
Introduction 

As surgical procedures lead to actual or potential tissue damage, 20%–80% of patients 
complain of moderate to severe acute postoperative pain [1]. Therefore, it is important to 
accurately evaluate intraoperative nociception in patients undergoing surgery under gen-
eral anesthesia and provide appropriate analgesia to reduce postoperative pain. 

Various methods and modalities have been developed for quantitative and objective 
monitoring of nociception during surgery under general anesthesia [2], among which the 
most widely used and studied device is the surgical pleth index (SPI; GE Healthcare). 

The SPI is a monitoring tool that uses the photoplethysmographic signals of finger ar-
terioles to detect the balance between nociceptor activation and analgesia during general 
anesthesia [3]. The SPI values are calculated using the following equation: SPI =  100 – 
(0.33 ×  HBI + 0.67 ×  PPGA), where HBI is the heartbeat interval and PPGA is the pho-
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Surgical pleth index (SPI) monitoring is a representative, objective nociception-monitor-
ing device that measures nociception using photoplethysmographic signals. It is easy to 
apply to patients and the numerical calculation formula is intuitively easy to understand; 
therefore, its clinical interpretation is simple. Several studies have demonstrated its efficacy 
and utility. Compared with hemodynamic parameters, the SPI can detect the degree of no-
ciception during surgery under general anesthesia with greater accuracy, and therefore can 
provide better guidance for the administration of various opioids, including remifentanil, 
fentanyl, and sufentanil. Indeed, SPI-guided analgesia is associated with lower intraopera-
tive opioid consumption, faster patient recovery, and comparable or lower levels of postop-
erative pain and rates of adverse events compared with conventional analgesia. In addition, 
SPI monitoring allows for the degree of postoperative pain and analgesic requirements to 
be predicted through the SPI values immediately before patient arousal. However, because 
patient age, effective circulating volume, position, concomitant medication and anesthetic 
regimen and level of consciousness may be confounding factors in SPI monitoring, clini-
cians must be careful when interpreting SPI values. In addition, as SPI values can differ de-
pending on anesthetic and analgesic regimens and the underlying disease, an awareness of 
the effects of these variables with an understanding of the advantages and disadvantages of 
SPI monitoring compared to other nociception monitoring devices is essential. Therefore, 
this review aimed to help clinicians perform optimal SPI-guided analgesia and to assist 
with the establishment of future research designs through clarifying current usefulness 
and limitations of SPI monitoring in perioperative pain management. 
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toplethysmographic waveform amplitude [4]. Using this tool only 
requires that a pulse oximeter be attached to the finger; no addi-
tional consumable medical devices are required for continuous, 
noninvasive monitoring [5,6]. 

SPI values range from 0 to 100, with higher values indicating a 
greater nociceptive (stress) response. The target range for ade-
quate intraoperative analgesia during general anesthesia is usual-
ly 20–50 [4]; thus, SPI values should be maintained <  50, and a 
rapid increase in SPI >  10 should be avoided [7]. Fig. 1 shows 
the determinants of the SPI value and the mechanism underlying 
the increase in SPI values due to surgical stimuli. 

The first SPI-associated studies published were designed to in-
vestigate the correlation between the SPI and the nociception-an-
tinociception balance and changes in stress hormones during the 
perioperative period [3,8]. Following these studies, randomized 
controlled trials (RCTs) comparing SPI-guided and conventional 
analgesia (hemodynamic parameter-guided analgesia) have 
mainly been conducted [9–12]. Various opioids (e.g., remifent-
anil, fentanyl, sufentanil, and oxycodone) were used in these 
studies, and several reported lower intraoperative opioid con-
sumption, faster recovery, and similar postoperative pain scores 

with SPI-guided analgesia. Subsequently, the results were verified 
by meta-analyses [6,13]. However, some conflicting results have 
been reported, as one study found that SPI-guided analgesia 
alone was not associated with a reduction in intraoperative opi-
oid consumption [14] and another reported that SPI-guided an-
algesia provides appropriate analgesia with more sufficient intra-
operative remifentanil consumption compared to the controls 
[15]. Moreover, several studies have discussed the various limita-
tions of the two parameters that are used to calculate the SPI (the 
HBI and PPGA), as they can be influenced not only by surgical 
stress but also by other confounding factors such as vasoactive 
drugs, population age, and cardiac arrhythmia [16–20]. 

Based on the findings of the SPI-related literature to date, this 
review aimed to provide a summary of the usefulness and limita-
tions of SPI monitoring in perioperative pain management to 
help clinicians perform more appropriate perioperative analgesia 
in clinical practice and to assist with the establishment of future 
research to compare SPI monitoring with other objective tools 
for measuring nociception. 

Fig. 1. Determinants of the SPI and mechanism of increased SPI values by surgical stimulus. A surgical stimulus increases the heart rate and vascular 
tone by increasing sympathetic tone; consequently, both the HBI and PPGA decrease, which inversely increases the SPI value. SPI: surgical pleth 
index, HBI: heartbeat interval, PPGA: photoplethysmographic waveform amplitude, LED: light-emitting diode.
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Usefulness of intraoperative SPI-guided 
analgesia during general anesthesia 

The effectiveness of SPI monitoring at quantifying nociception 
has been demonstrated in several clinical settings (Table 1) [5,9–
12,21,22]. Although different types of surgery and opioids were 
assessed in these studies, most compared a group receiving opi-
oids based on conventional hemodynamic parameters (e.g., heart 
rate and blood pressure) with a group receiving opioids based on 
SPI-quantified nociception. Most studies reported a significant 
reduction in intraoperative opioid consumption with SPI-guided 
analgesia. Accordingly, extubation time was shorter and postoper-
ative pain and adverse events, including postoperative nausea or 
vomiting, were comparable or lower in the SPI group than in the 
conventional analgesia group.

During general anesthesia, the SPI can provide reliable quanti-
tative information reflecting nociceptive stimulation and auto-
nomic nervous system activation and can thus be used to guide 
analgesic administration [22–25]. Several RCTs have suggested 
that SPI-guided analgesia results in better detection of nociceptive 
stimuli and more timely administration of analgesics than con-
ventional analgesia during general anesthesia [9,10,12,21]. Hence, 
SPI-guided analgesia is associated with fewer hemodynamic 
changes secondary to noxious stimulus [26] and less opioid con-
sumption. Chen et al. [8] reported that the SPI was moderately 
correlated with stress hormone levels (ACTH, cortisol, epineph-
rine, and norepinephrine). Funcke et al. [27] also found that, 
compared to controls, SPI-guided analgesia was associated with 
lower cortisol and ACTH levels.  

In several studies performed in adult patients without severe 
underlying diseases, including cardiovascular and neurological 
diseases, opioid titration based on the nociception-antinocicep-
tion balance using the SPI with a cutoff value of 50 (target range 
of 20–50 and avoidance of rapid increases >  10 for noxious stim-
uli) showed a significant reduction in opioid consumption during 
surgery and a shorter extubation time. Moreover, SPI-guided an-
algesia using these criteria can help reduce the incidence of intra-
operative adverse events such as hypertension, hypotension, 
tachycardia, and unwanted somatic movement compared to con-
trols using hemodynamic parameter-guided analgesia [5,12,13] 
and can lead to better or comparable outcomes with regard to 
postoperative pain and complications as well as intraoperative 
outcomes in adult patients [12,13,15,28,29]. SPI monitoring has 
also been found to reduce the dose of anesthetics required during 
surgery and shorten the length of stay in the recovery room [9,30]. 

In elderly patients, SPI-guided analgesia is associated with a 
lower incidence of delirium in the post-anesthesia care unit 

(PACU) than conventional analgesia [15]. SPI monitoring can 
also be effective at detecting nociceptor stimulation that is masked 
by hypotension in the elderly due to decreased myocardial con-
tractility, vascular elasticity, and β-adrenergic response, providing 
appropriate analgesia with sufficient intraoperative analgesic con-
sumption [15]. 

However, several studies evaluating SPI-guided intraoperative 
analgesic administration in children have yielded conflicting re-
sults, suggesting that the SPI cannot be used to provide adequate 
analgesia within the target SPI value range of 20–50 in this popu-
lation [10,18,31]. As children usually have higher blood vessel dis-
tensibility and baseline heart rates than adults [10], and as auto-
nomic control of cardiac chronotropic function is strongly influ-
enced by age [32,33], SPI values may be less valid in children than 
in adults [18]. This finding suggests that clinicians should be cau-
tious when considering the use of the SPI in pediatric practice. A 
detailed explanation of the considerations for SPI monitoring ac-
cording to different age groups is provided below (see Age). 

SPI monitoring for the prediction of 
postoperative pain and analgesic requirements 

Another advantage of intraoperative SPI monitoring is that it 
can be used to predict postoperative pain severity. The SPI values 
measured before arousal or in response to nociceptive stimuli 
during surgery are closely related to the degree of postoperative 
pain and opioid requirements. 

Higher SPI values before arousal at the end of surgery were 
closely associated with moderate-to-severe pain in the PACU 
[29,34–37]. However, some differences in the results of these 
studies must be mentioned. Park et al. [36] reported that higher 
SPI values before arousal from anesthesia were significantly asso-
ciated with higher pain scores in the PACU, and an SPI value of 
60 was defined as the cut-off for moderate-to-severe pain with a 
numerical rating scale (NRS) ≥  5. These authors also reported 
that patients with an SPI value >  60 before arousal from anesthe-
sia required a higher amount of fentanyl during the postoperative 
48 h than patients with an SPI <  60. Meanwhile, Ledowski et al. 
[37] validated that a cut-off point of approximately 30 showed the 
best sensitivity/specificity to predict moderate-to-severe pain in 
the PACU; however, these authors suggested that the overall pre-
dictive accuracy was poor. These differences appear to be due to 
variations in the level of consciousness at the end of surgery. Gen-
erally, the SPI can be significantly affected by the patient’s arousal 
status [35,37,38] such that the SPI values obtained during the 
pre-awareness period (anesthesia status) are reliable for predicting 
postoperative pain and analgesic requirements in the acute post-
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of pressure waves is accelerated and the intensity is increased ow-
ing to increased stiffness in the small and large arteries. Therefore, 
changes in the PPGA due to sympathetic stimulation increase 
with age, whereas changes in the heart rate due to sympathetic 
stimulation decreases with age because of autonomic functional 
degeneration [46]. These two factors are offset each other; thus, 
the SPI is maintained at a range of 20–50, which is similar to that 
of normal healthy adults (Fig. 2C) [15]. However, as the study as-
sessing the effectiveness and characteristics of SPI monitoring in 
the elderly had a small sample size, it is difficult to generalize the 
results; thus, further validation is required. 

Anesthetics 

Most previous RCTs assessing SPI monitoring have included 
patients receiving total intravenous anesthesia (TIVA) for general 
anesthesia and found that SPI-guided analgesia reduces opioid 
consumption [47]. In contrast, in the first study conducted by 
Gruenewald et al. [21] using an inhalation agent (sevoflurane), 
SPI-guided analgesia did not reduce intraoperative opioid (sufen-
tanil) consumption. The authors thus concluded that the anesthe-
sia regimen may affect the efficacy of SPI guidance. In another 
study conducted by Jain et al. [29] using sevoflurane, intraopera-
tive fentanyl consumption was higher in the SPI-guided analgesia 
group than in the control group. However, another study using 
sevoflurane showed significantly lower intraoperative oxycodone 
consumption in the SPI guidance group than in the conventional 
analgesia group [12]. Therefore, the efficacy and feasibility of in-
halational anesthesia rather than TIVA for SPI-guided analgesia 
requires further exploration. 

The concentration of propofol in TIVA has also been found to 
affect the SPI. Hans et al. [48] reported that high propofol ef-
fect-site concentrations tended to increase the SPI due to a de-
crease in pulse wave amplitude; however, the authors did not pro-
vide a clear explanation for this finding. Propofol-induced vaso-
plegia can occur because high propofol concentrations decrease 
the peripheral vascular resistance [49,50], which may reduce vas-
cular wall distensibility. Consequently, the magnitude of the 
change in the PPGA in response to sympathetic stimulation could 
increase, which has similarly been found in the elderly [15]. 

Cardiovascular drugs and diseases 

The concomitant use of cardiovascular drugs may affect SPI 
monitoring. Vasoactive agents (ephedrine, phenylephrine, and 
nicardipine) in particular may affect SPI values by altering the 
PPGA and HBI, which may interfere with accurate interpretation 

operative period. From this point of view, variations in the pa-
tients’ level of consciousness before arousal may be linked to dif-
ferences in the results of these studies. 

A recent meta-analysis [39] identified studies investigating the 
association between the SPI at the end of surgery and immediate 
moderate-to-severe pain in the PACU and revealed that SPI values 
were higher in patients with moderate-to-severe pain and a higher 
SPI at the end of surgery could predict moderate-to-severe pain 
with a sensitivity of 0.71 and a specificity of 0.58. Additionally, ac-
cording to the summary receiver operating characteristic curve, 
the overall accuracy was 0.72, suggesting that the SPI may be a 
useful predictor of postoperative pain in adult patients undergoing 
general anesthesia. However, given the limited number of studies 
included in this meta-analysis and high heterogeneity of some of 
the results, further studies are required to verify these findings. 

Jung et al. [40] evaluated whether the highest SPI value during 
surgical incision was associated with postoperative pain and opioid 
consumption. These authors recorded the highest SPI value during 
surgical incision and compared the postoperative NRS scores for 
pain and opioid consumption during the first 24 h postoperatively 
between patients with an SPI >  50 or 20–50. Patients with an SPI 
>  50 showed higher NRS scores for pain in the PACU and 24 h 
postoperatively and higher fentanyl consumption during the 24 h 
postoperatively, suggesting that changes in the SPI in response to 
nociceptive stimuli during the initial surgical incision is closely re-
lated to the degree of postoperative pain and opioid consumption. 

Limitations: factors that can affect the 
reliability of the SPI in various clinical settings 

Age 

The SPI is determined by two factors (HBI and PPGA) that are 
inseparably related age [41]. The reference value for heart rate 
variability differs for individuals aged <  20 and >  60 years [42]. 
Vascular properties such as arterial stiffness and elasticity are as-
sociated with age [43], and the PPGA depends on vascular wall 
distensibility and intravascular pulse pressure [44]. Therefore, age 
is a major confounder of SPI monitoring. Additionally, as pediat-
ric patients exhibit lower vascular wall stress and higher distensi-
bility, they are less likely to show prominent decreases in the 
PPGA from sympathetic stimulation and have increased baseline 
heart rates compared with adults, resulting in an underestimation 
of the SPI value [10,45]. For these reasons, an SPI <  40 is the tar-
get range for adequate intraoperative analgesia in pediatric pa-
tients rather than an SPI <  50, which is the reference range for 
adults (Fig. 2B) [10,18,32]. In contrast, in older adults, the delivery 
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of SPI monitoring [19]. Additionally, chronic treatment (regard-
less of drug type) for hypertension lowers the SPI response [3]. 
Nicardipine, a calcium channel-blocking vasodilator, increases 
PPGA levels, thereby lowering the SPI. Therefore, the SPI does 
not appropriately reflect the level of nociception and may be inef-
fective as a guide for opioid administration when nicardipine is 
administered during general anesthesia [19]. In contrast, SPI val-
ues have been found to be higher in patients receiving esmolol 
than in patients receiving remifentanil in gynecological laparo-
scopic day-care surgery, suggesting that esmolol (a β-adrenergic 
antagonist) only stabilizes the hemodynamic response during sur-
gical procedures and has no anti-nociceptive action unlike opioids 
[51]. In this case, the SPI appears to accurately reflect the level of 
nociception and may be used to guide the administration of opi-
oids during general anesthesia. Finally, atropine, pacemakers, and 
arrhythmias are confounding factors [52]. 

Fluid status 

The SPI can be affected by fluid status during steady-state con-
ditions with propofol-remifentanil anesthesia. The SPI is more 
likely to decrease with worsening hypovolemia [3,48]. However, 
SPI values are not affected by fluid challenges in normovolemic 

patients. 

Position 

In urological surgery, the SPI was found to increase after a 30° 
head-up tilt and decrease after a head-down tilt, lasting for at least 
45 min [53]. The effect of prone positioning on the SPI during 
spinal surgery under general anesthesia was also investigated in a 
previous study [54]. Prone positioning induced a significant in-
crease in the SPI, probably owing to increased sympathetic tone, 
followed by a gradual reduction over the subsequent 20 min. Af-
ter moving the patient from supine to prone positioning, the SPI 
values tended to increase in the absence of noxious stimulation. 
Therefore, the interpretation of the SPI can be confounded by po-
sitioning. 

Consciousness 

The sympathovagal balance is influenced by arousal and emo-
tions. Therefore, during consciousness, the SPI shows no correla-
tion with endocrine stress hormones, including ACTH, cortisol, 
epinephrine, and norepinephrine, but shows a moderate correla-
tion in anesthetized patients [5]. 

Fig. 2. Schematic diagram of the change in the SPI in response to nociceptive stimuli according to population age groups. In adults without severe 
underlying diseases, the target range of the SPI for adequate intraoperative analgesia during general anesthesia is usually 20–50, based on evidence 
from numerous studies (A). In children, the increased baseline heart rate results in less of a change in the HBI, and children are less likely to show 
a prominent reduction in the PPGA from sympathetic stimulation owing to lower vascular wall stress with higher distensibility. These conditions 
result in an underestimation of the SPI value; thus, an SPI < 40 is the target range for adequate intraoperative analgesia (B). In the elderly, the 
magnitude of change in the PPGA resulting from sympathetic stimulation is higher due to increased stiffness in the small and large arteries . In 
contrast, the change in the heart rate in response to stimuli decreases with age because of autonomic functional degeneration. These two factors have 
the effect of offsetting each other; thus, the SPI is maintained at a reference range of 20–50, similar to that in normal healthy adults (C). ∆: change, 
SPI: surgical pleth index, HR: heart rate, HBI: heartbeat interval, PPGA: photoplethysmographic waveform amplitude.
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However, a correlation between the SPI and opioid consump-
tion has been reported in patients with reduced awareness who 
were conscious but not fully awake in the PACU [34,55,56]. More-
over, in a study performed in healthy volunteers and parturients 
by Choi et al. [57], an algometer was used to induce bone pain in 
volunteers until they rated their pain as an NRS score of 5. This 
procedure was repeated during the administration of remifentanil 
or normal saline. The parturients’ SPI data were collected for 2 
min when they rated their pain levels at the NRS score of 0, 5, or 7. 
The SPI was effective at distinguishing pain intensity, irrespective 
of remifentanil administration. Therefore, further research on the 
relationship between the SPI and consciousness is needed.  

Comparison of SPI monitoring with other 
nociception monitoring devices on perioperative 
opioid consumption and quantification of 
nociception during general anesthesia  

Analgesia nociception index 

The analgesia nociception index (ANI; MetroDoloris Medical 
Systems) measures cardiac parasympathetic tone through heart 
rate variability and shows parasympathetic activity on a scale, 
ranging from 0 (minimum parasympathetic tone and a high noci-
ceptive level) to 100 (maximum parasympathetic tone and a low 
nociceptive level). Gruenewald et al. [58] assessed nociceptive 
balance in terms of the ANI and SPI and the prediction probabili-
ties using the receiver operating characteristic for change in the 
ANI and SPI values during sevoflurane-remifentanil anesthesia. 
The ANI and SPI were both significant for indicating patient 
movement after tetanic stimulation, with a prediction probability 
of 0.74 and 0.84, respectively. Both the ANI and SPI reflected no-
ciceptive stimulation, although a higher probability was observed 
for the SPI. 

Acute episodes of blood loss are confounding factors in noci-
ception monitoring. The ANI significantly increases during acute 
intraoperative blood loss and with coadministration of noradren-
aline; however, the SPI is not affected [59]. Therefore, the SPI ap-
pears to be more reliable during intraoperative bleeding than the 
ANI. 

In addition, the SPI and ANI were compared in a study of con-
scious patients conducted by Choi et al. [57]. An algometer was 
used to induce bone pain in the volunteers until they rated their 
pain as an NRS score of 5 during the administration of remifent-
anil or normal saline. At an NRS score of 5, the SPI showed simi-
lar values irrespective of the solution administered (remifentanil 
or normal saline), whereas the ANI showed significantly lower 

values with remifentanil administration. Thus, although both the 
SPI and ANI were effective indices for detecting pain in healthy 
volunteers, the SPI showed better performance in terms of the 
perception of pain intensity, suggesting that the SPI may be useful 
for pain evaluation even in conscious patients. 

Pupillometry 

For pupillometry and its variants, such as the pupillary pain in-
dex (PPI) and pupillary dilatation reflex (PDR), an infrared cam-
era is used to measure the dynamic pupillary diameter as the 
width increases in response to nociceptive stimulation. Several 
studies have shown that pupillometry can be used to accurately 
measure nociception during anesthesia [60]. SPI monitoring and 
pupillometry were compared for perioperative opioid consump-
tion during propofol-remifentanil anesthesia [61], and the pupil-
lometry group was associated with better responsiveness to fen-
tanyl and lower analgesic consumption than the SPI group. 

Funcke et al. [27] compared the SPI with the PPI and nocicep-
tion level (NOL) in a pilot study of patients undergoing radical 
retropubic prostatectomy. Although PPI monitoring reduced 
sufentanil consumption compared with SPI monitoring and other 
methods, it consequently increased the endocrine stress response. 
Additionally, although analgesic titration with the SPI did not re-
sult in a reduction in opioid consumption compared with conven-
tional analgesia, it was associated with a reduction in the endo-
crine stress response. Another full study with a similar design but 
a larger number of patients was conducted by Funcke et al. [62]. 
As in previous studies, the opioid consumption was lower with 
PPI-guided analgesia but the cortisol levels were higher than with 
SPI-guided analgesia. In this context, although PPI-guided anal-
gesia has been associated with lower opioid consumption, 
SPI-guided analgesia may reduce the endocrine stress response. 

Stasiowski et al. [63] investigated the volume of intraoperative 
blood loss and a condition (visibility) of the surgical field using 
the Boezaart bleeding scale in the SPI, PDR, and control groups. 
By providing better analgesic guidance, the SPI was found to opti-
mize the condition (visibility) of the surgical field, thereby reduc-
ing the amount of bleeding compared with other methods. Simi-
lar to the results of previous studies [27,62], PDR monitoring was 
associated with a reduction in the use of opioids and anesthetics.  

Nociception level  

The NOL (Medasense, Ramat Gan) is a multiparameter index 
for which photoplethysmography, galvanic skin response, tem-
perature, and accelerometry for finger motion are measured using 
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a finger probe. Similar to the SPI, the NOL values range from 0 
(no nociception) to 100 (maximum nociception); however, an 
NOL range of 10–25 is considered appropriate under general an-
esthesia [64]. According to the studies conducted by Funcke et al. 
[27,62], although SPI monitoring resulted in higher opioid con-
sumption than NOL monitoring, the endocrine stress response 
was lower. PPI monitoring resulted in the lowest opioid con-
sumption but the highest endocrine stress response among the 
three devices. Therefore, further studies comparing these noci-
ception monitoring devices in terms of intraoperative opioid 
dosing are needed. 

In addition, the predictive capacity of these three devices (SPI, 
PPI, and NOL) for immediate postoperative pain after arousal 
from general anesthesia was investigated. The study concluded 
that none of these monitors alone had sufficient diagnostic accu-
racy for predicting postoperative pain [65], suggesting that a 
combination of these nociceptive indices and clinical factors may 
increase the accuracy of postoperative pain prediction. 

Effect of the anesthetic and analgesic regimen 
or the underlying disease on the intraoperative 
SPI or perioperative opioid consumption under 
SPI-guided analgesia 

Dexmedetomidine 

Although opioids are the mainstay analgesics for moder-
ate-to-severe perioperative pain, greater efforts toward opi-
oid-sparing or opioid-free anesthesia have been made to mini-
mize opioid abuse and its related side effects. In this regard, dex-
medetomidine is one of the most commonly investigated 
non-opioid analgesics. In lung lobectomy with isoflurane anesthe-
sia, dexmedetomidine decreased the intraoperative SPI and NRS 
scores compared to normal saline as a control [66]. In a prelimi-
nary study, adult patients undergoing elective craniotomy for 
brain tumor resection randomly received an infusion of either 
fentanyl 1 μg/kg/h or dexmedetomidine 0.5 μg/kg/h. The SPI was 
similar for both groups during the study period and no differenc-
es in biomarkers such as serum cortisol, glucose, or pH were seen 
between the groups [67]. 

Peripheral nerve block 

The type II pectoral nerve block reduced remifentanil con-
sumption during breast surgery with TIVA under SPI-guided an-
algesia [68]. Abdominal wall blocks, including the rectus sheath 
and quadratus lumborum blocks, were compared with controls in 

terms of remifentanil consumption under SPI-guided analgesia, 
and the abdominal wall blocks significantly reduced both the 
remifentanil dose during surgery and pain scores [69]. Therefore, 
during general anesthesia, the regional analgesic effect may be 
confirmed using the SPI. 

Depth of neuromuscular blockade 

Yi et al. [70] explored the effects of the depth of neuromuscular 
blockade (NMB), a triad of anesthesia which consists of narcosis, 
analgesia and muscle relaxation, on nociception. Deep NMB re-
duced the remifentanil requirement and length of PACU stay 
compared to moderate NMB during SPI-guided analgesia. This 
study is consistent with several other studies that found that deep 
NMB can reduce postoperative pain [71,72]. 

Severe liver dysfunction 

The severity of liver dysfunction may affect the intraoperative 
nociceptive response. In a study by Park et al. [73], liver transplan-
tation patients were assigned according to their median model for 
end-stage liver disease (MELD) score and divided into low (<  16) 
and high ( ≥  16) MELD groups. When anesthetic depth was 
maintained within the bispectral index of 40 to 60 and SPI of 20 
to 60, the remifentanil requirement was lower in patients with 
high MELD scores than in those with low MELD scores during 
the dissection and anhepatic phases; however, no significant dif-
ferences were observed during the neohepatic phase. The effect of 
SPI-guided analgesia on patients with liver dysfunction is not 
clear; thus, further research is needed to clarify this effect.  

Discussion and directions for future research 

Numerous studies of SPI-guided analgesia have been conduct-
ed over the past decade, most of which compare SPI-guided an-
algesia to conventional analgesia. Previous studies have focused 
on perioperative opioid consumption and postoperative recovery, 
pain, and adverse events. Although conflicting results have been 
reported, SPI monitoring has repeatedly been associated with a 
reduction in intraoperative opioid consumption and the endo-
crine stress response, faster recovery, and comparable or reduced 
levels of postoperative pain and rates of adverse events in many 
studies, including meta-analyses. However, most of these studies 
were performed in healthy adult populations without underlying 
diseases. Therefore, further studies involving patients with spe-
cific diseases or conditions and of different age groups are war-
ranted. Although some studies have been conducted on children, 
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the evidence is insufficient, and SPI studies of elderly patients are 
limited. Considering the growing elderly population worldwide, 
further research on SPI-guided analgesia in this population is ur-
gently needed. In addition, studies on concomitant medications 
(e.g., various anesthetics, including remimazolam or other vaso-
active agents) and pain assessment (e.g., postoperative pain in the 
PACU) in conscious patients would improve our understanding 
of the proper application of SPI-guided analgesia. 

Objective measures of nociception during surgery are import-
ant in the management of acute perioperative pain. SPI monitor-
ing has been shown to be useful as a surrogate index for predict-
ing the degree of postoperative pain and for intraoperative anal-
gesia guidance. Although SPI values before patient arousal may 
be useful for predicting the degree of postoperative pain (though 
diagnostic accuracy is not sufficient), the range for predicting 
moderate-to-severe postoperative pain, estimated between ap-
proximately 30 and 60, has not yet been fully clarified. Further 
studies are thus needed to clarify this characteristic. 

Other nociception monitoring devices such as the ANI, PPI, 
and NOL have been developed and are currently available. Al-
though these devices are all based on sympathetic-vagal balance, 
they operate using different underlying mechanisms and auto-
nomic nervous system marker parameters. Each device may thus 
evaluate nociception differently according to changes in the pa-
tient’s physiological condition. Therefore, future studies compar-
ing the strengths and weaknesses of all three devices for more 
detailed purposes, populations, and clinical situations should be 
conducted. Considering that none of these monitors alone have 
sufficient diagnostic accuracy for measuring intraoperative noci-
ception or predicting postoperative pain, future studies investi-
gating the accuracy and efficacy of various combinations of noci-
ception-monitoring devices to measure intraoperative nocicep-
tion or predict postoperative pain should be conducted. 

Conclusions 

This review summarizes the usefulness and limitations of SPI 
monitoring for perioperative pain management. SPI-guided anal-
gesia generally allows for the administration of appropriate doses 
of intraoperative analgesia with fewer adverse hemodynamic 
events, thereby improving patient recovery and resulting in com-
parable or reduced levels of postoperative pain and rates of ad-
verse events in patients undergoing surgery under general anes-
thesia. In addition, the SPI values recorded before patient arousal 
can help clinicians predict the degree of postoperative pain and 
analgesic requirements. However, the efficacy of SPI monitoring 
may be limited by various confounding factors, and various anes-

thetic and analgesic management strategies or underlying condi-
tions may affect SPI values. As reported thus far, SPI-guided anal-
gesia may allow for adequate analgesia through a reduction in the 
endocrine stress response and optimization of the surgical condi-
tions by providing superior analgesic guidance and reducing 
bleeding compared with other nociception monitoring devices. 

Through an understanding of the characteristics of SPI moni-
toring provided by this review, anesthesiologists can provide more 
appropriate perioperative analgesia in clinical practice, and 
through recognizing the limitations of our current knowledge on 
SPI monitoring, future research can be designed comparing SPI 
and other nociception monitoring devices. 
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