
Introduction 

Recent advancements in computing power, data storage, and the accumulation of clini-
cal data in electronic health records (EHRs), as well as picture archiving and communica-
tion systems, have played a major role in introducing artificial intelligence (AI) into vari-
ous fields of medicine [1]. Numerous studies have been published that use AI techniques 
in radiology [2], pathology [3], cardiology [4], and surgery [5]. For perioperative medi-
cine, AI models for perioperative risk stratification, intraoperative monitoring, and inten-
sive care management have been studied [6,7]. In some cases, these models outperform 
conventional statistical models and even human experts [8–10]. Many of these models 
can be used in clinical practice if their performance is maintained in future prospective 
validation studies and their clinical utility is confirmed by randomized controlled trials. 

This narrative review addresses the various AI techniques used in clinical studies. Ad-
ditionally, existing evidence from clinical studies that have used AI for important periop-
erative outcomes is summarized. 

Overview of AI techniques 

Modeling algorithms 

Machine learning, which can learn patterns from data, is the most widely used AI algo-
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rithm in perioperative medicine [11]. Machine learning algo-
rithms are typically classified into three categories: supervised, 
unsupervised, and reinforcement learning (Fig. 1).  

Supervised learning algorithms learn patterns from pairs of in-
put and output variables. Supervised learning algorithms are typi-
cally divided into classification and regression algorithms. Gradi-
ent boosting machine (GBM) and random forest (RF) are widely 
used supervised learning-based classification algorithms with ex-
cellent performance. GBM and RF use collections of decision 
trees whose results are summed and averaged to produce a single 

result. Gradient-boosted regression trees and RF regressors are re-
gression variants of GBM and RF. For survival analyses, they are 
called gradient-boosting survival trees and random survival for-
ests. Deep learning (DL) is another technique widely used in su-
pervised learning-based classification and regression algorithms 
that uses a network of mathematical models of a neuron (percep-
tron). A multilayer perceptron (MLP) is the most basic DL model 
and consists of multiple fully connected layers of perceptrons. A 
convolutional neural network (CNN), which is frequently used in 
image analyses and biosignal processing, uses perceptrons that are 
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Fig. 1. Classification of machine learning algorithms. GBM: gradient boosting machine, RF: random forest, DL: deep learning, GBRT: gradient 
boosted regression tree, RFR: random forest regressor, GBST: gradient boosting survival tree, RSF: random survival forest, PPO: proximal policy 
optimization, A2C: advantage actor-critic algorithm.
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activated only by specific patterns of geographically adjacent neu-
rons in the previous layer. A recurrent neural network (RNN), 
which is frequently used in natural language processing and 
time-series data analyses, includes long short-term memory 
(LSTM) or gated recurrent units. RNNs include a recurrent loop 
for analyzing time-dependent sequences in a network. Recently, 
new structures of the DL model, including a self-attention layer, 
have emerged and have shown better performance than canonical 
RNN or CNN models [12–15]. 

Unsupervised learning algorithms can learn patterns from un-
labelled data. Because there are no labels to learn, unsupervised 
learning algorithms use the distributions or patterns of the sam-
ples in the training dataset. For example, the k-means clustering 
algorithm uses sample distributions to classify the data into a spe-
cific number of groups. An autoencoder is a DL model that uses 
the input data as the labels. However, as the autoencoder has a 
structural bottleneck, it can reduce the dimensions of the dataset. 
Autoencoders can be used to detect abnormalities in a sample and 
remove noise from the biosignal [16]. 

Reinforcement learning algorithms can learn the optimal policy 
from data. Because it is impossible to build a model to simulate 
the strategy, a model-free offline reinforcement learning algo-
rithm is used for most medical problems. Value-based algorithms, 
such as Q-learning, learn the value of each action in each status 
[17]. Conversely, policy-based algorithms, such as proximal poli-
cy optimization (PPO) and the advantage actor-critic (A2C), learn 
the optimal action in each status [18]. 

Hyperparameters 

The number of neurons in each layer of the MLP and the num-
ber of decision trees in the GBM are examples of hyperparame-
ters, whose values are used to control or tune the learning process 
of AI algorithms. Although AI models can automatically learn 
patterns from the input data, the range of these hyperparameters 
should be specified by humans. A grid search, which simply 
searches through grids in the search space, is the traditional meth-
od for determining the best hyperparameter. Random search [19] 
and Bayesian optimization [20] can be used to achieve better re-
sults in a limited number of searches. 

Outcome variables 

Clinical outcomes are the most common output variables of AI 
models in the medical field. They are selected based on clinical 
requirements. The label should be determined by expert consen-
sus, because the performance of the supervised learning model 

depends on the quality of the labeling, and several decisions must 
be made even for studies with simple outcomes. For example, for 
a study of in-hospital mortality within 30 postoperative days, re-
searchers must decide whether the date is based on the beginning 
or end of the surgery and whether the time of death is defined as 
the time of the declaration or certificate. Additionally, researchers 
must decide whether mortality should be treated as a binary or 
survival outcome, which includes the censoring time.  

Input variables 

All variables that can affect the outcome should be considered 
as input variables to improve the model performance. However, 
any variable that is affected by the outcome variable itself should 
be removed as an input variable since this could result in a causal-
ity problem, which decreases the external validity [21]. Examples 
include using the fraction of inspired oxygen to predict intraoper-
ative hypoxia or using postoperative pain to predict postoperative 
nausea and vomiting.  

Reducing the number of input variables by removing irrelevant 
variables can improve the performance, robustness, and interpret-
ability of the model while reducing the learning time [22]. Several 
techniques have been suggested for optimal feature selection, such 
as recursive feature estimation or the Boruta algorithm [23]. 

In linear regression, multicollinearity between the input vari-
ables can cause algorithm instability and distortion of parameter 
estimates. However, most AI algorithms can converge even with 
correlated input variables. Nevertheless, removing collinear vari-
ables can help improve performance by reducing the number of 
input variables. Additionally, the multicollinearity of the input 
variables can have a significant impact on feature importance in 
explainable AI algorithms [24]. Therefore, if the effect of a specific 
input variable on the outcome is the opposite of what is expected, 
it may be the result of multicollinearity. 

Study population 

As with the outcome variable, the study population selected has 
a significant influence on the performance of the AI model. Hav-
ing clear and appropriate inclusion and exclusion criteria is essen-
tial to determine the scope of the model. Because the AI model 
learns the pattern of the training dataset, it is critical to create a 
training set with as many clinical scenarios as possible. Therefore, 
multicenter and multinational data are preferable, particularly for 
AI studies. 

The test dataset should be used only to evaluate the perfor-
mance of the final model. It is imperative to confirm that patients 
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in the training dataset are excluded from the test dataset. For ex-
ample, if a patient undergoes surgery twice, the test dataset ran-
domized to surgery may contain the same patient’s data in the 
training dataset. 

Performance metrics 

Accuracy is an inappropriate metric to use when evaluating the 
performance of a model on an imbalanced dataset, where the fre-
quency of events is significantly lower than that of nonevents. For 
example, if the event frequency of the test dataset is 1%, even the 
all-negative predictor has an accuracy of 99%. This problem is 
important when dealing with rare complications, such as postop-
erative mortality or organ failure. The F1-score, which is the har-
monic average of the precision and recall, or the balanced accura-
cy, which is the arithmetic mean of the recall for each class, might 
be better indicators in this case. 

If the label is a binary variable and the output of the model is 
the risk of an event expressed as a continuous variable, the area 
under the receiver operating characteristic (AUROC) curve can 
be used as a performance metric. However, in severely imbal-
anced data, the AUROC easily becomes a high value; therefore, 
the area under the precision-recall curve (AUPRC) may be a bet-
ter choice. Survival analysis performance is usually evaluated us-
ing the Harrell’s concordance index (C-index). 

In the reinforcement learning model, performance is evaluated 
by comparing the expected reward between the AI-suggested pol-
icy and the clinician’s policy by replaying the clinically-defined 
trajectory.  

AI models for perioperative risk stratification  

Accurate perioperative risk stratification is important for facili-
tating shared decision-making and the allocation of medical re-
sources. Several preoperative risk scores have been developed and 
used in clinical practice, including the American Society of Anes-
thesiologists Physical Status (ASA-PS) classification [11], Ameri-
can College of Surgeons National Surgical Quality Improvement 
Program (ACS-NSQIP) surgical risk calculator [25], surgical Ap-
gar score [26], and Risk Stratification Index [27]. 

However, recent studies have shown that AI models for periop-
erative risk stratification have excellent performance (Table 1) in 
evaluating the risk of postoperative complications. 

Prediction of mortality risk 

Since its proposal in 1963, the ASA-PS classification for preop-

erative risk assessment has been used for most surgical patients. 
However, the limitations of the ASA-PS classification include the 
subjective nature of the clinicians’ evaluations and high inter-rater 
variability [28]. 

Lee et al. [29] developed a DL model to predict postoperative 
in-hospital mortality using features extracted at the end of surgery 
from the data of 59,985 patients. This model used 45 intraopera-
tive features and the ASA-PS classification to achieve an AUROC 
of 0.91, which is comparable to that with existing methods, such 
as logistic regression (LR). 

Hill et al. [30] developed a fully automated score to predict 
postoperative in-hospital mortality using RF from the EHRs of 
53,097 surgical patients. This model consisted of 58 preoperative 
variables that were automatically obtained from the EHR. The 
AUROC of the model (0.93) was larger than that of the existing 
risk scores (the ASA-PS, PreOperative Score to predict PostOper-
ative Mortality [POSPOM], and Charlson Comorbidity Index 
scores). 

Fritz et al. [31] constructed a CNN model to predict postopera-
tive 30-day mortality from the data of 95,907 patients who under-
went surgery under general anesthesia with tracheal intubation. 
The model consisted of 54 preoperative parameters, including pa-
tient characteristics, comorbidities, laboratory values, and 28 in-
traoperative variables. Its performance was compared with that of 
other algorithms, such as DL, RF, support vector machine (SVM), 
and LR. According to the results of the study, the CNN model had 
the best performance when using time-series data. 

Chiew et al. [32] tested various machine learning algorithms to 
predict postoperative 30-day mortality and intensive care unit 
(ICU) stay >  24 h using data from 90,785 patients who under-
went non-cardiac and non-neurological surgeries. GBM outper-
formed all other machine learning algorithms, with an AUPRC of 
0.23. 

Bertsimas et al. [33] developed a surgical risk calculator to pre-
dict postoperative 30-day mortality and 18 postoperative compli-
cations using optical classification trees from the data of 382,960 
emergency surgery patients in the ACS-NSQIP database. The 
AUROC of the model for mortality was 0.92. The predictive per-
formance of this calculator was tested in other populations, such 
as patients aged >  65 years [34] and patients undergoing emer-
gency general surgery and laparotomy [35], and its performance 
in predicting mortality remained stable. 

Lee et al. [36] developed an interpretable neural network to 
predict postoperative in-hospital mortality from the data of 
59,985 surgical patients using generalized additive models 
(GAMs) with neural networks. The model had an AUROC of 
0.92. To improve the interpretability and transparency of the pre-

205https://doi.org/10.4097/kja.22157

Korean J Anesthesiol 2022;75(3):202-215



Table 1. AI-based Perioperative Risk Stratification Models

Author Year Outcome variable AUC Population
Wu [60] 2016 Postoperative nausea and vomiting 0.93 Single center
Lee [29] 2018 Postoperative in-hospital mortality 0.91 Single center
Lee [52] 2018 AKI after cardiac surgery 0.78 Single center
Lee [53] 2018 AKI after liver transplantation 0.86 Single center
Bertsimas [33] 2018 Postoperative 30-day mortality & morbidity (POTTER) 0.84–0.92 Multi-center
Chen [59] 2018 Postoperative bleeding 0.82 Single center
Fritz [31] 2019 Postoperative 30-day mortality 0.87 Single center
Bihorac [42] 2019 Mortality; AKI; sepsis; VTE; ICU >  48 h; MV >  48 h; & wound, neurologic,  

cardiovascular complication (MySurgeryRisk)
0.77–0.94 Single center

Lei [55] 2019 AKI after major non-cardiac surgery 0.82 Single center
Hill [30] 2019 Postoperative in-hospital mortality 0.93 Single center
Adhikari [54] 2019 Postoperative AKI 0.86 Single center
Bolourani [48] 2020 Postoperative respiratory failure NA Multi-center
Tseng [56] 2020 AKI after cardiac surgery 0.78–0.84 Single center
Rank [10] 2020 AKI after cardiothoracic surgery 0.89 Single center
Hofer [57] 2020 Postoperative mortality, AKI, and reintubation 0.79–0.91 Single center
Mathis [43] 2020 Postoperative heart failure 0.87 Single center
Chiew [32] 2020 Postoperative 30-day mortality & ICU admission 0.96 Single center
Chen [49] 2021 Pneumonia after liver transplantation 0.73 Single center
Xue [58] 2021 Postoperative pneumonia, AKI, DVT, PE, delirium 0.76–0.91 Single center
Lee [36] 2021 Postoperative in-hospital mortality 0.92 Single center
All of these studies are retrospective. AUC: area under curve, AKI: acute kidney injury, POTTER: machine-learning-based Predictive OpTimal 
Trees in Emergency Surgery Risk, VTE: venous thromboembolism, ICU: intensive care unit, MV: mechanical ventilation, DVT: deep vein 
thrombosis, PE: pulmonary embolism, NA: not applicable.

diction model, feature contributions were visualized, enabling cli-
nicians to better understand the model’s prediction process.  

Prediction of cardiac risk  

The most widely used classical model in this field is the Revised 
Cardiac Risk Index (RCRI), which has been incorporated into the 
guidelines of the American College of Cardiology/American 
Heart Association and European Society of Cardiology/European 
Society of Anesthesiology [37–39]. The RCRI, which was report-
ed in 1999 by Lee et al. [37], consists of six variables: high-risk 
surgery, history of congestive heart failure, history of ischemic 
heart disease, history of cerebrovascular disease, preoperative se-
rum creatinine >  2.0 mg/dl, and preoperative insulin treatment. 
However, a recent large-scale retrospective validation study using 
the Danish National Patient Registry revealed that the estimated 
odds ratio for each variable in the RCRI varies between 1.45 for 
serum creatinine and 10.02 for a history of cerebrovascular dis-
ease [40]. Additionally, in a systematic review of 24 studies 
(792,740 patients), the RCRI showed only modest performance 
(AUROC =  0.75) [41]. 

Bihorac et al. [42] developed a machine learning model called 

MySurgeryRisk for predicting eight major postoperative compli-
cations: mortality; acute kidney injury (AKI); sepsis; venous 
thromboembolism; ICU stay >  48 h; mechanical ventilation >  48 
h; and wound, neurologic, and cardiovascular complications us-
ing the GAM. The model had an AUROC of 0.85 for predicting 
cardiovascular complications. 

Mathis et al. [43] developed a GBM model to predict heart fail-
ure after non-cardiac surgery. Using 499 preoperative and 263 in-
traoperative data points from 67,697 patients, the AUROC of the 
model was 0.87. 

Prediction of pulmonary risk 

Postoperative pulmonary complications frequently develop af-
ter major surgery, and even a mild form of these complications is 
associated with a prolonged hospital stay and an increased mor-
tality rate [44,45]. The most commonly used classical model in 
this field is the Assess Respiratory Risk in Surgical Patients in Cat-
alonia (ARISCAT) score. Canet et al. [46] developed the ARI-
SCAT score to predict postoperative pulmonary complications in 
surgical patients using LR, which is the only risk score that main-
tains discriminatory power for external validation [47]. In a pro-
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spective validation study involving 5,859 patients, the ARISCAT 
score achieved an AUROC of 0.80 [47]. 

Additionally, Bolourani et al. [48] developed a machine learn-
ing model to predict postoperative respiratory failure in 4,062 pa-
tients who underwent pulmonary lobectomy. Although the sensi-
tivity and specificity were 83.3% and 94.5%, respectively, the AU-
ROC was not provided. 

Chen et al. [49] investigated various machine-learning algo-
rithms, including LR, SVM, RF, adaptive boosting, and GBM, to 
predict pneumonia after orthotopic liver transplantation in 786 
patients. Fourteen features, which included laboratory and clinical 
variables, were associated with postoperative pneumonia in this 
study. 

Prediction of AKI 

AKI is associated with increased morbidity, length of hospital 
stay, and mortality [50]. Although there are various criteria and 
time frames for diagnosing AKI, a recent consensus statement 
recommended that postoperative AKI be defined according to the 
Kidney Disease: Improving Global Outcomes (KDIGO) criteria, 
which defines it as an AKI that occurs within the first seven days 
after surgery [51]. 

Lee et al. [52] compared the performance of various ma-
chine-learning algorithms (e.g., decision tree, RF, GBM, SVM, 
and DL) for predicting postoperative AKI using LR in 2,010 pa-
tients undergoing cardiac surgery. GBM showed the highest AU-
ROC of 0.78 and the lowest error rate of 26%. This group also 
conducted another study using preoperative, intraoperative, and 
surgery-related variables to test the performance of various algo-
rithms on AKI prediction using data from 2,911 patients under-
going liver transplantation. GBM also showed the best perfor-
mance, with an AUROC of 0.90 [53]. 

Adhikari et al. [54] developed a machine learning model con-
taining intraoperative time-series variables to predict postopera-
tive AKI in 2,911 surgical patients. Compared to the model using 
only preoperative variables, the model that included both preop-
erative variables and intraoperative time-series data showed better 
predictive performance, with an AUROC of 0.86. 

Lei et al. [55] investigated whether combining preoperative and 
intraoperative data could improve the prediction of postoperative 
AKI in 42,915 patients undergoing major noncardiac surgery. The 
GBM algorithm outperformed LR with elastic net selection and 
RF. The authors found that adding intraoperative data slightly im-
proved the predictive performance. 

Tseng et al. [56] used a machine learning model to predict post-
operative AKI in cardiac surgical patients using preoperative and 

intraoperative time-series hemodynamic variables. The combina-
tion of RF and GBM showed the highest AUROC (0.84). They 
used the SHapley Additive exPlanation method to explain how 
the model’s predictions were made, thus improving the interpret-
ability of the model. 

Rank et al. [10] used an RNN and 96 routinely collected vari-
ables to develop a DL model for the real-time prediction of post-
operative AKI (stage 2 or 3 based on the KDIGO criteria) in pa-
tients undergoing cardiothoracic surgery until discharge from the 
ICU or post-anesthesia care unit. They compared the predictive 
performance of the DL model with that of experienced clinicians 
and found that the DL model outperformed experienced clini-
cians. 

Prediction of other complications 

Hofer et al. [57] developed a DL model to predict multiple post-
operative complications, including AKI, reintubation, and mortal-
ity, using a single-input feature set available at the end of surgery. 
Its performance was compared with that of the ASA-PS classifica-
tion. The AUROCs of the models were 0.79, 0.88, 0.91, and 0.87 
for AKI, reintubation, mortality, and the composite outcome, re-
spectively. 

Xue et al. [58] tested five machine learning algorithms (LR, 
SVM, RF, GBM, and DL) to predict five postoperative complica-
tions (pneumonia, AKI, deep vein thrombosis, pulmonary embo-
lism, and delirium) using preoperative and intraoperative data. 
The best-performing model for each complication showed the 
following AUROCs: pneumonia (GBM), 0.91; AKI (GBM), 0.85; 
deep vein thrombosis (GBM), 0.88; pulmonary embolism (MLP), 
0.83; and delirium (GBM), 0.76.A model for predicting other 
postoperative complications was also developed. Chen et al. [59] 
developed an AI model using 299 perioperative variables to pre-
dict bleeding after colorectal surgery. The GBM model had an 
AUROC of 0.82, which was higher than that of the LR model 
(AUROC =  0.74). 

Wu et al. [60] developed an SVM model to predict postopera-
tive nausea in orthopedic surgery patients receiving patient-con-
trolled epidural analgesia. Their model showed an AUROC of 
0.93, which was higher than that of the LR model (AUROC =  
0.73). 

AI models for intraoperative event prediction and 
biosignal analysis 

Anesthesiologists play a pivotal role in monitoring and main-
taining hemodynamic stability during surgery, which can affect 
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postoperative clinical outcomes [61]. Several AI algorithms that 
can assist anesthesiologists in intraoperative management by cal-
culating secondary indices using real-time data have been pub-
lished (Table 2). These algorithms can help anesthesiologists im-
prove intraoperative management by predicting future events, 
such as intraoperative hypotension [62−65] or desaturation [8], 
and by processing biosignals [10,66].  

Prediction of intraoperative hypotension  

Kendale et al. [63] developed a machine learning model to pre-
dict post-induction hypotension, which was defined as a mean 
arterial pressure (MAP) <  55 mmHg within 10 min of anesthesia 
induction, in 13,323 surgical patients. GBM outperformed the 
other algorithms (e.g., LR, SVM, naive Bayes, k-nearest neighbor, 
linear discriminant analysis, RF, neural nets, and GBM). 

Kang et al. [62] investigated four machine learning techniques 
(LR, naive Bayes, RF, and artificial neural network) to predict 
post-induction hypotension, which was defined as a systolic blood 
pressure <  90 mmHg or MAP <  65 mmHg occurring between 
tracheal intubation and surgical incision. RF showed the highest 
AUROC. The patients’ lowest systolic blood pressure, lowest 
MAP, and mean SBP before tracheal intubation were the most im-
portant features in terms of prediction accuracy. 

Hatib et al. [67] developed a machine learning model to predict 
upcoming hypotensive events (MAP <  65 mmHg) using features 
from arterial pulse waveforms in 1,334 patients, and the Hypoten-
sion Prediction Index (HPI) was externally validated in 204 pa-
tients from a prospectively collected cohort. The AUROC of the 
prediction 5–15 min before a hypotensive event was 0.95–0.97. 
The HPI was tested in 255 patients undergoing major surgery, 
and it predicted hypotension 5–15 min before a hypotensive event 
with an AUROC of 0.879–0.926 [68]. 

Wijnberge et al. [69] conducted a single-center randomized 
controlled study of 68 patients undergoing elective non-cardiac 

surgery under general anesthesia to evaluate the effect of early 
prediction of hypotension using the HPI on the number of hypo-
tensive events. The primary outcome of the study was time-weighted 
average hypotension (MAP <  65 mmHg). Patients were random-
ly assigned to two groups: those who received standard care and 
those who received an early warning when their HPI value ex-
ceeded 85. In this study, the HPI-guided early warning system 
significantly reduced intraoperative hypotension. However, Ma-
heshwari et al. [70] failed to report the benefits of HPI-guided 
management during moderate- to high-risk non-cardiac surgery. 
In this study, the patients were randomly assigned to either the 
HPI-guided or HPI-unguided group. In the HPI-guided group, if 
the HPI exceeded 85, clinicians received electronic alerts and 
treatment algorithms, such as fluid administration, inotrope or 
vasopressor administration, or observation, which they could 
choose to follow or not. However, approximately half of the clini-
cians who received electronic alerts did not follow the recom-
mended treatment algorithm, indicating the need for a simpler 
treatment algorithm and lower alert threshold. 

Lee et al. [65] developed DL algorithms for real-time predic-
tions 5–15 min before the occurrence of a hypotensive event 
based on biosignals collected using routine invasive and noninva-
sive intraoperative monitoring of 3,301 patients from the VitalDB 
database [71]. Using an arterial pressure waveform, electrocardi-
ography, photoplethysmography, and capnography, the multi-
channel DL model predicted hypotensive events 15 min before 
the occurrence of an actual hypotensive event, with an AUROC of 
0.90. 

Prediction of intraoperative hypoxemia 

Lundberg et al. [8] developed an AI model to predict intraoper-
ative hypoxemia, which is defined as an oxygen saturation ≤  92% 
within 5 min. They extracted more than 20 preoperative and 45 
intraoperative features at 1-min intervals from the data of 53,126 

Table 2. AI-based Intraoperative Event Prediction Models

Author Year Outcome variable AUC Population Design
Lundberg [8] 2018 Intraoperative hypoxemia (Prescience) 0.83 Single center Retrospective
Kendale [63] 2018 Postinduction hypotension 0.74 Single center Retrospective
Hatib [67] 2018 Intraoperative hypotension (HPI) 0.95–0.97 Multi-center Retrospective
Solomon [64] 2020 Intraoperative bradycardia associated with hypotension 0.89 Single center Retrospective
Kang [62] 2020 Postinduction hypotension 0.84 Single center Retrospective
Wijnberge [69] 2020 HPI vs. conventional NA Single center RCT
Maheshwari [70] 2020 HPI vs. conventional NA Single center RCT
Lee [65] 2021 Intraoperative hypotension 0.90 Single center Retrospective
AUC: area under curve, HPI: hypotension prediction index, N/A: not applicable, RCT: randomized controlled trial.
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surgical patients on EHRs and trained the GBM model. The AI 
model had a significantly higher AUROC than the anesthesiolo-
gists (0.81 vs. 0.66).  

Model for the electroencephalography analysis  

Saadeh et al. [66] developed a machine learning model based 
on several features from electroencephalography (EEG) signals to 
estimate the depth of anesthesia, irrespective of age and type of 
anesthetic drugs. Their model showed an average accuracy of 92% 
for all stages of anesthesia. 

Park et al. [10] developed a DL model to perform real-time es-
timation of the depth of anesthesia. This model, which combined 
an EEG-based depth of anesthesia monitoring system with DL, 
had a stronger correlation with the minimum alveolar concentra-
tion than the bispectral index. 

Model for anesthetic titration 

Underdosing anesthetic agents can cause intraoperative aware-
ness during general anesthesia, whereas overdosing can cause 
complications, such as hypotension, delayed recovery, and deliri-
um after surgery. The target-controlled infusion (TCI) algorithm, 
developed by Shafer and Greg [72] in 1992, has been used to ti-
trate fast-acting anesthetics and opioids. However, because the 
TCI algorithm relies on population pharmacokinetic and phar-
macodynamic models that can have high inter-individual vari-
ability, control methods using EEG-based anesthesia depth moni-
tors, such as the bispectral index have been proposed [73]. 

However, AI models for achieving and maintaining an appro-
priate depth of anesthesia without complications can be devel-

oped. Reinforcement learning algorithms for propofol titration 
based on Q-learning and PPO-based algorithms have been re-
ported [74,75]. In a recent study, a deep reinforcement learning 
model using the A2C algorithm outperformed a proportional in-
tegral derivative controller [76]. 

AI models for patients in the ICU 

Several studies using AI techniques for ICU patient manage-
ment have been published (Table 3). These algorithms are aimed 
at predicting ward or ICU complications and helping clinicians 
respond early. The Medical Information Mart for Intensive Care 
(MIMIC) database, a single-center open dataset from the Beth Is-
rael Deaconess Medical Center (Boston, MA, USA) [77], and the 
eICU, a multicenter open dataset in the USA [78], are frequently 
used in studies in the field for model development and validation. 

Prediction of mortality in the ICU 

To stratify acutely ill patients and evaluate the effects of therapy, 
the Acute Physiology, Age, Chronic Health Evaluation (APACHE) 
II was developed in 1985, using 12 variables [79]. The APACHE 
III, a revised version of the APACHE II system using different 
variables, was developed from 17,440 patients in the ICU of 40 US 
hospitals [80]. The authors of the original study reported that the 
APACHE III predicted in-hospital mortality with an AUROC of 
0.90. However, in a multicenter prospective study involving 1,144 
patients, the AUROCs of the APACHE II and APACHE III were 
0.806 and 0.847, respectively [81]. 

Delahanty et al. [82] developed a risk-adjustment algorithm for 
in-hospital mortality in 237,173 patients in 131 ICUs across 53 

Table 3. AI-based Prediction Models for Intensive Care Unit Patients

Author Year Outcome variable AUC Population
Delahanty [82] 2018 ICU mortality (RIPD) 0.94 Multi-center
Rojas [84] 2018 ICU readmission 0.73 Multi-center
Mao [88] 2018 Sepsis in ICU (InSight) 0.92 Multi-center
Nemati [87] 2018 Sepsis in ICU (AISE) 0.83–0.85 Multi-center
Giannini [89] 2019 Sepsis in ICU 0.88 Multi-center
Scherpf [90] 2019 Sepsis in ICU 0.81 Single center
Kong [93] 2020 Mortality in patient with sepsis 0.83–0.85 Single center
Burdick [94] 2020 Severe sepsis and septic shock 0.83–0.93 Multi-center
He [91] 2020 Sepsis in ICU NA Multi-center
Hur [85] 2021 Delirium in ICU (PRIDE) 0.92 Multi-center
Goh [92] 2021 Sepsis in ICU (SERA) 0.94 Single center
All of these studies are retrospective. AUC: area under curve, ICU: intensive care unit, RIPD: risk of inpatient death, AISE: Artificial Intelligence 
Sepsis Expert, NA: not applicable, PRIDE: Prediction of Intensive Care Unit Delirium, SERA: sepsis early risk assessment.
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hospitals. This model, which used the GBM algorithm and had 17 
features, including clinical and administrative data, showed excel-
lent discrimination, with an AUROC of 0.94. 

Baker et al. [83] developed a continuous mortality risk predic-
tion model for ICU mortality using a hybrid neural network ap-
proach that combined a CNN and bidirectional LSTM. Using the 
MIMIC III database, the authors predicted in-hospital mortality 
within 3, 7, and 14 days using vital signs over a 24 h period. This 
model achieved the highest AUROC of 0.88.  

Prediction of ICU readmission  

Rojas et al. [84] developed a prediction model for ICU readmis-
sion using data from 24,885 patients, and validated the model’s 
performance using MIMIC data. Their GBM model showed an 
AUROC of 0.71, which was significantly better than the Stability 
and Workload Index for Transfer score (SWIFT; AUROC =  0.58) 
and the Modified Early Warning Score (MEWS; AUROC =  0.57). 

Prediction of delirium in the ICU 

Hur et al. [85] developed a model called the Prediction of In-
tensive Care Unit Delirium to predict the risk of delirium in pa-
tients in the ICU. This RF model used 59 variables extracted from 
37,543 patients and had an AUROC of 0.72. 

Jauk et al. [86] prospectively verified the performance of an RF-
based delirium prediction model over seven months in internal 
medicine patients. The retrospective performance of this model 
had an AUROC of 0.91, whereas the prospective validation per-
formance had an AUROC of 0.86. 

Prediction and management of sepsis in the ICU 

Several GBM-, SVN-, and DL-based prediction models for sep-
sis in ICU patients have been developed [87−92]. These models 
have been found to predict sepsis 3–12 h before onset, with an 
AUROC of 0.81–0.92. They showed better performance than con-
ventional scoring systems, such as the systemic inflammatory re-
sponse syndrome (SIRS), Sequential Organ Failure Assessment 
(SOFA), quick SOFA, and MEWS. Implementing these algorithms 
into EHR systems could help clinicians respond to high-risk pa-
tients early. 

Kong et al. [93] evaluated various machine-learning algorithms 
for predicting in-hospital mortality in 16,688 ICU patients with 
sepsis from the MIMIC III database. Among the tested algorithms 
(least absolute shrinkage and selection operator, RF, GBM, and 
traditional LR), GBM showed the highest AUROC of 0.845. 

Burdick et al. [94] created a machine learning prediction model 
using GBM for severe sepsis and septic shock 48 h before the on-
set of events from the data of 270,438 patients. The predictive 
performances had AUROCs of 0.83 and 0.75 for the internal test 
and external validation datasets, respectively. The model showed 
superior performance to previous prediction models, such as the 
SIRS, SOFA, and MEWS. 

Raghu et al. [95] developed a reinforcement learning model 
that suggests a policy for sepsis treatment using a Q-learning al-
gorithm. The model proposes the optimal volume of intravenous 
fluids and dosage of vasopressors that should be administered to 
improve the SOFA score and lactate concentrations. A retrospec-
tive validation of the model showed that their algorithm was ex-
pected to reduce mortality by up to 3.6%. 

Models for ventilator control 

Mechanical ventilation is one of the most common treatments 
in the ICU [96]. Although there is evidence that a lung-protective 
ventilatory strategy improves survival in patients with acute respi-
ratory distress syndrome (ARDS), the optimal ventilatory strategy 
for patients without ARDS remains unknown [97,98]. In a recent 
study of AI-based ventilator control algorithms, the Q-learn-
ing-based reinforcement learning model outperformed the clini-
cian’s policy in terms of rewards defined as in-hospital or 90-day 
mortality [9].   

Conclusion 

Although the above-described AI-based predictive models 
showed high predictive performance in various perioperative set-
tings, most of the results were obtained from single-center retro-
spective studies. Before applying AI models in clinical practice, 
additional external and prospective validation and randomized 
clinical trials are required. Reinforcement learning models may 
suggest optimal strategies to overcome inter-individual variability; 
however, their clinical utility must be verified. If the high perfor-
mance of AI algorithms is well maintained in future studies, they 
can be widely used in clinical practice as a powerful tool to help 
clinicians improve patient safety and outcomes.  
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