
Introduction

Statistical analysis is a universal method with which to as-
sess the validity of a conclusion. It is one of the most important 
aspects of a medical paper. Statistical analysis grants meaning to 
otherwise meaningless series of numbers and allow researchers 
to draw conclusions from uncertain facts. Hence, it is a work of 
creation that breathes life into data. However, the inappropri-
ate use of statistical techniques results in faulty conclusions, 
inducing errors and undermining the significance of the article. 

Moreover, medical researchers must pay more attention to ac-
quiring statistical validity as evidence-based medicine has taken 
center stage on the medicine scene in these days. Recently, rapid 
advances in statistical analysis packages have opened doors to 
more convenient analyses. However, easier methods of perform-
ing statistical analyses, such as inputting data on software and 
simply pressing the “analysis” or “OK” button to compute the 
P value without understanding the basic concepts of statistics, 
have increased the risk of using incorrect statistical analysis 
methods or misinterpreting analytical results [1]. 

Several journals, including the Korean Journal of Anesthesiology, 
have been striving to identify and to reduce statistical errors 
overall in medical journals [2-5]. As a result, a wide array of sta-
tistical errors has been found in many papers. This has further 
motivated the editors of each journal to enhance the quality of 
their journals by developing checklists or guidelines for authors 
and reviewers [6-9] to reduce statistical errors. One of the most 
common statistical errors found in journals is the application of 
parametric statistical techniques to nonparametric data [4,5]. 
This is presumed to be due to the fact that medical research-
ers have had relatively few opportunities to use nonparametric 
statistical techniques as compared to parametric techniques 
because they have been trained mostly on parametric statistics, 

Statistical Round

Conventional statistical tests are usually called parametric tests. Parametric tests are used more frequently than non-
parametric tests in many medical articles, because most of the medical researchers are familiar with and the statistical 
software packages strongly support parametric tests. Parametric tests require important assumption; assumption of nor-
mality which means that distribution of sample means is normally distributed. However, parametric test can be mislead-
ing when this assumption is not satisfied. In this circumstance, nonparametric tests are the alternative methods available, 
because they do not required the normality assumption. Nonparametric tests are the statistical methods based on signs 
and ranks. In this article, we will discuss about the basic concepts and practical use of nonparametric tests for the guide 
to the proper use. 

Key Words: Data interpretation, Investigative technique, Nonparametric statistics, Statistical data analysis.

Nonparametric statistical tests 
for the continuous data: the basic 
concept and the practical use

Francis Sahngun Nahm
Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea

CC  This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ the Korean Society of Anesthesiologists, 2016 Online access in http://ekja.org

pISSN 2005-6419  •  eISSN 2005-7563

Korean Journal of Anesthesiology

KJA

Corresponding author: Francis Sahngun Nahm, M.D.
Department of Anesthesiology and Pain Medicine, Seoul National 
University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, 
Seongnam 13620, Korea
Tel: 82-31-787-7499, Fax: 82-31-787-4063
E-mail: hiitsme@hanmail.net
ORCID: http://orcid.org/0000-0002-5900-7851

Received: December 7, 2015.  
Revised: December 28, 2015.
Accepted: December 28, 2015.

Korean J Anesthesiol 2016 February 69(1): 8-14 
http://dx.doi.org/10.4097/kjae.2016.69.1.8 

http://crossmark.crossref.org/dialog/?doi=10.4097/kjae.2016.69.1.8&domain=pdf&date_stamp=2016-01-28


9Online access in http://ekja.org

KOREAN J ANESTHESIOL Francis Sahngun Nahm

and many statistics software packages strongly support para-
metric statistical techniques. Therefore, the present paper seeks 
to boost our understanding of nonparametric statistical analysis 
by providing actual cases of the use of nonparametric statistical 
techniques, which have only been introduced rarely in the past.

The History of Nonparametric Statistical 
Analysis 

John Arbuthnott, a Scottish mathematician and physician, 
was the first to introduce nonparametric analytical methods in 
1710 [10]. He performed a statistical analysis similar to the sign 
test used today in his paper “An Argument for divine provi-
dence, taken from the constant regularity observ’d in the Births 
of both sexes.” Nonparametric analysis was not used for a while 
after that paper, until Jacob Wolfowitz used the term “non-
parametric” again in 1942 [11]. Then, in 1945, Frank Wilcoxon 
introduced a nonparametric analysis method using rank, which 
is the most commonly used method today [12]. In 1947, Henry 
Mann and his student Donald Ransom Whitney expanded on 
Wilcoxon’s technique to develop a technique for comparing two 
groups of different number of samples [13]. In 1951, William 
Kruskal and Allen Wallis introduced a nonparametric test meth-
od to compare three or more groups using rank data [14]. Since 
then, several studies have reported that nonparametric analyses 
are just as efficient as parametric methods; it is known that 
the asymptotic relative efficiency of nonparametric statistical 
analysis, specifically Wilcoxon’s signed rank test and the Mann-
Whitney test, is 0.955 against the t-test when the data satisfies 
the assumption of normality [15,16]. Ever since when Tukey 
developed a method to compute confidence intervals using a 
nonparametric method, nonparametric analysis was established 
as a commonly used analytical method in medical and natural 
science research [17].

The Basic Principle of Nonparametric 
Statistical Analysis

Traditional statistical methods, such as the t-test and analysis 
of variance, of the types that are widely used in medical research, 
require certain assumptions about the distribution of the popu-
lation or sample. In particular, the assumption of normality, 
which specifies that the means of the sample group are normally 
distributed, and the assumption of equal variance, which speci-
fies that the variances of the samples and of their corresponding 
population are equal, are two most basic prerequisites for para-
metric statistical analysis. Hence, parametric statistical analyses 
are conducted on the premise that the above assumptions are 
satisfied. However, if these assumptions are not satisfied, that is, 
if the distribution of the sample is skewed toward one side or the 

distribution is unknown due to the small sample size, paramet-
ric statistical techniques cannot be used. In such cases, nonpara-
metric statistical techniques are excellent alternatives.

Nonparametric statistical analysis greatly differs from para-
metric statistical analysis in that it only uses + or − signs or the 
rank of data sizes instead of the original values of the data. In 
other words, nonparametric analysis focuses on the order of the 
data size rather than on the value of the data per se. For example, 
let’s pretend that we have the following five data for a variable X.

	X1	 X2	 X3	 X4	 X5

	32	 47	 32	 18	 99

After listing the data in the order of their sizes, each instance 
of data is ranked from one to five; the data with the lowest value 
(18) is ranked 1, and the data with the greatest value (99) is 
ranked 5. There are two data instances with values of 32, and 
these are accordingly given a rank of 2.5. Furthermore, the signs 
assigned to each data instance are a + for those values greater 
than the reference value and a − for those values less than the 
reference value. If we assign a reference value of 50 for these in-
stances, there would only be one value greater than 50, resulting 
in one + and four − signs. While parametric analysis focuses on 
the difference in the means of the groups to be compared, non-
parametric analysis focuses on the rank, thereby putting more 
emphasis differences of the median values than the mean.

As shown above, nonparametric analysis converts the origi-
nal data in the order of size and only uses the rank or signs. 
Although this can result in a loss of information of the original 
data, nonparametric analysis has more statistical power than 
parametric analysis when the data are not normally distributed. 
In fact, as shown in the above example, one particular feature 
of nonparametric analysis is that it is minimally affected by ex-
treme values because the size of the maximum value (99) does 
not affect the rank or the sign even if it is greater than 99.

Advantages and Disadvantages of 
Nonparametric Statistical Analysis

Nonparametric statistical techniques have the following ad-
vantages:

-	� There is less of a possibility to reach incorrect conclusions 
because assumptions about the population are unnecessary. 
In other words, this is a conservative method.

-	� It is more intuitive and does not require much statistical 
knowledge.

-	� Statistics are computed based on signs or ranks and thus 
are not greatly affected by outliers.

-	� This method can be used even for small samples.
On the other hand, nonparametric statistical techniques are 



10 Online access in http://ekja.org

VOL. 69, NO. 1, February 2016 Nonparametric test

associated with the following disadvantages:
-	� Actual differences in a population cannot be known be-

cause the distribution function cannot be stated.
-	� The information acquired from nonparametric methods is 

limited compared to that from parametric methods, and it 
is more difficult to interpret it.

-	� Compared to parametric methods, there are only a few 
analytical methods.

-	� The information in the data is not fully utilized.
-	� Computation becomes complicated for a large sample.
In summary, using nonparametric analysis methods reduces 

the risk of drawing incorrect conclusions because these methods 
do not make any assumptions about the population, whereas 
can have lower statistical power. In other words, nonparamet-
ric methods are “always valid, but not always efficient,” while 
parametric methods are “always efficient, but not always valid.” 
Therefore, parametric methods are recommended when they 
can in fact be used.

Types of Nonparametric Statistical Analyses

In this section, I explain the median test for one sample, a 
comparison of two paired samples, a comparison of two inde-
pendent samples, and a comparison of three or more samples. 
The types of nonparametric analysis techniques and the corre-
sponding parametric analysis techniques are delineated in Table 1.

Median test for one sample: the sign test and 
Wilcoxon’s signed rank test

The sign test and Wilcoxon’s signed rank test are used for 
median tests of one sample. These tests examine whether one 
instance of sample data is greater or smaller than the median 
(reference value).

Sign test

The sign test is the simplest test among all nonparametric 
tests regarding the location of a sample. This test examines the 

hypothesis about the median θ0 of a population, and it involves 
testing the null hypothesis H0: θ = θ0. If the observed value (Xi) 
is greater than the reference value (θ0), it is marked as +, and it 
is given a − sign if the observed value is smaller than the refer-
ence value, after which the number of + values is calculated. If 
there is an observed value in the sample that is equal to the ref-
erence value (θ0), the said observed value is eliminated from the 
sample. Accordingly, the size of the sample is then reduced to 
proceed with the sign test. The number of sample data instances 
given the + sign is denoted as ‘B’ and is referred to as the sign 
statistic. If the null hypothesis is true, the number of + signs and 
the number of − signs are equal. The sign test ignores the actual 
values of the data and only uses + or − signs. Therefore, it is 
useful when it is difficult to measure the values. 

Wilcoxon’s signed rank test

The sign test has one drawback in that it may lead to a loss of 
information because only + or − signs are used in the compari-
son of the given data with the reference value of θ0. In contrast, 
Wilcoxon’s signed rank test not only examines the observed val-
ues in comparison with θ0 but also considers the relative sizes, 
thus mitigating the limitation of the sign test. Wilcoxon’s signed 
rank test has more statistical power because it can reduce the 
loss of information that arises from only using signs. As in the 
sign test, if there is an observed value that is equal to the refer-
ence value θ0, this observed value is eliminated from the sample 
and the sample size is adjusted accordingly. Here, given a sample 
with five data points (Xi), as shown in Table 2, we test whether 
the median (θ0) of this sample is 50. 

In this case, if we subtract θ0 from each data point (Ri = Xi − 
θ0), find the absolute value, and rank the values in increasing 
order, the resulting rank is equal to the value in the parenthesis 
in Table 2. With Wilcoxon’s signed rank test, only the ranks with 
positive values are added as per the following equation:

W+ = ΣΨi ·|Ri| 

Ψi = { 1 (when Ri > 0)
           0 (when Ri < 0)

Table 1. Analog of Parametic and Nonparametric Tests

Parametric tests Nonparametric tests

One sample One sample t test Sign test
Wilcoxon’s signed rank test

Two sample Paired t test Sign test 
Wilcoxon’s signed rank test

Unpaired t test Mann-Whitney test
Kolmorogov-Smirnov test 

K-sample Analysis of variance

2 way analysis of variance

Kruskal-Wallis test
Jonckheer test
Friedman test

Table 2. Examples of Sign Test and Wilcoxon’s Singed Rank Test for 
One Sample

X1 X2 X3 X4 X5

Data
+/– compared to 50
Ri = Xi – 50 
Rank

47
−
−3
(1)

55
+
5

(2)

34
−
−16

(4)

26
−
−14

(3)

99
+
49
(5)

Let the median (θ0) is 50. The original data were transformed into rank 
and sign data. +/− mean Xi > 50 and < 50 respectively. The round 
bracket means rank.
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Comparison of a paired sample: sign test and 
Wilcoxon’s signed rank test

Sign test

In the previously described one-sample sign test, the given 
data was compared to the median value (θ0). The sign test for a 
paired sample compares the scores before and after treatment, 
with everything else identical to how the one-sample sign test is 
run. The sign test does not use ranks of the scores but only con-
siders the number of + or − signs. Thus, it is rarely affected by 
extreme outliers. At the same time, it cannot utilize all of the in-
formation in the given data. Instead, it can only provide informa-
tion about the direction of the difference between two samples, 
but not about the size of the difference between two samples.

Wilcoxon’s signed rank test

This test is a nonparametric method of a paired t test. The 
only difference between this test and the previously described 
one-sample test is that the one-sample test compares the given 
data to the reference value (θ0), while the paired test compares 
the pre- and post-treatment scores. In the example with five 
paired data instances (Xij), as shown in Table 3, which shows 
scores before and after education, X1j refers to the pre-score of 
student j, and X2j refers to the post-score of student j. First, we 

calculate the change in the score before and after education (Rj 
= X1j − X2j). When Rj is listed in the order of its absolute values, 
the resulting rank is represented by the values within the paren-
theses in Table 3. Wilcoxon’s signed rank test is then conducted 
by adding the number of + signs, as in the one-sample test. If the 
null hypothesis is true, the number of + signs and the number of 
− signs should be nearly equal.

The sign test is limited in that it cannot reflect the degree of 
change between paired scores. Wilcoxon’s signed rank test has 
more statistical power than the sign test because it not only con-
siders the direction of the change but also ranks the degree of 
change between the paired scores, providing more information 
for the analysis.

Comparison of two independent samples: Wilcoxon’s  
rank sum test, the Mann-Whitney test, and the 
Kolmogorov-Smirnov test

Wilcoxon’s rank sum test and Mann-Whitney test

Wilcoxon’s rank sum test ranks all data points in order, calcu-
lates the rank sum of each sample, and compares the difference 
in the rank sums (Table 4). If two groups have similar scores, 
their rank sums will be similar; however, if the score of one 
group is higher or lower than that of the other group, the rank 

Table 3. Example of Wilcoxon’s Singed Rank Test for the Paired Sample 

Xi1 Xi2 Xi3 Xi4 Xi5

X1j (pre scores) 33 28 33 33 40
X2j (post scores) 34 33 30 39 42
Rj = X1j − X2j −1 −5 3 −6 −2
Rank (1) (4) (3) (5) (2)
W+ = 3
W– = 12 (1 + 4 + 5 + 2 )

Under the null hypothesis (no difference between the pre/post scores), 
test statistics (W+, the sum of the positive rank) would be close to 7.5 
(= ), but get far from 7.5 when the alternative hypothesis is true. 
According to the table for Wilcoxon’s rank sum test, the P value = 0. 
1363 when test statistics (W+) 3 under α = 0.05 (two tailed test) and the 
sample size = 5. Therefore, null hypothesis cannot be rejected.

Table 4. Examples and Process of Wilcoxon’s Rank Sum Test 

Group X 18 21 15 30 25
Group Y 20 11 16 14
Data from group X & Y 11 14 15 16 18 20 21 25 30
Rank (group) 1(Y) 2(Y) 3(X) 4(Y) 5(X) 6(Y) 7(X) 8(X) 9(X)
WX 3 + 5 + 7 + 8 + 9 = 32
WY 1 + 2 + 4 + 6 = 13

There are two independent groups with the sample sizes of group X (m) is 5 and group Y (n) is 4. Under the null hypothesis (no difference between 
the 2 groups), the rank sum of group X (WX) and group Y (WY) would be close to 22.5 (= , but get far from 22.5 when the alternative hypothesis is 
true. According to the table for Wilcoxon’s rank sum test, the P value = 0. 0556 when test statistics (WY) = 13 under α = 0.05 (two tailed test) at m = 5 
and n = 4. Therefore, null hypothesis cannot be rejected.

Table 5. Example and Process of Mann-Whitney Test

Group X 18 21 15 30 25
Group Y 20 11 16 14
Number of X > Y 3 4 2 4 4
Number of X < Y 2 0 1 0
UX 3 + 4 + 2 + 4 + 4 = 17
UY 2 + 0 + 1 + 0 = 3
U Min (UX, UY) = 3

There are two independent groups with the sample sizes of group X 
(m) is 5 and group Y (n) is 4. Under the null hypothesis (no difference 
between the 2 groups), the test statistics (U) gets closer to 10 (= ), 
but gets more extreme (smaller in this example) when the alternative 
hypothesis is true. The test statistics of this data is U = 3, which is 
greater than the reference value of 1 under α = 0.05 (two tailed test) at 
m = 5 and n = 4. Therefore, null hypothesis cannot be rejected.
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sums between the two groups will be farther apart.
On the other hand, the Mann-Whitney test compares all data 

xi belonging in the X group and all data yi belonging in the Y 
group and calculates the probability of xi being greater than yi: 
P(xi > yi). The null hypothesis states that P(xi > yi) = P(xi < yi) 
= ½, while the alternative hypothesis states that P(xi > yi) ≠ ½. 
The process of the Mann-Whitney test is illustrated in Table 5. 
Although the Mann-Whitney test and Wilcoxon’s rank sum test 
differ somewhat in their calculation processes, they are widely 
considered equal methods because they use the same statistics.

Kolmogorov-Smirnov test (K-S test)

The K-S test is commonly used to examine the normality of 
a data set. However, it is originally a method that examines the 
cumulative distributions of two independent samples to exam-
ine whether the two samples are extracted from two populations 
with an equal distribution or the same population. If they were 
extracted from the same population, the shapes of their cumula-
tive distributions would be equal. In contrast, if the two samples 
show different cumulative distributions, it can be assumed that 
they were extracted from different populations. Let’s use the 
example in Table 6 for an actual analysis. First, we need to iden-
tify the distribution pattern of two samples in order to compare 
two independent samples. In Table 6, the range of the samples 
is 43 with a minimum value of 50 and a maximum value of 93. 
The statistical power of the K-S test is affected by the interval 
that is set. If the interval is too wide, the statistical power can be 
reduced due to a small number of intervals; similarly, if the inter-
val is too narrow, the calculations become too complicated due 
to the excessive number of intervals. The data shown in Table 6 

has a range of 43; hence, we will establish an interval range 
of 4 and set the number of intervals to 11. As shown in Table 
6, a cumulative probability distribution table must be created 
for each interval (SX, SY), and the value with the greatest dif-
ference between the cumulative distributions of two variables 
(Max(SX − SY)) must be determined. This maximum difference 
is the test statistic. We compare this difference to the reference 
value to test the homogeneity of the two samples. The actual 
analysis process is described in Table 6.

Comparison of k independent samples:  
the Kruskal-Wallis test and the Jonckheere test

Kruskal-Wallis test

The Kruskal-Wallis test is a nonparametric technique with 
which to analyze the variance. In other words, it analyzes wheth-
er there is a difference in the median values of three or more 
independent samples. The Kruskal-Wallis test is similar to the 
Mann-Whitney test in that it ranks the original data values. That 
is, it collects all data instances from the samples and ranks them 
in increasing order. If two scores are equal, it uses the average 
of the two ranks to be given. The rank sums are then calculated 
and the Kruskal-Wallis test statistic (H) is calculated as per the 
following equation [14]: 

H = – 3(N+1) 

(Rj = rank sum of each sample) 

N =   
(nj = number of samples for each group, k = number of groups)

Table 6. Example and Process of Kolmogorov-Smirnov Test 

X Y Interval Frequency of X SX Frequency of Y SY SX − SY

53 88 50−53 3   3/15 1   1/15 2/15
87 84 54−57 2   5/15 0   1/15 4/15
71 72 58−61 1   6/15 0   1/15 5/15
64 91 62−65 1   7/15 0   1/15 6/15
78 89 66−69 3 10/15 1   2/15 8/15 (Max difference)
66 68 70−73 1 11/15 3   5/15 6/15
52 73 74−77 0 11/15 1   6/15 5/15
54 52 78−81 1 12/15 0   6/15 6/15
50 71 82−85 1 13/15 2   8/15 5/15
91 93 86−89 1 14/15 4 12/15 2/15
55 87 90−93 1 15/15 3 15/15 0/15
86 92
69 76
82 72
68 86

There are two independent groups with the sample sizes of group X (NX) and group Y (NY) are 15. The maximal difference between the cumulative 
probability density of X (SX) and Y (SY) is 8/15 (0.533), which is greater than the rejection value of 0.467 under α = 0.05 (two tailed test) at NX = NY = 15. 
Therefore, there is a significant difference between the group X and group Y.
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Jonckheere test

Greater statistical power can be acquired if a rank alternative 
hypothesis is established using prior information. Let’s think 
about a case in which we can predict the order of the effects of 
a treatment when increasing the degree of the treatment. For 
example, when we are evaluating the efficacy of an analgesic, we 
can predict that the effect will increase depending on the dosage, 
dividing the groups into a control group, a low-dosage group, 
and a high-dosage group. In this case, the null hypothesis H2 is 
better than the null hypothesis H1.

H0: [τ1 = τ2 = τ3]
H1: [τ1 , τ2, τ3 not all equal]
H2: [τ1 ≤ τ2 ≤ τ3, with at least strict inequality]
The Jonckheere test is a nonparametric technique that can be 

used to test such a rank alternative hypothesis [18]. 
The actual analysis process is described with illustration in 

Table 7.

Conclusion

Nonparametric tests and parametric tests: which should we use?
As there is more than one treatment modality for a disease, 

there is also more than one method of statistical analysis. Non-
parametric analysis methods are clearly the correct choice when 
the assumption of normality is clearly violated; however, they 
are not always the top choice for cases with small sample sizes 
because they have less statistical power compared to parametric 
techniques and difficulties in calculating the “95% confidence 
interval,” which assists the understanding of the readers. Para-
metric methods may lead to significant results in some cases, 
while nonparametric methods may result in more significant 
results in other cases. Whatever methods can be selected to sup-
port the researcher’s arguments most powerfully and to help 
the reader’s easy understandings, when parametric methods are 
selected, researchers should ensure that the required assump-
tions are all satisfied. If this is not the case, it is more valid to use 
nonparametric methods because they are “always valid, but not 
always efficient,” while parametric methods are “always efficient, 
but not always valid”.
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