
Introduction

In a clinical trial or clinical study, an investigational treat-
ment is administered to subjects, and the resulting outcome data 
are collected and analyzed after a certain period of time. Most 
statistical analysis methods do not include the length of time 
as a variable, and analysis is made only on the trial outcomes 
upon completion of the study period, as specified in the study 
protocol. However, in cases where the outcome yields different 
interpretations at different points in time, even over a range of 
only several hours or minutes, it is advantageous to use a statisti-
cal analysis method incorporating time as a variable [1]. Poisson 
regression and survival analysis are typical statistical analysis 
approaches that analyze the variable which includes the infor-

mation of the time [2].
The Korean Journal of Anesthesiology has thus far published 

several papers using survival analysis for clinical outcomes: a 
comparison of 90-day survival rate for pressure ulcer develop-
ment or non-development after surgery under general anesthesia 
[3], a comparison of postoperative 5-year recurrence rate in 
patients with breast cancer depending on the type of anesthetic 
agent used [4], and a comparison of airway intubation success 
rate and intubation time between two types of video laryngosco-
py in difficult intubation cases [5]. It is not hard to consider the 
application of survival analysis for the data of first two articles, 
using survival analysis for the intubation time comparison in the 
third paper is not easy to think. For such topics, the main obstacle 
to the widespread use of survival analysis is the word “survival,” 
which leads to the misunderstanding that can only be used for 
data related to death or failure. However, as is the case with the 
third paper, survival analysis can be applied not only to data of 
patients’ death, but also to any data related to an “event of inter-
est” that may or may not occur during the observation period.1) 
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1)The term “event” refers to the one of two responses of the binary 
categorical outcome variable; for example, “death” in the death or survival 
outcome of a patient and “remission” in the recurrence or remission 
outcome of back pain. The term “initial event” refers to the time origin 
for hypothesis testing, such as exposure, intervention, and treatment, 
and “the subsequence event” refers the outcome variable which contains 
the time-to-event concept (survival time). To avoid confusion, the terms 
“treatment” and “event” are used in this paper to refer to the initial event 
and subsequent event, respectively.

http://crossmark.crossref.org/dialog/?doi=10.4097/kja.d.18.00067&domain=pdf&date_stamp=2018-05-31


183Online access in http://ekja.org

KOREAN J ANESTHESIOL In and Lee

The following are several examples of questions for which sur-
vival analysis may be applied:

1) How long does symptom improvement last after an epi-
dural injection? (Time to the recurrence of back pain and recur-
rence vs. non-recurrence)

2) How long is the duration of the effect of antiemetic pro-
phylaxis given to prevent nausea and vomiting resulting from 
the use of intravenous patient-controlled opioid analgesia? 
(Duration of nausea/vomiting prevention and manifestation vs. 
non-manifestation)

3) How long does it take for postoperative cognitive dys-
function caused by general anesthesia to occur? (Time to the 
occurrence of cognitive dysfunction and occurrence vs. non-oc-
currence)

In all three examples, after the treatment (epidural injection, 
administration of antiemetic prophylaxis, administration of 
general anesthesia), the subsequent event (recurrence of back 
pain, manifestation of nausea/vomiting, occurrence of cognitive 
dysfunction) may or may not occur during the specified obser-
vation period, and the patient status (occurrence or non-occur-
rence) and length of time (observation period) are assigned to 
each participant as variables. 

In cases where only rates of occurrence are compared, without 
regard to the lapse of time until occurrence, the chi-squared test 
or Fisher’s exact test are sufficient. Conversely, in cases where the 
time-to-event of interest is analyzed, if the event of interest has 
occurred for all participants, Student’s t-test or the Mann-Whit-
ney U test may be used. However, even in such cases, non-occur-
rence or termination of participation (due to improvement or ex-
acerbation, moving, death, etc.) often cannot be ruled out. Also, 
the observation period may vary due to a limited study period or 
different outcome time frames. For these reasons, some of data 
are subject to incompleteness, and these data should be analyzed 
using another statistical method or excluded. Survival analysis is 
necessary to analyze incomplete data by setting the time-to-event 
as a primary outcome. In summary, survival analysis can be ap-
plied in a range of situations in which any event of interest (not 
just mortality) is analyzed in terms of its occurrence or non-oc-
currence during a specified observation period [1].

Like other statistical methods, survival analysis can be per-
formed using parametric or non-parametric methods. In anes-
thesia and pain medicine, non-parametric survival analysis is 
usually preferred because in most cases the data do not satisfy 
the prerequisites of parametric survival analysis. In parametric 
survival analysis, a survival model is constructed by performing 
regression analysis on the assumption that the outcome vari-
ables follow a conventionally known distribution, such as the 
normal distribution, binomial distribution, or Poisson distribu-
tion. Common parametric survival models include the Weibull, 
exponential, log-logistic, lognormal, and generalized gamma 

models. Non-parametric survival analysis is most commonly 
performed using the Kaplan-Meier method or Cox proportional 
hazards regression modeling. In this paper, only non-parametric 
survival analysis is examined.

Censored Data

Ideal data for survival analysis are those yielded by cases in 
which the time of treatment is clearly established and all partic-
ipants are followed up until they experience the event. However, 
the observation period may end without occurrence of the event 
because it may be difficult in practice to study all the partici-
pants until the occurrence of the event, and because participants 
can drop out during the observation period. Post-treatment data 
unavailable for confirmation of occurrence or non-occurrence 
during the follow-up period are termed censored data2) and are 
excluded from analysis as missing values in other statistical anal-
ysis methods; in survival analysis, however, they are processed 
as important data influencing the outcome [6,7].

For example, suppose that a clinical study is conducted to 
examine the efficacy of a new drug for back pain, in which the 
treatment and event are epidural injection of the new drug and 
recurrence of back pain, respectively. If it is impossible to con-
firm recurrence for various reasons such as a car accident, death 
caused by other diseases, or unavailability of the data needed 
to confirm recurrence due to movement to another hospital, 
such cases should be processed as censored data. In censored 
data, recurrences prior to the last follow-up can be confirmed, 

2)A clear distinction of censored data is important to preclude bias in 
survival analysis. Collection of data for survival analysis starts and ends at 
pre-determined points in time, and censored data can thus be sorted out 
according to the related characteristics. The most frequently encountered 
form of censored data is right censoring, in which the subject is alive at 
the end of the study period (end-of-study censoring) or the observation 
is terminated for reasons other than death (loss-to-follow-up censoring). 
Right-censored data can increase the estimated overall survival time, 
but may cause bias due to censoring. Left censoring concerns cases 
with unclear first exposure to the treatment event prior to inclusion in 
the study. For example, left-censored data occur if subjects are patients 
with a preoperative increase in plasma creatinine, because the increase 
in plasma creatinine can be confirmed by preoperative examination, 
but the onset of increase cannot be determined. Right- or left-censored 
data can occur depending on the follow-up interval, and all such data 
are called interval-censored data. For example, if the event is defined as 
an increase in the serum creatinine level during a postoperative period 
and examined at every 3 days, it may be impossible to be certain that the 
exact time of occurrence of the event and only know the event occurred 
somewhere within this interval. This is a case of right censoring, and since 
it occurs within the observation interval of 3 days, it is a case of interval-
censored data. Any clinical study is conducted during a predetermined 
follow-up period because it is impossible to continue the study until all 
subjects experience the event of interest. At the end of the study period, 
all surviving subjects are categorized as right-censored data, and this is 
termed “Type I censoring.”
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but any recurrence after the termination of follow-up cannot 
be confirmed. Fig. 1 illustrates details of an imaginary study 
in which six patients were followed over a period of six weeks. 
Patient 1 participated in the study from the beginning and de-
veloped recurrence of back pain in week 4 in the aftermath of a 
car accident, and therefore is processed as censored data. This 
data point provides the effectiveness of new drug for 4-week 
observation. Patient 2 was enrolled in the study in the fourth 
week, and no recurrence was observed up to week 6. This case 
of non-recurrence until the end of the observation period is also 
processed as censored data, with the 2-week follow-up included 
in the analysis. Patient 3 was enrolled in the fourth week and 
developed recurrence in week 5; this is a case of a complete data 
point, with the 1-week follow-up and recurrence included in the 
analysis. Patient 4 was enrolled in the second week, but the ob-
servation was pre-terminated due to loss to follow-up from week 
4 onward, resulting in a two-week observation period. Patient 
5 participated in the study from the beginning and developed 
recurrence in week 6, and therefore yields a complete data point. 
Patient 6 is a case of censored data due to withdrawal caused 
by uncovered random allocation in week 4, with the 4-week 
follow-up included in the analysis. To conclude, data related to 
the occurrence of the treatment-related event are complete data, 
coded as “X,” and data without indication of occurrence or with 
occurrence for reasons other than the treatment are censored 
data, coded as “C” [8].

Survival Function, Hazard Function

“Survival function” is a key term in survival analysis, along 
with “censoring” and “event.” The concept of a survival function 
is essential for the understanding of survival analysis.

The survival function is defined as the probability of the 
outcome event not occurring up to a specific point in time, 
including the time point of observation (t), and is denoted by 
S(t). That is, if the event is “recurrence of back pain,” it is the 
“probability of not having back pain” up to a specific time. In the 
survival function (Equation 1),3) t = 0 corresponds to a probabil-
ity of 1.0 (i.e., 100% survival at the onset), and the point in time 
with 50% survival probability is the median survival time.

S(t) = P (T > t) = 1 − F (t)  ………equation 1
T: Random variable denoting the time of the event.
t: Any specified time point.
�P �(T > t): Probability of not experience the event up to and 

including time t.
F (t): Cumulative distribution function

The ratio of the number of events occurring during the entire 
study period to the total number of observations is termed the 
“incidence rate.” For example, if the event is death, mortality 
is the incidence rate. However, since the incidence may not be 
constant throughout the study period, it may be necessary to 
calculate the incidence rate at a specific time (t). First, the inci-
dence rate for the period between a specific time t and the next 
measurement time t + α can be calculated by dividing the num-
ber of events occurring between t and t + α by the total number 
of observations at time t. By α approaches 0, i.e., by taking the 
limit as the interval between t and t + α closes to 0, the instan-
taneous incidence rate at t, which constitutes the hazard, can be 
calculated.4) The hazard function is a function for calculating the 
instantaneous incidence rate at any given point in time, and is 
denoted by h(t)[9].

Survival Analysis Using Kaplan-Meier Curves 
(Estimates)

In the Kaplan-Meier method, the incidence rate as a function 
of time is calculated by putting the observations in ascending or-

3)If there are no censored data, the survival function S(t) can be simply 
expressed as “the number of patients who have not experienced the event 
up to a specific time (t)/the total number of patients participating in the 
study.” However, the probability of zero censoring being low in reality, 
equation 1 is typically used for survival analysis.

4)Hazard is regarded as equivalent to hazard rate in some statistics 
handbooks. In this paper, hazard represents hazard rate to preclude 
confusion.
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Fig. 1. Illustration of survival analysis data from an imaginary experi
ment with a 6-week study period. Cases 3 and 5 experienced the event 
and are coded as “event cases”, denoted “X”. Their follow-up periods 
were 6 and 1 weeks, respectively. The others are all “censored cases,” 
denoted “C.” Patient 1 participated in the study from the start, but the 
follow-up was terminated due to unexpected death from an irrelevant 
cause. Patient 2 participated in the study from 4 to 6 weeks, but then 
refused to participate further. Case 4 was enrolled in the study in the 
2nd week, lost contact in the 4th week, and was considered lost to 
follow-up. Case 6 was excluded in the 4th week because of uncovered 
random allocation.
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der of time until occurrence. Analysis of the example data in Fig. 
1 with the Kaplan-Meier method should thus start by setting 
the baseline observation of each participant as time 0 (Fig. 2). 
After arranging all data points, the incidence rate is calculated at 
each occurrence of the event, followed by survival curve estima-
tion. With the focus of the Kaplan-Meier method on only two 
variables, namely the observation period and the occurrence/
non-occurrence of the event, other variables possibly influenc-
ing the occurrence of the event, such as sex and age in the case 
of the recurrence of back pain, are excluded from analysis [10].

Fig. 3 illustrates the interpretation of the Kaplan-Meier sur-
vival curve. Although no standard has yet been established, it is 
a general practice to show censored data as points or symbols, 
and decreases in the survival rate (corresponding to the occur-
rences of the event) as steps. As time points close to the end of 
study period, the number of participants tend to be decrease 
abruptly, an incidence rate calculated in this period could not 
provide clinical significance. So, it is recommended to indicate 
the number of patients at each calculation point. Some journals 
set out standards for survival curve creation [11].

Kaplan-Meier survival analysis is used to test for significant 
differences between survival curves and in median or mean sur-
vival time. Therefore, it lends itself well to studies focusing on 
survival time, i.e., time to the occurrence of the event of interest. 

Multiple comparison method for Kaplan-Meier 
survival analysis

Among the methods for comparing two or more Ka-
plan-Meier survival curves, such as the Mantel-Haenszel 
method, log-rank method (Mantel-Cox), Gehan’s generalized 
Wilcoxon method (Breslow test), and likelihood ratio, the log-
rank method is most widely used.5) The null hypothesis tested 

with the log-rank method is that “there is no overall difference 
between the two survival curves to be compared.” The observed 
count and the expected count are compared using the chi-square 
test. The log-rank method is known to have good statistical 
power when there are considerable differences in the incidence 
rate among the groups being compared. If three or more groups 
are compared, pairwise multiple comparisons can also be per-
formed using post-hoc tests such as the Bonferroni test and 
Holm-Sidak method [12].

Just as the independent t-test should be preceded by test-
ing for normality, the log-rank method is based on several 
assumptions. The first is the proportional hazards assumption, 
according to which the hazard ratio (defined in equation 2) 
should be constant throughout the study period.6) For example, 
the incidence rate of postoperative nausea/vomiting is highest 
immediately after surgery and decreases with time, regardless of 
whether the type of general anesthesia is inhalational or intrave-
nous. That is, the risk of postoperative nausea/vomiting varies 
(decreases) with time independently of the type of anesthesia. If 
the proportional hazards assumption is valid, then a finding that 

5)These methods compare the values after assigning weights using the 
difference between the expected and observed counts at a given point 
in time. Log-rank method sets the weights at 1 at all points in time and 
shows the sequence-based comparison results.

6)This is the basic assumption underlying the log-rank method and the 
Cox proportional hazards regression model. For further details, see the 
explanations below.
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Fig. 2. Data arranged for Kaplan-Meier analysis. Note that for all parti
cipants the observations are rearranged to start at zero. Events are de
noted “X,” and censored data are denoted “C.”
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the risk of postoperative nausea/vomiting in the patient group 
receiving an inhalational anesthetic agent is twice that of the 
patient group receiving an intravenous anesthetic means that 
there is a twofold difference in hazard at all points in time. With 
the hazard ratio greater than 1, there is a greater risk of post-
operative nausea/vomiting in the inhalational anesthesia group 
than in the intravenous anesthesia group.7) As illustrated by this 
example, the hazard ratio offers information that may allow un-
derstanding hazard information at a glance [13] (Equation 2).

Hazard ratio = h2 (t) ………equation 2h1 (t)
Where, h1 (t)  and h2 (t): hazard functions of groups 1 and 2
t: any specified time point during study period

The proportional hazards assumption and hazard ratio are 
also important for the Cox proportional regression model, to be 
explained below [14]. If the proportional hazards assumption is 
not valid, Gehan’s generalized Wilcoxon test (Breslow test), in 
which the number of patients exposed to the hazard at the ob-
servation point is applied as a weighting factor (instead of 1), or 
other methods should be used [15].

An example of Kaplan-Meier survival analysis

The results of the survival analysis presented below are de-
rived from imaginary study data on the manifestation/non-man-
ifestation of nausea/vomiting during the first 24 postoperative 
hours in two groups that received two different antiemetics 
(Table 1). For convenience of analysis, only age, body weight, 
and the choice of two of opioid analgesics used intraoperatively 

are used for analysis. To facilitate understanding, several analytic 
methods are presented to the same data.

Table 2 outlines the demographic characteristics of the 
patients included in the study. Although there are not many 
withdrawals before symptom manifestation in a 24-hour post-
operative observational study in actual clinical settings, this vir-
tual study includes a substantial number of dropout patients. Of 
104 patients in total, 51 patients (Group A) received antiemetic 
agent A and 53 patients (Group B) received antiemetic agent B. 
In Groups A and B, the counts of nausea/vomiting symptoms 
manifested by the end of 24 postoperative hours are 25 (49.0%) 
and 38 (71.7%), respectively, and intergroup difference are ver-
ified to be statistically significant by the chi-square test (χ2(1) = 
5.597, P = 0.018, Cohen’s Φ [phi] = 0.23). The relative risk for 
Group A compared to Group B is 0.7 (95% CI: 0.5–0.9). Similar 
results are yielded by incidence rate estimation, although it is an 
overlapping method, in which the nausea/vomiting symptoms 
manifested during the first 24 postoperative hours account for 
49.0% (95% CI: 35.3–62.7%) of patients in Group A and 71.7% 
(95% CI: 59.6–83.8%) in Group B, showing a significant inter-
group difference (z-test, P = 0.018, Cohen’s h = 0.47). These 
statistics reflect the results including all censored data without 
manifestation of nausea/vomiting during the first 24 hours. Giv-
en that nausea/vomiting symptoms are potentially observable 
among the patients with censored data during the study period 
(24 hours), the accuracy of the above results may not be high. 
Excluding all censored cases without nausea/vomiting before the 
first 24 postoperative hours, the number of patients included in 
the analysis is 73, and the incidence rate recalculated according-
ly is 89.3% (95% CI: 77.8–100.0%) for Group A and 84.4% (95% 
CI: 73.9–95.0%) for Group B. These increased incidence rates 
reflect the omission of patients who dropped out of the study 
before completing it (24-hour observation) without manifesting 
symptoms of nausea/vomiting. Regardless of the researcher’s 

Table 1. Sample of Imaginary Data from an Experiment Testing Two Antiemetics for Use in Controlling Postoperative Nausea and Vomiting

No Antiemetic Age (yr) Weight (kg) Opioid used Onset time (h) PONV Event Inclusion

1 A 48 78.5 Remifentanil 4 Not reported Censored Excluded
2 B 48 86.7 Remifentanil 17 Reported Event Included
3 A 54 88.3 Fentanyl 21 Not reported Censored Excluded

25 B 77 53 Remifentanil 24 Not reported Censored Included

104 B 58 60 Fentanyl 1 Reported Event Included

In this imaginary experiment, two antiemetics (A or B) were administered, and each patient was randomly allocated to a group receiving one of 
them. Intraoperative opioid used was recorded in the “opioid used” column. Postoperative nausea and vomiting (PONV) and its onset time were 
also recorded. For statistical tests such as Student’s t-test, patients 1 and 3 patients would normally be excluded (as indicated in the column labeled 
“Inclusion”). For survival analysis, all the patients would be included either as censored cases (numbers 1, 3, 25) or as ordinary event cases (numbers 2, 
104).

7)The lexical meaning of hazard is something that could be dangerous as 
a potential cause of occurrence of the event, whereas risk refers to the 
probability of occurrence of the event.
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intention, the actual incidence rates are overestimated due to the 
omission of patients without symptom manifestation.

The results of Kaplan-Meier survival analysis for the same 
datasets are as follows (the observed counts of the event and 
other results overlapping with those presented above are omit-
ted). The median survival time (length of time free of the target 
event) is 13.0 hours (25-75%: 8.0–24.0 hours) for Group A and 
6.0 hours (25-75%: 3.0-17.0 hours) for Group B; the intergroup 
difference assessed by the log-rank method is statistically signif-
icant (χ2(1) = 6.802, P = 0.009). Examination of the Kaplan-Mei-
er curves for the two groups shows that the cumulative survival 
rate of Group B rapidly decreases with time compared with that 
of Group A (Fig. 4).

Cox Proportional Hazards Regression Model

In the Cox proportional hazards regression model, regression 
analysis is used to process censored data. This method does 
not presuppose any specific distribution and can analyze any 
variables that may influence the occurrence, unlike Kaplan-Mei-
er survival analysis, and is thus regarded as a semiparametric 
method [16,17]. 

The Cox proportional hazards regression model is based on 
two assumptions: first, the survival function is an exponential 
function; second, the hazard ratio for the two compared groups 
is constant throughout the study period. In other words, the 
hazard ratio is a constant (HR = λ), and the survival function at 
any given point in time is expressed as an exponential function 
of the hazard ratio (s(t) = exp−λt). The null hypothesis for com-
parison of two survival curves is that “the hazard ratio for the 
two groups is 1.”

In the Cox proportional hazards regression model, result 
is derived from the comparison between the risk levels of the 
occurrence and non-occurrence influenced by a variable which 
could affect the outcome [18]. The result is an estimate of the 
hazard ratio of that variable, and is calculated as the correspond-
ing regression coefficient in the regression model. If the hazard 
ratio of a variable is greater than 1 and poses statistically signif-
icance, that variable contributes to increasing the probability of 

occurrence of the event.
If the hazard ratio of two groups are not maintained at a 

constant level, a different analysis method should be considered. 
The Cox proportional hazards regression model cannot be used 
for analysis in such cases, because a hazard ratio changing with 
time implies that there may be more than one estimate for the 
regression coefficient over time. Along with the assumption 
related to the hazard ratio, basic assumptions required for any 
sort of regression analysis, such as continuity of variables and 
absence of interactions between variables, should of course be 
taken into account [19,20].8)

An example of regression analysis with the  
Cox proportional hazards regression model

Using the Cox proportional hazards regression model, an 
analysis was performed on the same example data used above 
for the Kaplan-Meier survival analysis. As that method is similar 
to the regression analysis method, the covariates presented in 
Table 1 are used to estimate the hazard ratio of each covariate 
and, the corresponding P values are calculated.

Table 3 shows the hazard ratio and P value of each covariate 
estimated by the analysis using the Cox proportional hazards 
regression model. These analysis results were obtained by in-
putting all four covariates into the model, significant hazard 
ratio was obtained only for the type of antiemetic. The Cox 
proportional hazards regression model was estimated using the 

Table 2. Demographic Data of Patients in the Imaginary Experiment 
Described in Table 1

Variables Group A Group B

Number of patients 51 53
Age (yr) 56.1 (13.7) 61.2 (14.9)
Body weight (kg) 65.7 (13.8) 57.7 (11.6)
Observation time (h) 11.3 (6.7) 8.9 (7.7)
Fentanyl used 19 (37.3%) 22 (41.5%)

All data are presented as mean (SD) or number (%).
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Fig. 4. Kaplan-Meier curves for groups A and B. The median survival 
time (postoperative nausea and vomiting-free time) for group A was 
13.0 h (Q1, Q3: 8.0, 24.0 h), and for group B 6.0 h (Q1, Q3: 3.0, 17.0 h). 
The median survival time was significantly longer in group A than in 
group B (log-rank test, χ2(1) = 6.802, P = 0.009). Black crosses indicate 
censored data.
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forward conditional method based on the likelihood ratio, and 
the antiemetics and opioid analgesics used intraoperatively were 
included in the equation. The hazard ratio for the antiemetics 
was estimated at 2.0 (95% CI: 1.2–3.3, P = 0.009); antiemetic 
agent B showed a twofold higher risk of nausea/vomiting during 
the first 24 postoperative hours compared with antiemetic agent 
A, and the intraoperative use of fentanyl showed a 4.7-fold risk 
of postoperative nausea/vomiting compared with remifentanil 
(hazard ratio 4.7, 95% CI: 2.8–8.1, P < 0.001). The cumulative 
survival for Group B was found to decrease rapidly (increase in 
postoperative occurrence of nausea/vomiting) over time when 
compared with that of Group A (Fig. 5).

As briefly mentioned above, any estimation based on the 
Cox proportional hazards regression model must be followed 
by testing whether the proportional hazards assumption is sat-
isfied. For the example data used here, the log minus log plot 
(LML plot) is presented as the simplest method for diagnosing 
problems with the model. The LML plot is a graph constructed 
by applying the log-log transformation to the survival function. 
Some statistical program packages optionally output this graph 
after an analysis based on the Cox proportional hazards regres-
sion model, making it possible to easily check compliance with 
the basic assumption that the hazard ratio is constant through-
out the study period. This method for checking compliance with 
the proportional hazards assumption is essential when using the 
two survival analysis methods presented in this study, in that a 
quick intuitive verification is possible by examining the graph, 
in which the logarithm of the time and the logarithm of the 
negative logarithm of the estimated survival function are plotted 
on the x and y axes, respectively. If the LML plots for the com-
parison groups run parallel to each other without intersecting 

or meeting, the proportional hazards assumption can be consid-
ered valid [21].

Fig. 6 shows the LML plot for the example data. The two 
curves representing the two antiemetic groups run parallel with-
out meeting or intersecting, demonstrating that the hazard ra-
tios of the two groups with respect to the postoperative nausea/
vomiting symptom manifestation are constant over time. In case 
of a violation of this assumption, which is indicative of the inac-
curacy of the Cox proportional hazards regression model, it is 
desirable to use other methods allowing analysis of time-depen-
dent influences, such as time-dependent Cox regression analysis 
(non-proportional hazards model).

Sample Size for Survival Analysis

Survival analysis is an analysis method that analyzes the time 
to an event of interest. In the log-rank test or Cox proportional 
hazards regression model, the hazard ratio is used for sample 
size calculation [22]. Just as a normal distribution and an effect 
size, e.g., Cohen’s h, are presupposed in other statistical methods 
for checking the statistical power or calculating the required 
sample size, the underlying survival model and effect size must 
be defined prior to calculating the sample size for survival anal-
ysis. In the log-rank test or Kaplan-Meier survival analysis, the 
survival function is estimated on the basis of the proportional 
hazards assumption, and the survival function and hazard 
ratio are correlated under the assumption of an exponential 
model.9) In survival analysis based on the proportional hazards 
assumption, the hazard ratio (presumed to have a constant value 

8)There are multiple methods of regression diagnostics for the Cox 
proportional hazards regression model: checking the plot of Martingale 
residuals versus time, deviance residual analysis for inspecting outliers, 
delta-beta value analysis for checking the leverage value that may 
influence the model fit, Schoenfeld residual analysis for checking for time-
dependent changes in hazard ratio, etc.
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Fig. 5. Cumulative survival curves of groups A and B estimated using 
the Cox proportional hazards regression model. The survival curve of 
group B decreases considerably compared to that of group A as time 
passes. The hazard ratio for antiemetics was estimated as 2.0 (95% 
CI: 1.2–3.3, P = 0.009). Group B showed a 2-fold greater hazard of 
postoperative nausea and vomiting (PONV) compared to group A. 
Intraoperative fentanyl increased the PONV risk about 4.7-fold (95% 
CI: 2.8–8.1, P < 0.001) compared to non-use.

Table 3. Estimated Hazard Ratio of Each Covariate Included in Cox 
Proportional Hazards Regression Modeling 

Variables Hazard ratio P value

Antiemetic 1.95 (95% CI: 1.14–3.33) 0.014*
Age 0.99 (95% CI: 0.98–1.01) 0.494
Weight 0.99 (95% CI: 0.97–1.02) 0.612
Opioid used 4.87 (95% CI: 2.82–8.39) < 0.001*

“Antiemetic” and “Opioid used” showed statistically significant hazard 
ratios. To enhance comprehension, all hazard ratios are presented with 
2 decimal points. According to this result, stepwise regression should be 
carried out. 
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throughout the observation period) is used as the effect size [23]. 
In a study design including survival analysis, the sample size 

calculation begins with determination of the expected value of 
the incidence rate of a specific event in the hypothesis formula-
tion stage10) and setting the hazard ratios of the two groups to be 
compared. For example, if the incidence rate for the experimen-
tal group is 20% lower than that of the control group, the hazard 
ratio is 0.8 (alternative hypothesis). The proportional hazards 
assumption presupposes the maintenance of the hazard ratio at 
a constant value throughout the observation period, and the null 
hypothesis is that “there is no difference in the risk of the two 
groups for experiencing the event,” i.e., hazard ratio = 1 [24]. 

Once the alternative hypothesis and the null hypothesis for 
the hazard ratio are formulated, they can be used for estimating 
the event count required to generate the desired significance lev-
el (α) and statistical power (β) (Equation 3).

Total number of events =

2

2

zz 







   

………equation 3
π1π2 (logHR)2

zα/�2, zβ: Standard normal percentiles according to preset signifi-
cance level and power

π1, π2: the proportions to be allocated into groups 1 and 2
HR: predetermined hazard ratio

Given that not all subjects experience the event during the 
study period, the sample size must be calculated using the total 

event count and the probability of experiencing an event (Equa-
tion 4).

Sa�mple size required (n) = Total number of events
Probability of an event

………equation 4

The probability of experiencing an events (denominator) 
can be expressed as “1 – probability of survival.” The probability 
value can be estimated by the ratios between the number of pa-
tients of each group and the survival functions (Equation 5).

Probability of an event = 1 − (π1S1 (t)+π2S2 (t))……….equation 5
π1, π2: the proportions to be allocated into groups 1 and 2
S1 (t), S2 (t): Survival function of groups 1 and 2 

The probability of survival can be estimated using the sur-
vival function, as explained above. However, the statistical 
purpose of using survival analysis is to estimate the survival 
function, and therefore the survival function cannot be used for 
estimating the probability of events in the study design stage. 
Consequently, the probability of events is estimated using a 
pre-existing estimate of the incidence rate. Incidence rates taken 
from the literature often do not consider the time factor, and 
the details of the studies from which they are taken should be 
examined well.11) If the literature does not provide an incidence 
rate including the time factor, a pilot test should be designed for 
incidence rate estimation. An incidence rate estimate including 
the time factor is the event count per uniform time segment, 
such as the person-day or person-year, and represents the haz-
ard ratio in the time segment concerned. Using the hazard ratio, 
it is possible to estimate the survival function based on the pro-
portional hazards assumption, as well as the survival functions 
of the groups to be compared, using the hazard ratio set in the 
hypothesis formulation stage. 

Using the example case of the recurrence of back pain, let 
us assume that a new drug B decreases the recurrence of back 
pain by 30% relative to conventional drug A, and calculate the 
hypothesis-testing sample size required to yield 80% statistical 
power at the 5% significance level. Suppose that a pilot test was 
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Fig. 6. Log-log function curves for the antiemetic comparison experi
ment. The Y-axis represents the log-log transformed survival function 
estimated using the Cox proportional hazards regression model. The 
basic assumption of Cox proportional hazards regression modeling, 
a constant hazard ratio over the time (the proportional hazards 
assumption), can be checked using this plot for only one covariate, 
the antiemetic. The two curves do not cross over in the early period of 
observation and remain parallel after that. This plot suggests that this 
model does not violate the proportional hazards assumption (Created 
with: IBM® SPSS® Statistics ver. 23 [IBM Corp., USA]).

9)The survival function s(t) is related to the hazard function h(t). The 
latter represents the instantaneous potential for a patient who has not yet 
experienced the event up a specific time (t) to experience it during the 
next time segment. If the hazard function does not change during the 
study period, i.e., h(t)= λ, the relationship between the survival and hazard 
functions is expressed as follows:

s(t) = e−λt

10)�Since the survival function is exponentially correlated with the constant λ, 
such a survival analysis model is termed an exponential model. 
For the expected value, a pilot test result or an already-known incidence 
rate is used.
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performed to allow sample size calculation. Two of the five pa-
tients that received conventional drug A developed recurrence 
of back pain after epidural injection. Supposing that these five 
patients were observed for four weeks on average, the hazard 
rate (λ) is 2/(5 × 4 weeks) = 0.1/person-week. The value of the 
4-week survival function for conventional drug A, estimated 
using the relationship between the survival function and hazard 
function, is SA (4) = exp (−0.1 × 4) = 0.018. Since new drug B 
decreases recurrence by 30%, the hazard ratio is 0.7, and the 
value of the 4-week survival function for new drug B is SB (4) 
= exp ((−0.1 × 0.7) × 4) = 0.061. If both groups have the same 
sample size, π1 = π2 = 0.5, the probability of an event, which is 
the denominator of the sample size calculation formula, is 1 − 
(π1S1 (t) + π2S2 (t)) = 1 − (0.5 × 0.018 + 0.5 × 0.061) = 0.960. The 
total event count, which is the numerator of the sample size cal-
culation formula, can be obtained from Equation 3. zα/2  and zβ, 
which represent the values of probability in a standard normal 
distribution, are 1.96 and 0.842, respectively, for a significance 
level of 0.05 and statistical power of 80%. With the values of π1  
and π2 set to 0.5 each and the hazard ratio set at 0.7, the total 
event count required is (1.96 + 0.842)2/{0.5 × 0.5 × (log0.7)2} = 
246.9, i.e., 247 events. Substituting this value and the incidence 
rate into Equation 4, 247/0.960 = 257.3, i.e., 258 is obtained. 
Applying the generally assumed withdrawal rate of 10% to the 

value obtained, 258/(1 − 0.1) = 286.7, i.e., a total of 287 subjects, 
is set as the required sample size. With the group size ratio set at 
0.5, 144 subjects are to be assigned to each group.12)

Conclusions

Survival analysis is a statistical method that allows compar-
ison of final outcomes along with differences occurring within 
the observation period, by making use of the time factor. Studies 
in the field of anesthesia and pain medicine often analyze short-
term or long-term time-dependent outcomes, and survival anal-
ysis contributes to enhancing the efficiency of data comparison 
and presenting stronger bases for supporting the hypotheses 
formulated. The main focus of this article has been on interpret-
ing studies using survival analysis. In future studies, however, 
it should be possible to present more diverse and interesting 
results in testing hypotheses, designing studies, and conducting 
them by applying survival analysis more intensely.
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