조직적합항원 일치성 동종 말초혈액 조혈모세포이식 후 11일째 Methotrexate의 이식대숙주병 발생에 미치는 영향

¹경북대학교 의과대학 혈액종양내과학교실, ²경북대학교병원 조혈모세포이식센터

안병민 $^{1} \cdot$ 정의룡 $^{1} \cdot$ 이규보 $^{1} \cdot$ 손상균 $^{1} \cdot$ 김종광 $^{1} \cdot$ 백진호 $^{1} \cdot$ 조윤영 1 채의수 $^{1} \cdot$ 전석봉 $^{1} \cdot$ 문준호 $^{1} \cdot$ 김시내 $^{1} \cdot$ 이수정 $^{1} \cdot$ 서장수 $^{2} \cdot$ 이건수 2

Impact of Day +11 Methotrexate on the Incidence of Graft-versus-host Disease after HLA-identical Allogeneic Peripheral Blood Stem Cell Transplantation

Byung Min Ahn, M.D.¹, Yee Ryong Jung, M.D.¹, Kyu Bo Lee, M.D.¹, Sang Kyun Sohn, M.D.¹, Jong Gwang Kim, M.D.¹, Jin Ho Baek, M.D.¹, Yoon Young Cho, M.D.¹, Yee Soo Chae, M.D.¹, Seok Bong Jeon, M.D.¹, Joon Ho Moon, M.D.¹, Shi Nae Kim, M.D.¹, Soo Jung Lee, M.D.¹, Jang Soo Suh, M.D.² and Kun Soo Lee, M.D.²

¹Department of Oncology/Hematology, Kyungpook National University College of Medicine, ²Stem Cell Transplantation Unit, Kyungpook National University Hospital, Daegu, Korea

Background: Cyclosporine (CSA) plus 4 doses of methotrexate (MTX) is the commonly used regimen for GVHD prophylaxis. It has been previously found that the omission of the day +11 dose of MTX was associated with an increased risk of acute GVHD in the allogeneic BMT setting. However, little is known about its impact in the PBSCT setting.

Methods: Of the 68 patients, 30 patients (44%) received 4 doses of MTX (the MTX4 group), while 38 patients (56%) received less than 4 doses (the MTX3 group) because of their severe mucositis, hepatic dysfunction or renal failure.

Results: The cumulative incidence of acute GVHD was 60% in the MTX4 and 86% in the MTX3 group (P=0.038), while that of grade III and IV acute GVHD was 7% in the MTX4 group and 39% in the MTX3 group (P=0.017). Of the 61 patients evaluated for chronic GVHD, the cumulative incidence of chronic GVHD was 54% in the MTX4 group and 97% in the MTX3 group (P=0.001), while that of extensive chronic GVHD was 26% in the MTX4 group and 63% in the MTX3 group (P=0.004). There were no differences in the overall survival and the incidence of relapse between the two groups. On multivariate analyses, MTX3 was a poor prognostic factor in terms of acute GVHD and extensive chronic GVHD.

Conclusion: This study suggested that omitting day +11 MTX and the clinical situation of the MTX3 group seemed to be associated with an increased incidence of acute and chronic GVHD. Accordingly, administration of day +11 MTX accompanied by active treatment of mucositis may prevent GVHD in the allogeneic PBSCT setting, but we need to conduct a large scale prospective study. (Korean J Hematol 2006;41:73-82.)

Key Words: Methotrexate, Graft-versus-host disease, Allogeneic peripheral blood stem cell transplantation

접수: 2006년 2월 4일, 수정: 2006년 3월 10일

승인: 2006년 3월 12일

교신저자 : 손상균, 대구광역시 중구 삼덕 2가 ⑤ 700-712, 경북대학교병원 혈액종양내과 Tel: 053-420-5587, Fax: 053-426-2046

Email: sksohn@knu.ac.kr

Correspondence to : Sang Kyun Sohn, M.D.

Department of Oncology/Hematology, Kyungpook National University College of Medicine

Samdeok 2-ga, Jung-gu, Deagu 700-712, Korea Tel: +82-53-420-5587, Fax: +82-53-426-2046

Email: sksohn@knu.ac.kr

동종 말초혈액 조혈모세포이식은 1993년 Russell 등¹⁾ 이 처음 시행한 이후 공여자가 전신마취를 피할 수 있 고 골수채취에 따른 부담을 줄일 수 있으며 기존의 동 종 골수이식에 비해 많은 조혈모세포와 T 림프구를 함 유하여 빠른 생착과 면역 회복을 기대할 수 있어. 최근 조혈모세포이식의 방법으로 많이 이용되고 있다.²⁻⁶⁾ 골수이식과 비교하면 말초혈액 조혈모세포이식에서 급성 이식대숙주병의 발생빈도는 증가하지 않지만 만 성 이식대숙주병은 증가한다고 알려져 있어, 7-10) 말초 혈액 조혈모세포이식에서 이식대숙주병의 예방은 더 욱 중요하다.

Cyclosporine (CSA)과 methotrexate (MTX) 4회 병합 요법은 동종 조혈모세포이식에서 이식대숙주병의 예 방을 위해 가장 많이 사용되고 있다. 11-15) 이 요법은 다 양한 변형이 있지만 기본적으로 CSA를 매일 주사하고 MTX를 이식 후 1, 3, 6, 11일에 사용하는 것이다. 하지 만 많은 환자에서 이식 초기에 심한 점막염, 간기능 이 상, 신장기능 이상 등으로 인하여 이식 후 11일째 MTX를 생략하게 된다. 골수이식에서는 이식 후 11일 째 MTX의 생략이 중증 급성 이식대숙주병의 위험성 과 관련 있다는 보고¹¹⁾가 있지만 말초혈액 조혈모세포 이식에서 급성 및 만성 이식대숙주병과의 관련성에 대 해서는 보고된 바가 없다. 이에 저자들은 조직접합항 원 일치성 동종 말초혈액 조혈모세포이식에서 이식 후 11일째 MTX가 급성 및 만성 이식대숙주병의 발생에 미치는 영향을 알아보기 위해 본 연구를 수행하였다.

대상 및 방법

1. 대상

1998년 9월부터 2004년 5월까지 경북대학교병원에 서 다양한 혈액질환으로 동종 말초혈액 조혈모세포이 식술을 시행 받은 환자 중 이식대숙주병 예방을 위해 CSA와 MTX를 사용한 71명의 환자를 대상으로 하였 다. 이식 후 11일 이전에 사망한 3명의 환자들은 분석 에서 제외하였다. 전체 68예 중에서 MTX를 4회 투여 한 군(MTX4)은 30예였으며, MTX를 3회 이하 투여한 군(MTX3)은 38예였다. 3회 이하로 MTX를 투여한 원 인은 grade III 이상의 구강점막염 34예, 간기능 이상 3예, 그리고 신장기능 이상 1예였다. 환자들은 주요조 직적합성이 일치하는 가족으로부터 말초혈액 조혈모 세포를 공여 받았으며, 각 혈액질환에 따라 적절한 전 처치요법을 사용하였다.

2. 방법

1) 말초혈액 조혈모세포 가동화 및 채집: 동종 조혈모 세포이식술 과정은 전술한 바와 같이 시행되었다. 16-18) 공여자의 조혈모세포를 말초혈액으로 가동화시키기 위해 G-CSF (granulocyte colony-stimulating factor)나 GM-CSF (granulocyte-macrophage colony-stimulating factor) 단독요법 또는 G-CSF와 GM-CSF의 병합요법을 사용하였고 5~6일간 피하 주사하였다. G-CSF (Lenograstim, Neutrogin[®], Choongwae, Seoul, Korea) 10 µg/ kg/day 단독요법이 14예, GM-CSF (Sargramostim, Leucogen[®], LGLS, Seoul, Korea) 10 µg/kg/day 단독요법이 9예, G-CSF 및 GM-CSF 각각 5μg/kg/day을 동시에 사 용한 병합요법이 16예, GM-CSF 10 µg/kg/day를 3일간 사용 후 G-CSF 10 µg/kg/day을 목표량만큼 채집한 당 일 아침까지 사용하는 연속요법이 14예였다. 공여자의 대퇴정맥에 이중도관을 삽입하고 Baxter사의 CS-3000 Plus를 이용하여 4×10⁸/kg 이상의 단핵구와 4×10⁶/kg 이상의 CD34+세포 채집을 목표로 하였으며 4시간 동 안 15L 정도의 전혈을 대용량 백혈구분리반출법으로 처리하여 150~200mL를 채집하였다. 채집한 조혈모 세포는 혈구분석 후에 T 세포 제거 등의 조작없이 즉 시 환자에게 이식되었고, 채집량이 목표량보다 적을 경우에는 집락촉진인자를 투여하여 연속적으로 백혈 구분리반출법을 시행하였다. 고위험군의 악성 혈액질 환 환자에서는 이식 후 공여자림프구 주입술(donor lymphocyte infusion, DLI)에 대비하여 여분의 조혈모 세포를 액체 질소 탱크에 냉동 보관하였다. CD34+세 포는 CD34단클론항체(Becton-Dickinson, Franklin Lakes, NJ, USA)를 이용하여 fluorescein isothiocyanate (FITC) 와 phycoerythrine (PE)를 조합한 이중염색 직접면역 형광법으로 분석하였다.

2) 이식대숙주병의 예방: 급성 이식대숙주병의 예방 을 위해서 MTX는 이식 후 1일에 15mg/m²을 사용하였 고, 이식 후 3, 6, 11일에 각각 10mg/m²을 사용하였다. 11일째의 경우 환자가 grade III 이상의 구강점막염이 나 심한 간기능 이상, 신장기능 이상의 소견이 있는 경 우에는 생략하였다. MTX의 독성을 예방하기 위하여 leucovorin rescue는 각 환자의 이식 계획에 따라 시행 되었다. CSA는 이식 전 1일부터 5mg/kg/day을 24시간 동안 정주하여 이식 후 4일부터 2.5mg/kg/day으로 감 량하였고, 경구 섭취가 만족스러울 때부터는 6mg/kg/ day를 복용하였다. 이식 후 60일부터 경구용 CSA를 매 주 5%씩 감량하여 이식대숙주병이 없는 경우 이식 후 270일까지 사용하였다. 중증 급성 이식대숙주병이 있 는 경우에는 일차치료로 스테로이드를 사용하였다.

3) 보존치료: 모든 환자는 약물투여 및 검사용 혈액채 취를 위해 전처치 전에 히크만도관(Hickman catheter) 을 삽입하였고, 전처치 시작부터 이식 후 절대 호중구 수가 1,000/ μL이 될 때까지 공기 여과시설이 갖추어 진 무균실(laminar flow room)에서 입원 치료하였다.

Fluconazole 100mg을 전처치 당일부터 이식 후 75일까 지 경구 투여하였으며, ciprofloxacin 500mg과 roxithromycin 300mg을 이식 당일부터 생착될 때까지 경구 투 여하였다. Acyclovir (600mg, bid)는 이식 당일부터 이 식 후 120일까지 경구 투여하였고, Pneumocystis carinii 에 의한 폐렴을 예방하기 위하여 trimethoprim- sulfamethoxazole (single strength, bid)을 전처치 당일부터 이 식 전 2일까지와 생착부터 이식 후 180일까지 일주일 에 2일 투여하였다. 간정맥폐쇄병의 예방을 위해 전처 치 시작과 동시에 ursodeoxycholic acid를 경구로 투여 하였으며 면역글로불린(500mg/kg)은 이식 후 3개월까 지 격주로 투여하였고, 이후부터 6개월까지는 동량을 매달 투여하였다.

골수기능의 회복을 위해 GM-CSF 400 µg 또는 G-CSF 300 µg을 이식 다음날부터 절대 호중구 수가 1,000/μL 이상으로 증가할 때까지 매일 정맥 주사하 였고, 발열이 있는 경우에는 혈액배양 및 의심되는 부 위의 검체를 채취하여 도말 및 배양을 시행한 후 광범 위 항생제를 경험적으로 사용하였다. 적혈구는 헤모글 로빈 8.0g/dL 이상으로 유지하였고, 혈소판수는 20,000/ μL 이상으로 유지하였으며, 모든 혈소판과 농축절혈 구는 방사선조사 후 백혈구 제거용 필터를 사용하여 환자에게 수혈하였다.

3. 정의

조혈모세포를 처음 주입하는 날을 day 0으로 정의하 였고, 급성 및 만성 이식대숙주병의 진단 및 정도 판정 은 기존의 판정기준을 따랐다.^{19,20)} 광범위 만성 이식대 숙주병은 광범위 피부 병변이 있거나, 조직학적으로 증명된 간의 염증이나 섬유화, 폐 등의 다른 장기부전 이 동반되어 치료가 필요하였던 경우로 정의하였다. 장기특이 급성 및 만성 이식대숙주병의 시작일은 장기 특이적 증상 또는 이학적 소견이 처음으로 관찰된 날 을 기준으로 하였다. 동종 조혈모세포이식 후 3일 연속 으로 절대 호중구 수가 500/μL 이상인 경우 그 첫째

날을 백혈구 생착일로 정의하였으며, 혈소파이 20,000/ μL 이상 3일 연속 유지되는 첫째 날을 혈소판 생착일 로 정의하였다.

전체 생존은 이식 후 사망일까지로 정의하였고, 비 재발성 사망은 원질환의 재발 및 진행과는 무관하게 이식대숙주병의 악화, 기회감염, 급성호흡기증후군, 출혈, 생착거부, 간부전, 간정맥폐쇄병, 혈전저혈소판 자색반증 등의 원인으로 사망하는 경우로 정의하였다. 무병생존은 이식 후 재발까지 또는 무병상태에서의 사 망까지로 정의하였고, 재발은 이식 후 원질환의 재발 또는 진행한 경우로 정의하였다. 고위험군의 정의는 1 차 완전관해 상태가 아닌 급성백혈병, 필라델피아 양 성 급성림프구성백혈병, 진행병기의 만성골수성백혈 병, 치료 불응성 또는 다재발성 림프종 및 50단위 이상 의 수혈을 받거나 진단된 지 10년 이상의 중증 재생불 량성 빈혈로 정의하였다.

4. 통계분석

MTX4군과 MTX3군으로 나누어 두 군 간의 이식 결 과(백혈구 및 혈소판 생착일, 급성 및 만성 이식대숙주 병, 재발률, 전체 생존율 및 비재발성 치사율 등)를 비 교 분석하였다. 두 군 간의 환자군 특성 및 이식성적에 따른 차이를 비교하기 위해 Chi-square test 및 Fisher's exact test를 사용하였다. 백혈구 및 혈소판 생착일은 Wilcoxon's test를 사용하여 분석하였고, 급성 및 만성 이식대숙주병의 발생률, 재발률, 전체 생존율 및 비재 발성 치사율은 Kaplan-Meier방법을 이용하여 log-rank test로 분석하였다. 급성 및 만성 이식대숙주병의 발생 률에 영향을 미치는 인자들에 대한 다변량 분석을 위해 Cox's proportional hazard model이 사용되었다. 급성 이 식대숙주병의 발생률 분석에는 투여된 MTX양(MTX4 대 MTX3), 이식된 CD34+ 및 단핵구양, 전처치 방법 (골수파괴성 대 비골수파괴성), 질환의 위험성(고위험 군 대 표준위험군) 등의 인자가 포함되었다. 광범위 만 성 이식대숙주병의 발생률 분석에는 투여된 MTX양 (MTX4 대 MTX3), 이식된 CD34+ 및 단핵구양, 전처 치 방법(골수파괴성 대 비골수파괴성), 질환의 구성 (재생불량성 빈혈 대 그외 질환) 및 질환의 위험성(고위 험군 대 표준위험군), 급성 이식대숙주병(grade 0~Ⅱ 대 Ⅲ, Ⅳ) 등이 포함되었다. P<0.05인 경우를 의미 있 는 것으로 간주하였으며, 모든 통계처리는 SPSS software package (SPSS 10.0 Inc. Chicago, IL, USA)를 이용 하였다.

1. 대상환자의 특성 및 임상적 결과

대상환자 68예의 중앙연령은 36.5세(범위 16~58세) 였고, 남녀 비는 61.8% 대 38.2%이었다(42명 vs. 26명). 환자군의 원인질환으로는 급성골수성백혈병(n=35, 51.5%), 급성림프구성백혈병(n=6, 8.8%), 재생불량성 빈혈(n= 10, 14.7%), 만성골수성백혈병(n=5, 7.4%), 골수이형성 증후군(n=3, 4.4%), 악성림프종(n=6, 8.8%), 다발성골

수종(n=1, 1.5%) 등이었고, 이 중 32명(47.1%)의 환자 는 고위험군이었으며, 36명(52.9%)은 표준위험군이었 다. 전처치 방법에서 골수파괴성 전처치가 50예(73.5%) 였고, leucovorin rescue는 25예(36.8%)에서 시행되었다. 대상환자에게 이식된 단핵구와 CD34+세포수의 평 균값은 각각 9.31±0.48×10⁸/kg, 8.85±0.62×10⁶/kg이 었다. 백혈구 및 혈소판 생착일의 중앙값은 모두 15일 이었다. 급성 이식대숙주병은 44예(64.7%)에서 나타났 으며, grade III 이상은 13예(19.1%)에서 나타났다. 만성 이식대숙주병은 72.1% (44/61)에서 나타났으며 광범위

Table 1. Patients' characteristics and transplantation outcomes

		No. of patients $(n=68)$	%
Sex	Male/female	42/46	38.2/61.8
Age	Median (range)	36.5 years (16~58)	
Diagnosis	Acute myelogenous leukemia	35	51.5
	Acute lymphoblastic leukemia	6	8.8
	Aplastic anemia	10	14.7
	Chronic myelogenous leukemia	5	7.4
	Myelodysplastic syndrome	3	4.4
	Non-Hodgkin's lymphoma	6	8.8
	Multiple myeloma	1	1.5
	Others*	2	2.9
Disease risk	High risk	32	47.1
Conditioning	Myeloablative	50	73.5
	Nonmyeloablative	18	26.5
LV rescue	Done	25	36.8
	Not done	43	63.2
Stem cell source	Peripheral blood	68	100
Cell dose	MNC $(\times 10^8/\text{kg})$	9.31 ± 0.48	
	CD34+ $(\times 10^6/\text{kg})$	8.85 ± 0.62	
Engraftment	WBC, median (range)	14 days (10 \sim 29)	
	Platelet, median (range)	14 days $(9\sim56)$	
CMV reactivation	Yes	30	44.1
GVHD	Acute GVHD	44	64.7
	Acute GVHD Gr III,IV	13	19.1
	Chronic GVHD, (n=61)	44	72.1
	Chronic GVHD, extensive, (n=61)	22	36.1
Survival	Overall survival	34	50 ± 0.50
	Relapse	22	32.4
	Non-relapse mortality	20	29.4
Cause of death	Disease progression	13	19.1
	Infection	14	20.6
	GVHD	4	5.9
	Others	2	2.9

^{*1} paroxysmal nocturnal hemoglobinuria and 1 solid tumor.

Abbreviations: LV, leucovorin; MNC, mononuclear cell; GVHD, graft-versus-host disease.

만성 이식대숙주병은 36.1% (22/61)에서 나타났다. 또 한 이식 후 거대세포바이러스에 대한 항원이 검출된 경우가 30예(44.1%)였다. 32.4% (22/68)에서 원래 질 환이 재발하였으며 전체 생존율은 50.0% (34/68)이었 고 비재발성 사망률은 29.4% (20/68)이었다. 사망원인 은 감염이 20.6% (14/68)로 가장 많았으며 질병의 진행 이 19.1% (13/68), 이식대숙주병이 5.9% (4/68)이었다 (Table 1).

2. 투여된 MTX 횟수에 따른 임상결과의 비교

전체 68예 중에서 MTX3군은 38예(56%)였으며, MTX4군은 30예(44%)였다. MTX3군과 MTX4군의 연 령의 중앙값은 각각 36세, 37세로 차이가 없었지만 성별 에 있어 MTX3군이 여자가 47.4%로 MTX4군 27.3% 보 다 많았다(P=0.041). MTX3군과 MTX4군의 고위험군 질환은 각각 20예(52.6%), 12예(40.0%)로 통계적으로 유의한 차이는 없었다. 질환의 구성에서 MTX4군에서

Table 2. Patients' characteristics and transplantation outcomes according to the MTX dose

		MTX3, n (%)	MTX4, n (%)	P value
No. of patients		38 (59)	30 (41)	
Sex	Male/female	20/18	22/8	0.041
Age	Median (range)	36 years (17 \sim 54)	37 years (16 \sim 58)	0.828
Diagnosis	Acute myelogenous leukemia	24 (63.2)	11 (36.7)	0.030
	Acute lymphoblastic leukemia	3 (7.9)	3 (10.0)	0.761
	Aplastic anemia	1 (2.6)	9 (30.0)	0.002
	Chronic myelogenous leukemia	2 (5.3)	3 (10.0)	0.457
	Myelodysplastic syndrome	2 (5.3)	1 (3.3)	0.700
	Non-Hodgkin's lymphoma	4 (10.5)	2 (6.7)	0.577
	Multiple myeloma	1 (2.6)	0 (0)	0.371
	Others	1* (2.6)	1 [†] (3.3)	_
Disease risk	High risk	20 (52.6)	12 (40.0)	0.300
Conditioning	Myeloablative	31 (81.6)	19 (63.3)	0.090
	Nonmyeloablative	7 (18.4)	11 (36.7)	
LV rescue	Done	7 (18.4)	18 (60.0)	0.001
	Not done	31 (81.6)	12 (40.0)	
Stem cell source	Peripheral blood	38 (100)	30 (100)	1.00
Cell dose	MNC $(\times 10^8/\text{kg})$	8.65 ± 0.52	10.13 ± 0.86	0.131
	CD34+ $(\times 10^6/\text{kg})$	9.14±0.81	8.48 ± 0.98	0.603
Engraftment	WBC, median (range)	14 days (10∼29)	13.5 days $(10\sim25)$	0.344
	Platelet, median (range)	14 days (9~56)	12.5 days $(10\sim34)$	0.263
CMV reactivation	Yes	15 (39.5)	15 (50.0)	0.385
GVHD	Acute GVHD	28 (85.6)	16 (60.0)	0.038
	Acute GVHD Gr III, IV	11 (39.4)	2 (6.8)	0.017
	Chronic GVHD	30 (96.7), n=34	14 (54.2), n=27	0.001
	Chronic GVHD, extensive	17 (63.4), n=34	5 (25.6), n=27	0.004
Survival	Overall survival	16 (42.1±0.49)	18 (60.0±0.50)	0.143
	Relapse	12 (31.6)	10 (33.3)	0.878
	Non-relapse mortality	14 (36.8)	6 (20.0)	0.130
Cause of death	Disease progression	8 (21.0)	5 (16.7)	0.648
	Infection	9 (23.7)	5 (16.7)	0.477
	GVHD	4 (10.5)	0 (0)	0.067
	Others	1 (2.6)	1 (3.3)	_

^{*}Paroxysmal nocturnal hemoglobinuria, †solid tumor.

Abbreviations: see the Table 1.

재생불량성 빈혈이 많았으며(30.0% vs. 2.6%, P=0.002) MTX3군에서 급성골수성백혈병이 많았다(63.2% vs. 36.7%, P=0.030). 골수파괴성 전처치는 MTX3군에서 31예(81.6%), MTX4군에서 19예(63.3%)로 MTX3군에 서 더 많았으나 통계적 유의성은 없었다(P=0.090). Leucovorin rescue는 MTX4군에서 더 많이 시행되었다 (60.0% vs. 18.4%, P=0.001). MTX3군에서 이식된 단핵 구 및 CD3+세포의 평균값은 각각 8.65± 0.52×10⁸/kg, 9.14±0.81×10⁶/kg이었으며, MTX4군에서는 각각 10.13± 0.86×10⁸/kg, 8.48±0.98×10⁶/kg으로 두 군 간의 차이 는 없었다. 백혈구 및 혈소판 생착일의 중앙값은 MTX3 군에서 16일, 17일이었고, MTX4군에서 15일, 15일로 통계학적으로 유의한 차이는 없었다. 거대세포바이러 스에 대한 항원은 MTX3군에서 15예(39.5%), MTX4군 에서 15예(50.0%)발견되었으나 통계학적으로 유의한 차이는 없었다(Table 2). 급성 이식대숙주병은 MTX4

군에서 유의하게 적게 발생하였으며(86% vs. 60%, P= 0.038), grade III 이상의 중증 급성 이식대숙주병도 MTX4군에서 MTX3군에 비해 유의하게 적게 발생하 였다(39% vs. 7%, P=0.017). 만성 이식대숙주병의 발생 률은 MTX4군에서 54%, MTX3군에서 97%로 MTX4군 에서 유의하게 낮았으며(P=0.001), 또한 광범위 만성 이 식대숙주병도 MTX4군에서 유의하게 적게 발생하였다 (63% vs. 26%, *P*=0.004)(Fig. 1). Leucovorin rescue λ] 행 여부에 따른 급성 및 만성 이식대숙주병의 차이는 없었으며, grade III 이상의 급성 이식대숙주병의 발생 률도 leucovorin rescue 시행 여부와 관계가 없었다 (Table 3).

재발은 MTX3군에서 12예(31.6%), MTX4군에서 10 예(33.3%)로 두 군 간에 차이가 없었으며, 전체 생존율 도 60.0%, 42.1%로 두 군 간에 유의한 차이가 없었다. 비재발성 사망률도 MTX4군에서 20.0%, MTX3군에서

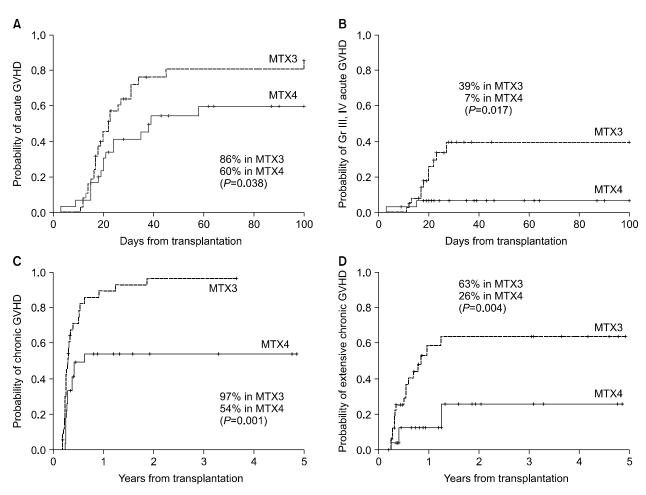


Fig. 1. The cumulative incidence of acute and chronic GVHD after HLA-identical allogeneic PBSCT (n=68). The group with 4 doses of methotrexate showed significantly lower incidence of acute GVHD (A), grade III-IV acute GVHD (B), overall chronic GVHD (C), and extensive chronic GVHD (D).

Table 3. Acute and chronic GVHD incidence according to leucovorin rescue

	${\sf LV}$ rescue $(-)$	LV rescue (+)	P value
Acute GVHD, n (%)	43	25	
Grade 0∼IV	28 (75.0)	16 (77.4)	0.087
Grade III, IV	10 (29.4)	3 (15.6)	0.255
Chronic GVHD, n (%)	39	22	
Limited + extensive	30 (80.8)	14 (70.0)	0.266
Extensive	14 (43.6)	8 (54.5)	0.604

Abbreviations: see the Table 1.

Table 4. Multivariate survival analyses in terms of acute and chronic GVHD

	Prognostic factor	Reference	Hazard ratio (95% CI)	P value
Acute GVHD	MTX3	MTX4	1.899 (1.019~3.541)	0.044
Acute GVHD, Gr III, IV	MTX3	MTX4	5.153 (1.139~23.314)	0.033
Chronic GVHD, extensive	MTX3	MTX4	2.791 (1.000~8.094)	0.050
	Acute GVHD Gr III, IV	Acute GVHD Gr $0{\sim}II$	3.788 (1.456~9.901)	0.006

Abbreviations: see the Table 1.

36.8%로 통계학적으로 유의한 차이는 없었다(Table 2). 급성 이식대숙주병의 다변량분석에서 MTX 3회 이 하 투여가 급성 이식대숙주병의 발생에 중요한 위험인 자였고, 광범위 만성 이식대숙주병의 다변량분석에서 MTX 3회 이하 투여 및 grade Ⅲ 이상의 급성 이식대숙 주병이 중요한 위험인자였다(Table 4).

1986년 이후 동종 골수이식에서 CSA과 MTX 4회 병 합요법은 grade Ⅱ 이상의 급성 이식대숙주병의 발생률 을 33% 정도로 감소시키고 중증도도 감소시키면서 초 기 생존율도 향상시켜 이식대숙주병의 표준 예방요법 으로 알려져 왔다. ^{12,15)} 그러나 MTX는 심한 점막염이 나 CSA와 연관된 신독성 또는 간독성이 나타난 경우 에는 투여를 중단하거나 용량을 줄일 필요가 있어 이 식 후 많은 경우에서 계획대로 투여되기 어렵다. MTX 가 계획된 용량대로 투여되지 못한 경우에는 이식 후 특히 이식대숙주병에 미치는 영향이 다르게 나타날 수 있을 것이다. Deeg 등²¹⁾은 조직적합항원 일치성 골수 이식에서 이식대숙주병의 예방에 CSA과 MTX 3회 병 합요법이 CSA과 MTX 4회 병합요법만큼 효과적이라 고 보고하였다. 또한 Atkinson 등²²⁾은 후향적 연구에서 조직적합항원 일치성 골수이식에서 이식 후 11일째 MTX 생략이 grade II 이상의 급성 이식대숙주병 및 만 성 이식대숙주병의 발생률을 증가시키지 않았다고 주 장하였다. 하지만 이에 대해 아직은 이견이 많으며, Nash 등²³⁾은 계획된 용량의 80% 이하로 MTX를 감량 한 경우 grade II 이상의 급성 이식대숙주병이 증가한 다고 보고하였다. 비슷하게 Kumar 등¹¹⁾도 이식 후 11 일째 MTX의 생략이 grade III 이상의 급성 이식대숙주 병의 증가와 관련이 있다고 주장하였다(31% vs. 14%, P=0.03). 하지만 말초혈액 조혈모세포이식에서 급성 및 만성 이식대숙주병에 대한 영향은 알려진 것이 거 의 없다. 말초혈액 조혈모세포이식은 골수이식에 비해 T 림프구 유입이 많고 이로 인해 이식대숙주병의 위험 성이 더 높다. 따라서 말초혈액 조혈모세포이식에서 MTX의 생략은 골수이식과 달리 이식대숙주병의 발생 에 영향을 미칠 수 있는 인자로 주목할 수 있다.

본 연구에서 MTX3군과 MTX4군 사이에 급성 이식 대숙주병의 발생률 및 grade III 이상의 급성 이식대숙 주병과 광범위 만성 이식대숙주병의 발생률은 MTX3 군에서 높았다. 다변량 분석에서도 이식 후 11일째 MTX의 생략이 grade III 이상의 급성 이식대숙주병과 광범위 만성 이식대숙주병의 중요한 위험인자였다.

하지만 본 연구의 결과 해석에 있어서 주의를 요하

는 점으로 첫째, MTX3군에서 심한 점막염, 간기능 이 상, 신장기능 이상 같은 이식 후 11일째 MTX가 투여 되지 못한 임상적 상황이 이식대숙주병의 발생 및 악 화에 기여했을 가능성을 고려하여야 한다.

점막염을 포함한 조직의 손상이 이식대숙주병의 발 생에 중요하다는 것은 여러 연구에서 잘 알려져 있 다. $^{24-26)}$ 조직의 손상이 생기면 TNF- α , IL-1 같은 사이 토카인(cytokine)들이 방출되고 이에 따라 항원제시세 포(antigen presenting cell, APC)에서 조직적합항원 class II와 부착분자(adhesion molecule)의 표현이 증가 한다. 이후 공여자 T 림프구가 활성화되면서 이식대숙 주병이 발생하게 된다. 또한 점막의 손상으로 인해 지 질다당질(lipopolysaccharide)의 체순환으로의 유입이 증가되어 단핵 식세포(mononuclear phagocyte)가 활성 화 되어 IL-1, TNF- α 같은 사이토카인을 분비하여 이 식대숙주병이 발생하게 된다. MTX3군에서 점막의 손 상이 많았던 점이 투여된 전체 MTX양과 함께 이식대 숙주병의 발생에 주요한 이유가 되었을 것이다.

둘째, 두 군 간의 성별 구성에 차이가 있었으며, 질환 구성 면에서도 MTX3군에서 급성골수성백혈병이 많 았고 MTX4군에서 재생 불량성빈혈이 많아 이로 인하 여 이식대숙주병 발생에 영향을 주었을 가능성도 고려 하여야 할 것으로 생각되며 이에 관해서는 더 많은 연 구가 필요할 것으로 생각된다.

결론적으로 본 연구에서는 이식 후 11일째 MTX를 생략하게 된 임상적 상황으로 이식대숙주병의 발생이 높았을 가능성을 고려하여야 하며, 이로 인하여 11일 째 MTX의 생략이 급성 이식대숙주병과 광범위 만성 이식대숙주병의 발생과 관련이 있음을 시사한다. 따라 서 본 저자들은 특히 말초혈액 조혈모세포이식에서 적 극적인 점막염 치료와 가능한 한 이식 후 11일째 MTX 를 투여하는 것이 이식대숙주병의 예방에 도움이 될 것으로 생각되나 이에 관해서는 향후 대규모의 전향적 연구가 필요할 것으로 생각한다.

배경: Cyclosporine (CSA)과 methotrexate (MTX) 4 회 병합요법은 이식대숙주병의 예방을 위해 표준요법 으로 사용되고 있다. 골수이식에서 이식 후 11일째 MTX의 생략은 중증 급성 이식대숙주병의 위험성 증 가와 관련이 있다고 알려져 있다. 하지만 말초혈액 조 혈모세포이식에서의 영향은 보고된 바가 없다. 이에 저자들은 조직접합항원 일치성 동종 말초혈액 조혈모 세포이식에서 이식 후 11일째 MTX 투여가 급성 및 만 성 이식대숙주병의 발생에 미치는 영향을 알아보기 위 해 본 연구를 수행하였다.

방법: 전체 68예 중에서 MTX를 4회 투여한 군(MTX4 군)은 30예(44%)였으며, 3회 이하의 MTX를 투여한 군 (MTX3군)은 38예(56%)였다. 3회 이하로 MTX를 투여 한 원인은 34예에서 grade III 이상의 구강점막염, 3예 에서 간기능 이상, 그리고 1예에서 신장기능 이상이었 다.

결과: 급성 이식대숙주병이 MTX4군에서는 60%, MTX3 군에서는 86%로 MTX4군에서 MTX3군에 비해 유의하 게 낮게 발생하였으며(P=0.038), grade III 이상의 중증 급성 이식대숙주병의 발생도 MTX4군에서 유의하게 낮았다(7% vs. 39%, P=0.017). 만성 이식대숙주병은 MTX4군에서 54%, MTX3군에서는 97%로 MTX4군에 서 MTX3군에 비해 유의하게 낮게 발생하였고(P= 0.001), 광범위 만성 이식대숙주병도 MTX4군에서 유 의하게 낮게 발생하였다(26% vs. 63%, P=0.004). 두 군 사이에 전체 생존율과 재발률의 차이는 없었다(P= 0.143, 0.878). 다변량 분석에서 MTX 3회 이하 사용은 급성 이식대숙주병과 광범위 만성 이식대숙주병의 발 생에 중요한 불량 예후인자로 확인되었다.

결론: 본 연구에서는 이식 후 11일째 MTX를 생략하 게 된 임상적 상황 및 11일째 MTX의 생략이 급성 이 식대숙주병과 광범위 만성 이식대숙주병의 발생과 관 련이 있음을 시사한다. 따라서 본 저자들은 특히 말초 혈액 조혈모세포이식에서 적극적인 점막염 치료와 가 능한 한 이식 후 11일째 MTX를 투여하는 것이 이식대 숙주병의 예방에 도움이 될 것으로 생각되나 이에 관 해서 향후 대규모의 전향적 연구가 필요할 것으로 생 각한다.

참 고 문 헌

- 1) Russell NH, Hunter A, Rogers S, Hanley J, Anderson D. Peripheral blood stem cells as an alternative to marrow for allogeneic transplantation. Lancet 1993; 341:1482.
- 2) Sohn SK, Jung JT, Kim DH, et al. Prophylactic growth factor-primed donor lymphocyte infusion using cells reserved at the time of transplantation after allogeneic peripheral blood stem cell transplantation in patients with high-risk hematologic malignancies. Cancer 2002;94:18-24.
- 3) Kim JG, Sohn SK, Kim DH, et al. Impact of ABO

- incompatibility on outcome after allogeneic peripheral blood stem cell transplantation. Bone Marrow Transplant 2005;35:489-95.
- 4) Champlin RE, Schmitz N, Horowitz MM, et al. Blood stem cells compared with bone marrow as a source of hematopoietic cells for allogeneic transplantation. IBMTR Histocompatibility and Stem Cell Sources Working Committee and the European Group for Blood and Marrow Transplantation (EBMT). Blood 2000;95:3702-9.
- 5) Bensinger WI, Martin PJ, Storer B, et al. Transplantation of bone marrow as compared with peripheralblood cells from HLA-identical relatives in patients with hematologic cancers. N Engl J Med 2001;344: 175-81.
- 6) Mielcarek M, Martin PJ, Torok-Storb B. Suppression of alloantigen-induced T-cell proliferation by CD14+ cells derived from granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells. Blood 1997;89:1629-34.
- 7) Tanimoto TE, Yamaguchi T, Tanaka Y, et al. Comparative analysis of clinical outcomes after allogeneic bone marrow transplantation versus peripheral blood stem cell transplantation from a related donor in Japanese patients. Br J Haematol 2004;125:480-93.
- 8) Levine JE, Wiley J, Kletzel M, et al. Cytokine-mobilized allogeneic peripheral blood stem cell transplants in children result in rapid engraftment and a high incidence of chronic GVHD. Bone Marrow Transplant 2000;25:13-8.
- 9) Wang M, Han M, Feng S. Comparison of clinical outcome between allogeneic peripheral blood stem cell transplantation and bone marrow transplantation. Zhonghua Xue Ye Xue Za Zhi 1999;20:427-30.
- 10) Nagatoshi Y, Kawano Y, Watanabe T, et al. Hematopoietic and immune recovery after allogeneic peripheral blood stem cell transplantation and bone marrow transplantation in a pediatric population. Pediatr Transplant 2002;6:319-26.
- 11) Kumar S, Wolf RC, Chen MG, et al. Omission of day +11 methotrexate after allogeneic bone marrow transplantation is associated with increased risk of severe acute graft-versus-host disease. Bone Marrow Transplant 2002;30:161-5.
- 12) Storb R, Deeg HJ, Whitehead J, et al. Methotrexate and cyclosporine compared with cyclosporine alone for prophylaxis of acute graft versus host disease after marrow transplantation for leukemia. N Engl J Med 1986;314:729-35.
- 13) Aschan J, Ringden O, Sundberg B, Gahrton G, Ljungman P, Winiarski J. Methotrexate combined

- with cyclosporin A decreases graft-versus-host disease, but increases leukemic relapse compared to monotherapy. Bone Marrow Transplant 1991;7:113-9.
- 14) Ringden O, Horowitz MM, Sondel P, et al. Methotrexate, cyclosporine, or both to prevent graft-versushost disease after HLA-identical sibling bone marrow transplants for early leukemia? Blood 1993;81:1094-
- 15) Storb R, Deeg HJ, Pepe M, et al. Methotrexate and cyclosporine versus cyclosporine alone for prophylaxis of graft-versus-host disease in patients given HLAidentical marrow grafts for leukemia: long-term follow-up of a controlled trial. Blood 1989;73:1729-
- 16) Sohn SK, Kim JG, Sung WJ, et al. Harvesting peripheral blood stem cells from healthy donors on 4th day of cytokine mobilization. J Clin Apher 2003;18: 186-9.
- 17) Sohn SK, Kim JG, Chae YS, et al. Large-volume leukapheresis using femoral venous access for harvesting peripheral blood stem cells with the Fenwal CS 3000 Plus from normal healthy donors: predictors of CD34+ cell yield and collection efficiency. I Clin Apher 2003;18:10-5.
- 18) Sohn SK, Kim JG, Seo KW, et al. GM-CSF-based mobilization effect in normal healthy donors for allogeneic peripheral blood stem cell transplantation. Bone Marrow Transplant 2002;30:81-6.
- 19) Przepiorka D, Weisdorf D, Martin P, et al. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant 1995;15:825-58.
- 20) Shulman HM, Sullivan KM, Weiden PL, et al. Chronic graft-versus-host syndrome in man. A long-term clinicopathologic study of 20 Seattle patients. Am J Med 1980;69:204-17.
- 21) Deeg HJ, Spitzer TR, Cottler-Fox M, Cahill R, Pickle LW. Conditioning-related toxicity and acute graftversus-host disease in patients given methotrexate/ cyclosporine prophylaxis. Bone Marrow Transplant 1991;7:193-8.
- 22) Atkinson K, Downs K. Omission of day 11 methotrexate does not appear to influence the incidence of moderate to severe acute graft-versus-host disease, chronic graft-versus-host disease, relapse rate or survival after HLA-identical sibling bone marrow transplantation. Bone Marrow Transplant 1995;16:755-8.
- 23) Nash RA, Pepe MS, Storb R, et al. Acute graft-versushost disease: analysis of risk factors after allogeneic marrow transplantation and prophylaxis with cyclosporine and methotrexate. Blood 1992;80:1838-45.
- 24) Ferrara JL, Cooke KR, Teshima T. The pathophysi-

- ology of acute graft-versus-host disease. Int J Hematol 2003;78:181-7.
- 25) Reddy P. Pathophysiology of acute graft-versus-host disease. Hematol Oncol 2003;21:149-61.
- 26) Teshima T, Ferrara JL. Understanding the alloresponse: new approaches to graft-versus-host disease prevention. Semin Hematol 2002;39:15-22.