
Introduction

The differences in the means of two groups that are mutually 
independent and satisfy both the normality and equal vari-
ance assumptions can be obtained by comparing them using a 
Student’s t-test. However, we may have to determine whether 
differences exist in the means of 3 or more groups. Most readers 
are already aware of the fact that the most common analytical 
method for this is the one-way analysis of variance (ANOVA). 
The present article aims to examine the necessity of using a one-
way ANOVA instead of simply repeating the comparisons using 
Student’s t-test. ANOVA literally means analysis of variance, and 
the present article aims to use a conceptual illustration to explain 

how the difference in means can be explained by comparing the 
variances rather by the means themselves.  

Significance Level Inflation 

In the comparison of the means of three groups that are mu-
tually independent and satisfy the normality and equal variance 
assumptions, when each group is paired with another to attempt 
three paired comparisons1), the increase in Type I error becomes 
a common occurrence. In other words, even though the null hy-
pothesis is true, the probability of rejecting it increases, whereby 
the probability of concluding that the alternative hypothesis 
(research hypothesis) has significance increases, despite the fact 
that it has no significance. 

Let us assume that the distribution of differences in the means 
of two groups is as shown in Fig. 1. The maximum allowable 
error range that can claim “differences in means exist” can be 
defined as the significance level (α). This is the maximum prob-
ability of Type I error that can reject the null hypothesis of “dif-
ferences in means do not exist” in the comparison between two 
mutually independent groups obtained from one experiment. 
When the null hypothesis is true, the probability of accepting it 
becomes 1-α. 

Now, let us compare the means of three groups. Often, the 

Statistical Round

Analysis of variance (ANOVA) is one of the most frequently used statistical methods in medical research. The need for 
ANOVA arises from the error of alpha level inflation, which increases Type 1 error probability (false positive) and is 
caused by multiple comparisons. ANOVA uses the statistic F, which is the ratio of between and within group variances. 
The main interest of analysis is focused on the differences of group means; however, ANOVA focuses on the difference of 
variances. The illustrated figures would serve as a suitable guide to understand how ANOVA determines the mean differ-
ence problems by using between and within group variance differences.

Key Words: Analysis of variance, False positive reactions, Statistics.

Understanding one-way ANOVA 
using conceptual figures

Tae Kyun Kim 
Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital and School of Medicine, 
Yangsan, Korea

CC  This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ the Korean Society of Anesthesiologists, 2017 Online access in http://ekja.org

pISSN 2005-6419  •  eISSN 2005-7563

Korean Journal of Anesthesiology

KJA

Corresponding author: Tae Kyun Kim, M.D., Ph.D.
Department of Anesthesia and Pain Medicine, Pusan National 
University Yangsan Hospital and School of Medicine, 20, Geumo-ro, 
Mulgeum-eup, Yangsan 50612, Korea
Tel: 82-55-360-2129, Fax: 82-55-360-2149
Email: anesktk@pusan.ac.kr
ORCID: http://orcid.org/0000-0002-4790-896X 

Received: November 14, 2016.  
Revised: December 5, 2016 (1st); December 8, 2016 (2nd).  
Accepted: December 9, 2016.

Korean J Anesthesiol 2017 February 70(1): 22-26
https://doi.org/10.4097/kjae.2017.70.1.22 1) A, B, C three paired comparisons: A vs B, A vs C and B vs C.

http://crossmark.crossref.org/dialog/?doi=10.4097/kjae.2017.70.1.22&domain=pdf&date_stamp=2017-01-26
http://crossmark.crossref.org/dialog/?doi=10.4097/kjae.2017.70.1.22&domain=pdf&date_stamp=2017-01-26


Online access in http://ekja.org

KOREAN J ANESTHESIOL Tae Kyun Kim 

23

null hypothesis in the comparison of three groups would be “the 
population means of three groups are all the same,” however, 
the alternative hypothesis is not “the population means of three 
groups are all different,” but rather, it is “at least one of the popu-
lation means of three groups is different.” In other words, the 
null hypothesis (H0) and the alternative hypothesis (H1) are as 
follows: 

H0 : μ1 = μ2 = μ3

H1 : μ1 ≠ μ2  or μ1 ≠ μ3  or μ2 ≠ μ3  

Therefore, among the three groups, if the means of any two 
groups are different from each other, the null hypothesis can be 
rejected. 

In that case, let us examine whether the probability of reject-
ing the entire null hypothesis remains consistent, when two 
continuous comparisons are made on hypotheses that are not 
mutually independent. When the null hypothesis is true, if the 
null hypothesis is rejected from a single comparison, then the 
entire null hypothesis can be rejected. Accordingly, the probabil-
ity of rejecting the entire null hypothesis from two comparisons 
can be derived by firstly calculating the probability of accepting 
the null hypothesis from two comparisons, and then subtract-
ing that value from 1. Therefore, the probability of rejecting the 
entire null hypothesis from two comparisons is as follows:

1 − (1 − α)(1 − α)

If the comparisons are made n times, the probability of re-
jecting the entire null hypothesis can be expressed as follows: 

1− (1 − α)n

It can be seen that as the number of comparisons increases, 
the probability of rejecting the entire null hypothesis also in-

creases. Assuming the significance level for a single comparison 
to be 0.05, the increases in the probability of rejecting the entire 
null hypothesis according to the number of comparisons are 
shown in Table 1. 

ANOVA Table

Although various methods have been used to avoid the hy-
pothesis testing error due to significance level inflation, such as 
adjusting the significance level by the number of comparisons, 
the ideal method for resolving this problem as a single statistic 
is the use of ANOVA. ANOVA is an acronym for analysis of 
variance, and as the name itself implies, it is variance analysis. 
Let us examine the reason why the differences in means can be 
explained by analyzing the variances, despite the fact that the 
core of the problem that we want to figure out lies with the com-
parisons of means. 

For example, let us examine whether there are differences in 
the height of students according to their grades (Table 2). First, 
let us examine the ANOVA table (Table 3) that is commonly 
obtained as a product of ANOVA. In Table 3, the significance 

Table 1. Inflation of Significance Level 

Number of comparisons Significance level

1 0.05
2 0.098
3 0.143
4 0.185
5 0.226
6 0.265
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Fig. 1. Significant level alpha to reject null hypothesis. 

Table 2. Example of One-way ANOVA

Class A (n = 30) Class B (n = 30) Class C (n = 30)

156 171.2 156.6 169.3 156.7 173.5
160.4 171.3 160.1 169.4 161.9 173.6
161.7 171.5 161 169.5 162.9 173.9
163.6 171.9 161.2 170.7 165 174.2
163.8 172 161.4 170.7 165.5 175.4
164.8 172 162.5 172.2 166.1 175.6
165.8 172.9 162.6 172.9 166.2 176.4
165.8 173.5 162.9 173.9 166.2 177.7
166.2 173.8 163.1 173.9 167.1 179.3
168 173.9 164.4 174.1 169.1 179.8
168.1 174 165.9 174.3 170.9 180
168.4 175.7 166 174.9 171.4 180.3
168.7 175.8 166.3 175.4 172 181.6
169.4 176.7 167.3 176.7 172.2 182.1
170 187 168.9 178.7 173.3 183.7

Raw data of students’ heights in three different classes. Each class consists 
of thirty students.
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is ultimately determined using a significance probability value 
(P value), and in order to obtain this value, the statistic and its 
position in the distribution to which it belongs, must be known. 
In other words, there has to be a distribution that serves as the 
reference and that distribution is called F distribution. This 
F comes from the name of the statistician Ronald Fisher. The 
ANOVA test is also referred to as the F test, and F distribution 
is a distribution formed by the variance ratios. Accordingly, F 
statistic is expressed as a variance ratio, as shown below. 

F =
Intergroup variance

=
∑K

i=1 ni(Y
−

i − Y−)2 / (K − 1)

Intragroup variance ∑n
ij=1 (Yij − Y−i)

2 / (N − K)

Here, Y−i is the mean of the group i; ni is the number of obser-
vations of the group i; Y− is the overall mean; K is the number of 
groups; Yij is the jth observational value of group i; and N is the 
number of all observational values. 

It is not easy to look at this complex equation and understand 

ANOVA at a single glance. The meaning of this equation will be 
explained as an illustration for easier understanding. Statistics 
can be regarded as a study field that attempts to express data 
which are difficult to understand with an easy and simple ways 
so that they can be represented in a brief and simple forms. 
What that means is, instead of independently observing the 
groups of scattered points, as shown in Fig. 2A, the explana-
tion could be given with the points lumped together as a single 
representative value. Values that are commonly referred to as 
the mean, median, and mode can be used as the representative 
value. Here, let us assume that the black rectangle in the middle 
represents the overall mean. However, a closer look shows that 
the points inside the circle have different shapes and the points 
with the same shape appear to be gathered together. Therefore, 
explaining all the points with just the overall mean would be in-
appropriate, and the points would be divided into groups in such 
a way that the same shapes belong to the same group. Although 
it is more cumbersome than explaining the entire population 
with just the overall mean, it is more reasonable to first form 

Table 3. ANOVA Table Resulted from the Example 

Sum of squares Freedom Mean sum of squares F Significance probability

Intergroup   273.875   2 136.937 3.629 0.031

∑
K

i=1
 ni(Y

−
i − Y−)2 (K − 1) ∑

K

i=1
 ni(Y

−
i − Y−)2 / (K − 1)

Intragroup 3282.843 87   37.734

∑
n

ij=1
 (Yij − Y−i)

2 (N − K) ∑
n

ij=1
 (Yij − Y−i)

2 / (N − K)

Overall 3556.718 89

Y−i is the mean of the group i; ni is the number of observations of the group i; Y− is the overall mean; K is the number of groups; Yij is the jth observational 
value of group i; and N is the number of all observational values. The F statistic is the ratio of intergroup mean sum of squares to intragroup mean 
sum of squares.

A B C

Fig. 2. Solid square is suggested as a general representative value such as mean of overall data (A). It looks reasonable to divide the data into three groups 
and explain the data with three different means of groups (B). To evaluate the efficiency or validity of dividing three groups, the distances from group 
means to overall mean and the distances from group means to each data are compared. Distance between group means and overall mean (solid arrows) 
stands for the inter-group variance and distance between group means and each group data (dotted arrows) stands for the intra-group variances (C).
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groups of points with the same shape and establish the mean 
for each group, and then explain the population with the three 
means. Therefore, as shown in Fig. 2B, the groups were divided 
into three and the mean was established in the center of each 
group in an effort to explain the entire population with these 
three points. Now the question arises as to how can one evaluate 
whether there are differences in explaining with the representa-
tive value of the three groups (e.g.; mean) versus explaining with 
lumping them together as a single overall mean.  

First, let us measure the distance between the overall mean 
and the mean of each group, and the distance from the mean 
of each group to each data within that group. The distance 
between the overall mean and the mean of each group was 
expressed as a solid arrow line (Fig. 2C). This distance is ex-
pressed as (Y−i − Y−)2, which appears in the denominator of the 
equation for calculating the F statistic. Here, the number of 
data in each group are multiplied, ni(Y−i − Y−)2. This is because 
explaining with the representative value of a single group is the 
same as considering that all the data in that group are accumu-
lated at the representative value. Therefore, the amount of vari-
ance which is induced by explaining with the points divided into 
groups can be seen, as compared to explaining with the overall 
mean, and this explains inter-group variance.

Let us return to the equation for deriving the F statistic. The 
meaning of (Yij − Y−i)

2 in the numerator is represented as an il-
lustration in Fig. 2C, and the distance from the mean of each 
group to each data is shown by the dotted line arrows. In the fig-
ure, this distance represents the distance from the mean within 
the group to the data within that group, which explains the in-
tragroup variance. 

By looking at the equation for F statistic, it can be seen that 
this inter- or intragroup variance was divided into inter- and 
intragroup freedom. Let us assume that when all the fingers are 
stretched out, the mean value of the finger length is represented 
by the index finger. If the differences in finger lengths are com-
pared to find the variance, then it can be seen that although 

there are 5 fingers, the number of gaps between the fingers is 4. 
To derive the mean variance, the intergroup variance was divid-
ed by freedom of 2, while the intragroup variance was divided 
by the freedom of 87, which was the overall number obtained by 
subtracting 1 from each group.  

What can be understood by deriving the variance can be 
described in this manner. In Figs. 3A and 3B, the explanations 
are given with two different examples. Although the data were 
divided into three groups, there may be cases in which the intra-
group variance is too big (Fig. 3A), so it appears that nothing is 
gained by dividing into three groups, since the boundaries be-
come ambiguous and the group mean is not far from the overall 
mean. It seems that it would have been more efficient to explain 
the entire population with the overall mean. Alternatively, when 
the intergroup variance is relatively larger than the intragroup 
variance, in other word, when the distance from the overall 
mean to the mean of each group is far (Fig. 3B), the boundaries 
between the groups become more clear, and explaining by divid-
ing into three group appears more logical than lumping together 
as the overall mean. 

Ultimately, the positions of statistic derived in this manner 

A B

Fig. 3. Compared to the intra-group 
variances (dotted arrow), the inter-group 
variance (solid arrow) is so small that 
dividing three groups does not look valid 
(A), however, grouping looks valid when 
the solid arrow is much larger than the 
dotted arrow (B).  
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Fig. 4. F distributions and significant level. F distributions have different 
forms according to its degree of freedom combinations.
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from the inter- and intragroup variance ratios can be identified 
from the F distribution (Fig. 4). When the statistic 3.629 in the 
ANOVA table is positioned more to the right than 3.101, which 
is a value corresponding to the significance level of 0.05 in the 
F distribution with freedoms of 2 and 87, meaning bigger than 
3.101, the null hypothesis can be rejected. 

Post-hoc Test

Anyone who has performed ANOVA has heard of the term 
post-hoc test. It refers to “the analysis after the fact” and it is 
derived from the Latin word for “after that.” The reason for 
performing a post-hoc test is that the conclusions that can be 
derived from the ANOVA test have limitations. In other words, 
when the null hypothesis that says the population means of 
three mutually independent groups are the same is rejected, the 
information that can be obtained is not that the three groups are 
different from each other. It only provides information that the 
means of the three groups may differ and at least one group may 
show a difference. This means that it does not provide informa-
tion on which group differs from which other group (Fig. 5). 
As a result, the comparisons are made with different pairings 
of groups, undergoing an additional process of verifying which 
group differs from which other group. This process is referred to 
as the post-hoc test.  

The significance level is adjusted by various methods [1], 

such as dividing the significance level by the number of com-
parisons made. Depending on the adjustment method, various 
post-hoc tests can be conducted. Whichever method is used, 
there would be no major problems, as long as that method is 
clearly described. One of the most well-known methods is the 
Bonferroni’s correction. To explain this briefly, the significance 
level is divided by the number of comparisons and applied to the 
comparisons of each group. For example, when comparing the 
population means of three mutually independent groups A, B, 
and C, if the significance level is 0.05, then the significance level 
used for comparisons of groups A and B, groups A and C, and 
groups B and C would be 0.05/3 = 0.017. Other methods include 
Turkey, Schéffe, and Holm methods, all of which are applicable 
only when the equal variance assumption is satisfied; however, 
when this assumption is not satisfied, then Games Howell meth-
od can be applied. These post-hoc tests could produce different 
results, and therefore, it would be good to prepare at least 3 
post-hoc tests prior to carrying out the actual study. Among the 
different types of post-hoc tests it is recommended that results 
which appear the most frequent should be used to interpret the 
differences in the population means.  

Conclusions  

It is believed that a wide variety of approaches and explana-
tory methods are available for explaining ANOVA. However, 
illustrations in this manuscript were presented as a tool for pro-
viding an understanding to those who are dealing with statistics 
for the first time. As the author who reproduced ANOVA is a 
non-statistician, there may be some errors in the illustrations. 
However, it should be sufficient for understanding ANOVA at a 
single glance and grasping its basic concept.  

ANOVA also falls under the category of parametric analysis 
methods which perform the analysis after defining the distribu-
tion of the recruitment population in advance. Therefore, nor-
mality, independence, and equal variance of the samples must be 
satisfied for ANOVA. The processes of verification on whether 
the samples were extracted independently from each other, Lev-
ene’s test for determining whether homogeneity of variance was 
satisfied, and Shapiro-Wilk or Kolmogorov test for determining 
whether normality was satisfied must be conducted prior to de-
riving the results [2-4].
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Fig. 5. It shows the schematic drawing for the necessity of post-hoc test. 
Post-hoc test is needed to find out which groups are different from each 
other. 


