by one-way analysis of variance combined with Turkey's 
test multiple comparison tests, and p＜0.05 was considered 
statistically significant.

RESULTS

Inhibitory effects on superoxide formation and intra-
cellular ROS production

  The synergistic effects of coadministration of probucol 
and cilostazol were determined in the cultured HCAECs. 
When measured by recording of chemiluminescence, super-
oxide production in response to NAD(P)H (control, 9.2±0.8 
counts/s/mg protein) was significantly elevated by in-
cubation in the medium containing 50 ng/ml TNF-α (16.4± 
0.2 counts/s/mg protein, p＜0.001) for 4 hours. Cilostazol 
(0.3, 1 and 3μM) showed a marginal reduction in super-
oxide formation. Coadministration of cilostazol (0.3, 1 and 
3μM) with 0.03μM or 0.1μM probucol, showed that su-
peroxide production was significantly decreased (p＜0.01 
and p＜0.001, respectively) in comparison with cilostazol 
alone (Fig. 1). 
  Following incubation of confluent cells with LPS (1μg/ 
ml) for 1 hours, intracellular ROS was significantly in-
creased to 123.3±1.9% (control=100%), which was margin-
ally decreased by 0.03μM probucol (112.3±3.2%) and 0.1 
μM probucol (110.9±2.7%). The addition of 0.03μM probu-
col to cilostazol (0.3, 1 or 3μM) showed little changes in 
LPS-induced intracellular ROS. When of 0.1μM probucol 
was combined with cilostazol (0.3, 1 and 3μM), intra-
cellular ROS was markedly decreased (p＜0.001), the de-
gree of which was significantly larger than that of cilostazol 
monotherapy (Fig. 2).  

Inhibitory effects on TNF-a formation

  Incubation of HCAECs with LPS (1μg/ml) for 18 hours 
largely increased, TNF-α level (baseline, 20.7±3.8 pg/ml) 
to 104.7±6.4 pg/ml. Cilostazol (0.3, 1μM) and probucol (0.3 
μM) singly had no effect on TNF-α production, however, 
combination of cilostazol with probucol significantly de-
creased the TNF-α level to 78.3 ±5.7 pg/ml (p＜0.01) and 
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Fig. 4. Inhibitory effect of cilostazol in combination with probucol 
on the VCAM-1expression in the HCAECs. TNF-α (50 ng/ml)- 
induced increased VCAM-1expression was significantly decreased 
by treatment with cilostazol and 0.1μM probucol in combination. 
Results are expressed as mean±S.E.M. of four experiments. ***p＜
0.001 vs. cilostazol alone. Significant differences were shown 
between cilostazol plus 0.03μM probucol and cilostazol plus 0.1 
μM probucol groups by two-way repeated measures ANOVA.

Fig. 6. Effects of cilostazol and probucol alone and 
their combination on the monocyte adhesion to 
HCAECs. TNF-α (50 ng/ml)-stimulated adherent mo-
nocytes were significantly decreased by treatment 
with cilostazol and probucol in combination. Results
are expressed as mean±S.E.M. of four experiments. 
*p＜0.05, **p＜0.01 vs. vehicle, #p＜0.05 vs. probucol
alone.

Fig. 5. Effects of cilostazol and probucol in combi-
nation on the MCP-1 expression stimulated in the 
HCAECs by TNF-α (50 ng/ml). Concurrent treatment
with 0.3μM probucol plus 0.3 or 1μM cilostazol 
significantly decreased MCP-1 expression in compa-
rison to effect of probucol and cilostazol alone. Results
are expressed as mean±S.E.M. of three experiments. 
*p＜0.05 vs. vehicle.

66.6±2.5 pg/ml (p＜0.001) (Fig. 3).

Effects on VCAM-1 and MCP-1

  TNF-α (50 ng/ml) (baseline, 0.35±0.03 OD450) caused a 
large increase of VCAM-1 expression (0.69±0.03 OD450), to 
approximately 97%. Probucol in the ranges of 0.03∼0.3μM 
showed little reduction in VCAM-1 expression (data not 
shown). Inhibition of VCAM-1 expression by combination 
of cilostazol (0.3, 1 and 3μM) with 0.1μM probucol was 
clearly observed with a significance (p＜0.001) when com-
pared with treatment with cilostazol alone (Fig. 4).
  Under treatment with TNF-α (50 ng/ml), MCP-1 level 
(baseline, 43.0±2.8 pg/ml) was markedly increased to 293.2± 
12.4 pg/ml, which was significantly suppressed by the com-
bination of 0.3μM cilostazol with 0.3μM probucol (243.9± 
7.6 pg/ml, p＜0.05) and 1μM cilostazol with 0.3μM probu-
col (226.1±8.0 pg/ml, p＜0.05). Inhibition of MCP-1 ex-
pression by the combination therapy was significantly 
greater than that of probucol or cilostazol alone (Fig. 5). 

Effects on monocyte adherence to HCAECs

  Adhesion of human monocytoid U937 cells to HCAECs 
was assayed under stimulation with TNF-α for 4 hours. 
TNF-α (50 ng/ml) caused a large increase in monocyte ad-
hesion to HCAECs from 14.4±2.0 cells/mm2 (baseline) to 
58.1±3.3 cells/mm2 (4-fold). TNF-α-stimulated monocyte 
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adhesion was little affected by cilostazol or probucol alone. 
Combination of cilostazol (1, 3μM) with 0.3μM probucol 
significantly inhibited adhesion of monocyte to 45.0±2.5 
cells/mm2 (p＜0.05) and 43.2±2.1 cells/mm2 (p＜0.01) (Fig. 6).

DISCUSSION

  In the present study, we observed that the concurrent 
treatment with low concentrations of cilostazol and probu-
col in the cultured HCAECs synergistically and sig-
nificantly reduced oxidative stress and inflammatory mark-
ers when compared with the effects of the monotherapy 
with either cilostazol or probucol.
  A mounting evidence has emphasized that ROS, includ-
ing H2O2 and hydroxyl radical, induce apoptosis (Li et al, 
1997), and that the apoptotic processes play an important 
role in the cell death in the atherosclerotic plaque (Kockx 
et al, 1998). Therefore, prevention of oxidative stress-medi-
ated cell injury is an area of active investigation. In the 
present study, combination of cilostazol with 0.03 and 0.1 
μM probucol synergistically reduced NAD(P)H-dependent 
superoxide formation and intracellular ROS production in 
comparison with the monotherapy. Similarly, LPS-stimu-
lated TNF-α production was also significantly decreased 
by the concurrent administration of probucol (0.3μM) with 
0.3 and 1μM cilostazol. Considering the reported results 
that cilostazol has a property to scavenge the hydroxyl and 
peroxyl radicals (Kim et al, 2002; Choi et al, 2002), and 
protects cell injury by suppressing NAD(P)H oxidase-de-
pendent superoxide formation and cytokine (TNF-α and 
IL-1β) production in the HUVECs (Shin et al, 2004), it is 
highly possible that the combination therapy with cilostazol 
and probucol may exert more beneficial effects in reducing 
the cell death with reduced DNA fragmentation. 
  VCAM-1 plays an important role in the early athero-
genesis. Fruebis et al. (1997; 1999) demonstrated that pro-
bucol prevents atherosclerotic lesion formation in the aortic 
wall of LDL receptor-deficient rabbits accompanied with re-
duction of VCAM-1 expression and downregulation of adhe-
sion of monocytes (Zapolska-Downar et al, 2001). In the 
present study, the combination therapy with cilostazol and 
either 0.1 or 0.3μM probucol markedly inhibited VCAM-1 
and MCP-1, while low concentration of individual probucol 
or cilostazol alone showed a marginal reduction in VCAM-1 
expression. Inhibition of the adherence of human mono-
cytoid U937 cells to HCAECs by the combination therapy 
was much stronger then the effect of individual admin-
istration of probucol or cilostazol, suggesting that the com-
bined therapy elicits additional substantial and significant 
inhibition of these variables. 
  Regarding the action mechanism by which cilostazol re-
duces expression of adhesion molecules (VCAM-1, ICAM-1 
and E-selectin) and chemokine (MCP-1), Park et al. (2005; 
2006) have recently suggested that cilostazol inhibits rem-
nant lipoprotein particle-stimulated increased monocyte 
adhesion to human umbilical vein endothelial cells by sup-
pression of NF-κB via cyclic AMP-dependent protein kin-
ase-activated maxi-K channel opening that is inhibited by 
iberiotoxin, a maxi-K channel blocker. In light of these re-
sults, the maxi-K channel opening-coupled suppression of 
NF-κB by cilostazol appears to largely contribute to sup-
pression of expression of adhesion molecules (VCAM-1) and 
chemokine (MCP-1). Furthermore, the antioxidant action 
of cilostazol and probucol may synergistically contribute to 

the inhibition of expression of adhesion molecules and che-
mokine (Kim et al, 2002; Bilenko et al, 2003), in agreement 
with the report of Sekiya et al. (1998) in that the combined 
treatment with probucol and cilostazol proved to be safe 
and effective in preventing acute poststenting complica-
tions and suppressing chronic restenosis in patients sub-
jected to coronary angioplasty.
  Most recently, Park et al. (2007) confirmed the beneficial 
synergistic effects of concurrent treatment with low doses 
of cilostazol and probucol against focal cerebral ischemic 
infarct in rats. They showed that the ischemic infarct area 
and volume induced by 2-hour occlusion of middle cerebral 
artery (MCA) and 22-hour reperfusion in rat brain were 
significantly reduced, when received cilostazol (20 mg/kg, 
twice) and probucol (30 mg/kg, twice), accompanied with 
prominent improvement of neurological function via re-
ducing the inflammatory and oxidative processes, and apop-
totic cell death in the ischemic brain in comparison with 
the effect of cilostazol or probucol monotherapy. 
  Taken together, the combination therapy with low con-
centrations of both drugs may clinically frovide more effec-
tive therapeutic potential in reducing restenosis, prevent-
ing atherosclerosis and protecting from cerebral ischemic 
injury with few side effects.
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