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Surgical pleth index monitoring in
perioperative pain management:
usefulness and limitations
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Surgical pleth index (SPI) monitoring is a representative, objective nociception-monitor-
ing device that measures nociception using photoplethysmographic signals. It is easy to
apply to patients and the numerical calculation formula is intuitively easy to understand;
therefore, its clinical interpretation is simple. Several studies have demonstrated its efficacy
and utility. Compared with hemodynamic parameters, the SPI can detect the degree of no-
ciception during surgery under general anesthesia with greater accuracy, and therefore can
provide better guidance for the administration of various opioids, including remifentanil,
fentanyl, and sufentanil. Indeed, SPI-guided analgesia is associated with lower intraopera-
tive opioid consumption, faster patient recovery, and comparable or lower levels of postop-
erative pain and rates of adverse events compared with conventional analgesia. In addition,
SPI monitoring allows for the degree of postoperative pain and analgesic requirements to
be predicted through the SPI values immediately before patient arousal. However, because
patient age, effective circulating volume, position, concomitant medication and anesthetic
regimen and level of consciousness may be confounding factors in SPI monitoring, clini-
cians must be careful when interpreting SPI values. In addition, as SPI values can differ de-
pending on anesthetic and analgesic regimens and the underlying disease, an awareness of
the effects of these variables with an understanding of the advantages and disadvantages of
SPI monitoring compared to other nociception monitoring devices is essential. Therefore,
this review aimed to help clinicians perform optimal SPI-guided analgesia and to assist
with the establishment of future research designs through clarifying current usefulness
and limitations of SPI monitoring in perioperative pain management.

Keywords: Analgesia; Autonomic nervous system; General anesthesia; Intraoperative
monitoring; Nociception test; Pain measurement; Photoplethysmography.

Introduction

As surgical procedures lead to actual or potential tissue damage, 20%-80% of patients
complain of moderate to severe acute postoperative pain [1]. Therefore, it is important to
accurately evaluate intraoperative nociception in patients undergoing surgery under gen-
eral anesthesia and provide appropriate analgesia to reduce postoperative pain.

Various methods and modalities have been developed for quantitative and objective
monitoring of nociception during surgery under general anesthesia [2], among which the
most widely used and studied device is the surgical pleth index (SPI; GE Healthcare).

The SPI is a monitoring tool that uses the photoplethysmographic signals of finger ar-
terioles to detect the balance between nociceptor activation and analgesia during general
anesthesia [3]. The SPI values are calculated using the following equation: SPI = 100 -
(0.33 x HBI + 0.67 x PPGA), where HBI is the heartbeat interval and PPGA is the pho-
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toplethysmographic waveform amplitude [4]. Using this tool only
requires that a pulse oximeter be attached to the finger; no addi-
tional consumable medical devices are required for continuous,
noninvasive monitoring [5,6].

SPI values range from 0 to 100, with higher values indicating a
greater nociceptive (stress) response. The target range for ade-
quate intraoperative analgesia during general anesthesia is usual-
ly 20-50 [4]; thus, SPI values should be maintained < 50, and a
rapid increase in SPI > 10 should be avoided [7]. Fig. 1 shows
the determinants of the SPI value and the mechanism underlying
the increase in SPI values due to surgical stimuli.

The first SPI-associated studies published were designed to in-
vestigate the correlation between the SPI and the nociception-an-
tinociception balance and changes in stress hormones during the
perioperative period [3,8]. Following these studies, randomized
controlled trials (RCTs) comparing SPI-guided and conventional
analgesia (hemodynamic parameter-guided analgesia) have
mainly been conducted [9-12]. Various opioids (e.g., remifent-
anil, fentanyl, sufentanil, and oxycodone) were used in these
studies, and several reported lower intraoperative opioid con-

sumption, faster recovery, and similar postoperative pain scores

with SPI-guided analgesia. Subsequently, the results were verified
by meta-analyses [6,13]. However, some conflicting results have
been reported, as one study found that SPI-guided analgesia
alone was not associated with a reduction in intraoperative opi-
oid consumption [14] and another reported that SPI-guided an-
algesia provides appropriate analgesia with more sufficient intra-
operative remifentanil consumption compared to the controls
[15]. Moreover, several studies have discussed the various limita-
tions of the two parameters that are used to calculate the SPI (the
HBI and PPGA), as they can be influenced not only by surgical
stress but also by other confounding factors such as vasoactive
drugs, population age, and cardiac arrhythmia [16-20].

Based on the findings of the SPI-related literature to date, this
review aimed to provide a summary of the usefulness and limita-
tions of SPI monitoring in perioperative pain management to
help clinicians perform more appropriate perioperative analgesia
in clinical practice and to assist with the establishment of future
research to compare SPI monitoring with other objective tools

for measuring nociception.

s

Photo Diode

SPI determinants

SPI = 100 - (0.33 x HBI + 0.67 x PPGA)

Heartbeat interval

8 (HBI)

Photoplethysmographic
waveform amplitude (PPGA)

N

Surgical stimulus

Heartrate T > HBI |

Vascualr tone 1
(vasoconstriction)

>PPGA |

Fig. 1. Determinants of the SPI and mechanism of increased SPI values by surgical stimulus. A surgical stimulus increases the heart rate and vascular
tone by increasing sympathetic tone; consequently, both the HBI and PPGA decrease, which inversely increases the SPI value. SPI: surgical pleth
index, HBI: heartbeat interval, PPGA: photoplethysmographic waveform amplitude, LED: light-emitting diode.
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Usefulness of intraoperative SPl-quided
analgesia during general anesthesia

The effectiveness of SPI monitoring at quantifying nociception
has been demonstrated in several clinical settings (Table 1) [5,9-
12,21,22]. Although different types of surgery and opioids were
assessed in these studies, most compared a group receiving opi-
oids based on conventional hemodynamic parameters (e.g., heart
rate and blood pressure) with a group receiving opioids based on
SPI-quantified nociception. Most studies reported a significant
reduction in intraoperative opioid consumption with SPI-guided
analgesia. Accordingly, extubation time was shorter and postoper-
ative pain and adverse events, including postoperative nausea or
vomiting, were comparable or lower in the SPI group than in the
conventional analgesia group.

During general anesthesia, the SPI can provide reliable quanti-
tative information reflecting nociceptive stimulation and auto-
nomic nervous system activation and can thus be used to guide
analgesic administration [22-25]. Several RCTs have suggested
that SPI-guided analgesia results in better detection of nociceptive
stimuli and more timely administration of analgesics than con-
ventional analgesia during general anesthesia [9,10,12,21]. Hence,
SPI-guided analgesia is associated with fewer hemodynamic
changes secondary to noxious stimulus [26] and less opioid con-
sumption. Chen et al. [8] reported that the SPI was moderately
correlated with stress hormone levels (ACTH, cortisol, epineph-
rine, and norepinephrine). Funcke et al. [27] also found that,
compared to controls, SPI-guided analgesia was associated with
lower cortisol and ACTH levels.

In several studies performed in adult patients without severe
underlying diseases, including cardiovascular and neurological
diseases, opioid titration based on the nociception-antinocicep-
tion balance using the SPI with a cutoff value of 50 (target range
of 20-50 and avoidance of rapid increases > 10 for noxious stim-
uli) showed a significant reduction in opioid consumption during
surgery and a shorter extubation time. Moreover, SPI-guided an-
algesia using these criteria can help reduce the incidence of intra-
operative adverse events such as hypertension, hypotension,
tachycardia, and unwanted somatic movement compared to con-
trols using hemodynamic parameter-guided analgesia [5,12,13]
and can lead to better or comparable outcomes with regard to
postoperative pain and complications as well as intraoperative
outcomes in adult patients [12,13,15,28,29]. SPI monitoring has
also been found to reduce the dose of anesthetics required during
surgery and shorten the length of stay in the recovery room [9,30].

In elderly patients, SPI-guided analgesia is associated with a

lower incidence of delirium in the post-anesthesia care unit
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(PACU) than conventional analgesia [15]. SPI monitoring can
also be effective at detecting nociceptor stimulation that is masked
by hypotension in the elderly due to decreased myocardial con-
tractility, vascular elasticity, and p-adrenergic response, providing
appropriate analgesia with sufficient intraoperative analgesic con-
sumption [15].

However, several studies evaluating SPI-guided intraoperative
analgesic administration in children have yielded conflicting re-
sults, suggesting that the SPI cannot be used to provide adequate
analgesia within the target SPI value range of 20-50 in this popu-
lation [10,18,31]. As children usually have higher blood vessel dis-
tensibility and baseline heart rates than adults [10], and as auto-
nomic control of cardiac chronotropic function is strongly influ-
enced by age [32,33], SPI values may be less valid in children than
in adults [18]. This finding suggests that clinicians should be cau-
tious when considering the use of the SPI in pediatric practice. A
detailed explanation of the considerations for SPI monitoring ac-

cording to different age groups is provided below (see Age).

SPI monitoring for the prediction of
postoperative pain and analgesic requirements

Another advantage of intraoperative SPI monitoring is that it
can be used to predict postoperative pain severity. The SPI values
measured before arousal or in response to nociceptive stimuli
during surgery are closely related to the degree of postoperative
pain and opioid requirements.

Higher SPI values before arousal at the end of surgery were
closely associated with moderate-to-severe pain in the PACU
[29,34-37]. However, some differences in the results of these
studies must be mentioned. Park et al. [36] reported that higher
SPI values before arousal from anesthesia were significantly asso-
ciated with higher pain scores in the PACU, and an SPI value of
60 was defined as the cut-off for moderate-to-severe pain with a
numerical rating scale (NRS) > 5. These authors also reported
that patients with an SPI value > 60 before arousal from anesthe-
sia required a higher amount of fentanyl during the postoperative
48 h than patients with an SPI < 60. Meanwhile, Ledowski et al.
[37] validated that a cut-off point of approximately 30 showed the
best sensitivity/specificity to predict moderate-to-severe pain in
the PACU; however, these authors suggested that the overall pre-
dictive accuracy was poor. These differences appear to be due to
variations in the level of consciousness at the end of surgery. Gen-
erally, the SPI can be significantly affected by the patient’s arousal
status [35,37,38] such that the SPI values obtained during the
pre-awareness period (anesthesia status) are reliable for predicting

postoperative pain and analgesic requirements in the acute post-
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operative period. From this point of view, variations in the pa-
tients level of consciousness before arousal may be linked to dif-
ferences in the results of these studies.

A recent meta-analysis [39] identified studies investigating the
association between the SPI at the end of surgery and immediate
moderate-to-severe pain in the PACU and revealed that SPI values
were higher in patients with moderate-to-severe pain and a higher
SPI at the end of surgery could predict moderate-to-severe pain
with a sensitivity of 0.71 and a specificity of 0.58. Additionally, ac-
cording to the summary receiver operating characteristic curve,
the overall accuracy was 0.72, suggesting that the SPI may be a
useful predictor of postoperative pain in adult patients undergoing
general anesthesia. However, given the limited number of studies
included in this meta-analysis and high heterogeneity of some of
the results, further studies are required to verify these findings.

Jung et al. [40] evaluated whether the highest SPI value during
surgical incision was associated with postoperative pain and opioid
consumption. These authors recorded the highest SPI value during
surgical incision and compared the postoperative NRS scores for
pain and opioid consumption during the first 24 h postoperatively
between patients with an SPI > 50 or 20-50. Patients with an SPI
> 50 showed higher NRS scores for pain in the PACU and 24 h
postoperatively and higher fentanyl consumption during the 24 h
postoperatively, suggesting that changes in the SPI in response to
nociceptive stimuli during the initial surgical incision is closely re-

lated to the degree of postoperative pain and opioid consumption.

Limitations: factors that can affect the
reliability of the SPI in various clinical settings

Age

The SPI is determined by two factors (HBI and PPGA) that are
inseparably related age [41]. The reference value for heart rate
variability differs for individuals aged < 20 and > 60 years [42].
Vascular properties such as arterial stiffness and elasticity are as-
sociated with age [43], and the PPGA depends on vascular wall
distensibility and intravascular pulse pressure [44]. Therefore, age
is a major confounder of SPI monitoring. Additionally, as pediat-
ric patients exhibit lower vascular wall stress and higher distensi-
bility, they are less likely to show prominent decreases in the
PPGA from sympathetic stimulation and have increased baseline
heart rates compared with adults, resulting in an underestimation
of the SPI value [10,45]. For these reasons, an SPI < 40 is the tar-
get range for adequate intraoperative analgesia in pediatric pa-
tients rather than an SPI < 50, which is the reference range for
adults (Fig. 2B) [10,18,32]. In contrast, in older adults, the delivery
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of pressure waves is accelerated and the intensity is increased ow-
ing to increased stiffness in the small and large arteries. Therefore,
changes in the PPGA due to sympathetic stimulation increase
with age, whereas changes in the heart rate due to sympathetic
stimulation decreases with age because of autonomic functional
degeneration [46]. These two factors are offset each other; thus,
the SPI is maintained at a range of 20-50, which is similar to that
of normal healthy adults (Fig. 2C) [15]. However, as the study as-
sessing the effectiveness and characteristics of SPI monitoring in
the elderly had a small sample size, it is difficult to generalize the

results; thus, further validation is required.

Anesthetics

Most previous RCTs assessing SPI monitoring have included
patients receiving total intravenous anesthesia (TTVA) for general
anesthesia and found that SPI-guided analgesia reduces opioid
consumption [47]. In contrast, in the first study conducted by
Gruenewald et al. [21] using an inhalation agent (sevoflurane),
SPI-guided analgesia did not reduce intraoperative opioid (sufen-
tanil) consumption. The authors thus concluded that the anesthe-
sia regimen may affect the efficacy of SPI guidance. In another
study conducted by Jain et al. [29] using sevoflurane, intraopera-
tive fentanyl consumption was higher in the SPI-guided analgesia
group than in the control group. However, another study using
sevoflurane showed significantly lower intraoperative oxycodone
consumption in the SPI guidance group than in the conventional
analgesia group [12]. Therefore, the efficacy and feasibility of in-
halational anesthesia rather than TIVA for SPI-guided analgesia
requires further exploration.

The concentration of propofol in TIVA has also been found to
affect the SPI. Hans et al. [48] reported that high propofol ef-
fect-site concentrations tended to increase the SPI due to a de-
crease in pulse wave amplitude; however, the authors did not pro-
vide a clear explanation for this finding. Propofol-induced vaso-
plegia can occur because high propofol concentrations decrease
the peripheral vascular resistance [49,50], which may reduce vas-
cular wall distensibility. Consequently, the magnitude of the
change in the PPGA in response to sympathetic stimulation could
increase, which has similarly been found in the elderly [15].

Cardiovascular drugs and diseases

The concomitant use of cardiovascular drugs may affect SPI
monitoring. Vasoactive agents (ephedrine, phenylephrine, and
nicardipine) in particular may affect SPI values by altering the

PPGA and HBI, which may interfere with accurate interpretation
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Change of SPI affected by age
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Fig. 2. Schematic diagram of the change in the SPI in response to nociceptive stimuli according to population age groups. In adults without severe
underlying diseases, the target range of the SPI for adequate intraoperative analgesia during general anesthesia is usually 20-50, based on evidence
from numerous studies (A). In children, the increased baseline heart rate results in less of a change in the HBI, and children are less likely to show
a prominent reduction in the PPGA from sympathetic stimulation owing to lower vascular wall stress with higher distensibility. These conditions
result in an underestimation of the SPI value; thus, an SPI < 40 is the target range for adequate intraoperative analgesia (B). In the elderly, the
magnitude of change in the PPGA resulting from sympathetic stimulation is higher due to increased stiffness in the small and large arteries . In
contrast, the change in the heart rate in response to stimuli decreases with age because of autonomic functional degeneration. These two factors have
the effect of offsetting each other; thus, the SPI is maintained at a reference range of 20-50, similar to that in normal healthy adults (C). A: change,

SPI: surgical pleth index, HR: heart rate, HBI: heartbeat interval, PPGA: photoplethysmographic waveform amplitude.

of SPI monitoring [19]. Additionally, chronic treatment (regard-
less of drug type) for hypertension lowers the SPI response [3].
Nicardipine, a calcium channel-blocking vasodilator, increases
PPGA levels, thereby lowering the SPI. Therefore, the SPI does
not appropriately reflect the level of nociception and may be inef-
fective as a guide for opioid administration when nicardipine is
administered during general anesthesia [19]. In contrast, SPI val-
ues have been found to be higher in patients receiving esmolol
than in patients receiving remifentanil in gynecological laparo-
scopic day-care surgery, suggesting that esmolol (a f-adrenergic
antagonist) only stabilizes the hemodynamic response during sur-
gical procedures and has no anti-nociceptive action unlike opioids
[51]. In this case, the SPI appears to accurately reflect the level of
nociception and may be used to guide the administration of opi-
oids during general anesthesia. Finally, atropine, pacemakers, and
arrhythmias are confounding factors [52].

Fluid status

The SPI can be affected by fluid status during steady-state con-
ditions with propofol-remifentanil anesthesia. The SPI is more
likely to decrease with worsening hypovolemia [3,48]. However,

SPI values are not affected by fluid challenges in normovolemic
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patients.

Position

In urological surgery, the SPI was found to increase after a 30°
head-up tilt and decrease after a head-down tilt, lasting for at least
45 min [53]. The effect of prone positioning on the SPI during
spinal surgery under general anesthesia was also investigated in a
previous study [54]. Prone positioning induced a significant in-
crease in the SPI, probably owing to increased sympathetic tone,
followed by a gradual reduction over the subsequent 20 min. Af-
ter moving the patient from supine to prone positioning, the SPI
values tended to increase in the absence of noxious stimulation.
Therefore, the interpretation of the SPI can be confounded by po-

sitioning.

Consciousness

The sympathovagal balance is influenced by arousal and emo-
tions. Therefore, during consciousness, the SPI shows no correla-
tion with endocrine stress hormones, including ACTH, cortisol,
epinephrine, and norepinephrine, but shows a moderate correla-

tion in anesthetized patients [5].
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However, a correlation between the SPI and opioid consump-
tion has been reported in patients with reduced awareness who
were conscious but not fully awake in the PACU [34,55,56]. More-
over, in a study performed in healthy volunteers and parturients
by Choi et al. [57], an algometer was used to induce bone pain in
volunteers until they rated their pain as an NRS score of 5. This
procedure was repeated during the administration of remifentanil
or normal saline. The parturients’ SPI data were collected for 2
min when they rated their pain levels at the NRS score of 0, 5, or 7.
The SPI was effective at distinguishing pain intensity, irrespective
of remifentanil administration. Therefore, further research on the

relationship between the SPI and consciousness is needed.

Comparison of SPI monitoring with other
nociception monitoring devices on perioperative
opioid consumption and quantification of
nociception during general anesthesia

Analgesia nociception index

The analgesia nociception index (ANI; MetroDoloris Medical
Systems) measures cardiac parasympathetic tone through heart
rate variability and shows parasympathetic activity on a scale,
ranging from 0 (minimum parasympathetic tone and a high noci-
ceptive level) to 100 (maximum parasympathetic tone and a low
nociceptive level). Gruenewald et al. [58] assessed nociceptive
balance in terms of the ANI and SPI and the prediction probabili-
ties using the receiver operating characteristic for change in the
ANT and SPI values during sevoflurane-remifentanil anesthesia.
The ANI and SPI were both significant for indicating patient
movement after tetanic stimulation, with a prediction probability
of 0.74 and 0.84, respectively. Both the ANT and SPI reflected no-
ciceptive stimulation, although a higher probability was observed
for the SPL

Acute episodes of blood loss are confounding factors in noci-
ception monitoring. The ANI significantly increases during acute
intraoperative blood loss and with coadministration of noradren-
aline; however, the SPI is not affected [59]. Therefore, the SPI ap-
pears to be more reliable during intraoperative bleeding than the
ANL

In addition, the SPI and ANI were compared in a study of con-
scious patients conducted by Choi et al. [57]. An algometer was
used to induce bone pain in the volunteers until they rated their
pain as an NRS score of 5 during the administration of remifent-
anil or normal saline. At an NRS score of 5, the SPI showed simi-
lar values irrespective of the solution administered (remifentanil

or normal saline), whereas the ANI showed significantly lower
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values with remifentanil administration. Thus, although both the
SPI and ANI were effective indices for detecting pain in healthy
volunteers, the SPI showed better performance in terms of the
perception of pain intensity, suggesting that the SPI may be useful

for pain evaluation even in conscious patients.
Pupillometry

For pupillometry and its variants, such as the pupillary pain in-
dex (PPI) and pupillary dilatation reflex (PDR), an infrared cam-
era is used to measure the dynamic pupillary diameter as the
width increases in response to nociceptive stimulation. Several
studies have shown that pupillometry can be used to accurately
measure nociception during anesthesia [60]. SPI monitoring and
pupillometry were compared for perioperative opioid consump-
tion during propofol-remifentanil anesthesia [61], and the pupil-
lometry group was associated with better responsiveness to fen-
tanyl and lower analgesic consumption than the SPI group.

Funcke et al. [27] compared the SPI with the PPI and nocicep-
tion level (NOL) in a pilot study of patients undergoing radical
retropubic prostatectomy. Although PPI monitoring reduced
sufentanil consumption compared with SPI monitoring and other
methods, it consequently increased the endocrine stress response.
Additionally, although analgesic titration with the SPI did not re-
sult in a reduction in opioid consumption compared with conven-
tional analgesia, it was associated with a reduction in the endo-
crine stress response. Another full study with a similar design but
a larger number of patients was conducted by Funcke et al. [62].
As in previous studies, the opioid consumption was lower with
PPI-guided analgesia but the cortisol levels were higher than with
SPI-guided analgesia. In this context, although PPI-guided anal-
gesia has been associated with lower opioid consumption,
SPI-guided analgesia may reduce the endocrine stress response.

Stasiowski et al. [63] investigated the volume of intraoperative
blood loss and a condition (visibility) of the surgical field using
the Boezaart bleeding scale in the SPI, PDR, and control groups.
By providing better analgesic guidance, the SPI was found to opti-
mize the condition (visibility) of the surgical field, thereby reduc-
ing the amount of bleeding compared with other methods. Simi-
lar to the results of previous studies [27,62], PDR monitoring was
associated with a reduction in the use of opioids and anesthetics.

Nociception level

The NOL (Medasense, Ramat Gan) is a multiparameter index
for which photoplethysmography, galvanic skin response, tem-

perature, and accelerometry for finger motion are measured using
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a finger probe. Similar to the SPI, the NOL values range from 0
(no nociception) to 100 (maximum nociception); however, an
NOL range of 10-25 is considered appropriate under general an-
esthesia [64]. According to the studies conducted by Funcke et al.
[27,62], although SPI monitoring resulted in higher opioid con-
sumption than NOL monitoring, the endocrine stress response
was lower. PPI monitoring resulted in the lowest opioid con-
sumption but the highest endocrine stress response among the
three devices. Therefore, further studies comparing these noci-
ception monitoring devices in terms of intraoperative opioid
dosing are needed.

In addition, the predictive capacity of these three devices (SPI,
PPI, and NOL) for immediate postoperative pain after arousal
from general anesthesia was investigated. The study concluded
that none of these monitors alone had sufficient diagnostic accu-
racy for predicting postoperative pain [65], suggesting that a
combination of these nociceptive indices and clinical factors may

increase the accuracy of postoperative pain prediction.

Effect of the anesthetic and analgesic regimen
or the underlying disease on the intraoperative
SPI or perioperative opioid consumption under
SPI-guided analgesia

Dexmedetomidine

Although opioids are the mainstay analgesics for moder-
ate-to-severe perioperative pain, greater efforts toward opi-
oid-sparing or opioid-free anesthesia have been made to mini-
mize opioid abuse and its related side effects. In this regard, dex-
medetomidine is one of the most commonly investigated
non-opioid analgesics. In lung lobectomy with isoflurane anesthe-
sia, dexmedetomidine decreased the intraoperative SPI and NRS
scores compared to normal saline as a control [66]. In a prelimi-
nary study, adult patients undergoing elective craniotomy for
brain tumor resection randomly received an infusion of either
fentanyl 1 ug/kg/h or dexmedetomidine 0.5 pg/kg/h. The SPI was
similar for both groups during the study period and no differenc-
es in biomarkers such as serum cortisol, glucose, or pH were seen

between the groups [67].

Peripheral nerve block

The type II pectoral nerve block reduced remifentanil con-
sumption during breast surgery with TIVA under SPI-guided an-
algesia [68]. Abdominal wall blocks, including the rectus sheath

and quadratus lumborum blocks, were compared with controls in
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terms of remifentanil consumption under SPI-guided analgesia,
and the abdominal wall blocks significantly reduced both the
remifentanil dose during surgery and pain scores [69]. Therefore,
during general anesthesia, the regional analgesic effect may be
confirmed using the SPL

Depth of neuromuscular blockade

Yi et al. [70] explored the effects of the depth of neuromuscular
blockade (NMB), a triad of anesthesia which consists of narcosis,
analgesia and muscle relaxation, on nociception. Deep NMB re-
duced the remifentanil requirement and length of PACU stay
compared to moderate NMB during SPI-guided analgesia. This
study is consistent with several other studies that found that deep

NMB can reduce postoperative pain [71,72].

Severe liver dysfunction

The severity of liver dysfunction may affect the intraoperative
nociceptive response. In a study by Park et al. 73], liver transplan-
tation patients were assigned according to their median model for
end-stage liver disease (MELD) score and divided into low (< 16)
and high (= 16) MELD groups. When anesthetic depth was
maintained within the bispectral index of 40 to 60 and SPI of 20
to 60, the remifentanil requirement was lower in patients with
high MELD scores than in those with low MELD scores during
the dissection and anhepatic phases; however, no significant dif-
ferences were observed during the neohepatic phase. The effect of
SPI-guided analgesia on patients with liver dysfunction is not

clear; thus, further research is needed to clarify this effect.

Discussion and directions for future research

Numerous studies of SPI-guided analgesia have been conduct-
ed over the past decade, most of which compare SPI-guided an-
algesia to conventional analgesia. Previous studies have focused
on perioperative opioid consumption and postoperative recovery,
pain, and adverse events. Although conflicting results have been
reported, SPI monitoring has repeatedly been associated with a
reduction in intraoperative opioid consumption and the endo-
crine stress response, faster recovery, and comparable or reduced
levels of postoperative pain and rates of adverse events in many
studies, including meta-analyses. However, most of these studies
were performed in healthy adult populations without underlying
diseases. Therefore, further studies involving patients with spe-
cific diseases or conditions and of different age groups are war-

ranted. Although some studies have been conducted on children,
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the evidence is insufficient, and SPI studies of elderly patients are
limited. Considering the growing elderly population worldwide,
further research on SPI-guided analgesia in this population is ur-
gently needed. In addition, studies on concomitant medications
(e.g., various anesthetics, including remimazolam or other vaso-
active agents) and pain assessment (e.g., postoperative pain in the
PACU) in conscious patients would improve our understanding
of the proper application of SPI-guided analgesia.

Objective measures of nociception during surgery are import-
ant in the management of acute perioperative pain. SPI monitor-
ing has been shown to be useful as a surrogate index for predict-
ing the degree of postoperative pain and for intraoperative anal-
gesia guidance. Although SPI values before patient arousal may
be useful for predicting the degree of postoperative pain (though
diagnostic accuracy is not sufficient), the range for predicting
moderate-to-severe postoperative pain, estimated between ap-
proximately 30 and 60, has not yet been fully clarified. Further
studies are thus needed to clarify this characteristic.

Other nociception monitoring devices such as the ANI, PP]I,
and NOL have been developed and are currently available. Al-
though these devices are all based on sympathetic-vagal balance,
they operate using different underlying mechanisms and auto-
nomic nervous system marker parameters. Each device may thus
evaluate nociception differently according to changes in the pa-
tient’s physiological condition. Therefore, future studies compar-
ing the strengths and weaknesses of all three devices for more
detailed purposes, populations, and clinical situations should be
conducted. Considering that none of these monitors alone have
sufficient diagnostic accuracy for measuring intraoperative noci-
ception or predicting postoperative pain, future studies investi-
gating the accuracy and efficacy of various combinations of noci-
ception-monitoring devices to measure intraoperative nocicep-

tion or predict postoperative pain should be conducted.

Conclusions

This review summarizes the usefulness and limitations of SPI
monitoring for perioperative pain management. SPI-guided anal-
gesia generally allows for the administration of appropriate doses
of intraoperative analgesia with fewer adverse hemodynamic
events, thereby improving patient recovery and resulting in com-
parable or reduced levels of postoperative pain and rates of ad-
verse events in patients undergoing surgery under general anes-
thesia. In addition, the SPI values recorded before patient arousal
can help clinicians predict the degree of postoperative pain and
analgesic requirements. However, the efficacy of SPI monitoring

may be limited by various confounding factors, and various anes-
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thetic and analgesic management strategies or underlying condi-
tions may affect SPI values. As reported thus far, SPI-guided anal-
gesia may allow for adequate analgesia through a reduction in the
endocrine stress response and optimization of the surgical condi-
tions by providing superior analgesic guidance and reducing
bleeding compared with other nociception monitoring devices.
Through an understanding of the characteristics of SPI moni-
toring provided by this review, anesthesiologists can provide more
appropriate perioperative analgesia in clinical practice, and
through recognizing the limitations of our current knowledge on
SPI monitoring, future research can be designed comparing SPI

and other nociception monitoring devices.
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