
Before we begin: systematic review and meta-analysis 

Before the introduction of network meta-analysis (NMA), understanding the concepts 
and processes of systematic review and meta-analysis is necessary. A meta-analysis, in-
cluding NMA, which is located higher in the hierarchy of evidence, should be preceded 
by and based on a systematic review [1]. 

In recent years, the publication of systematic reviews, meta-analyses, and network me-
ta-analyses has increased with an increase of frequent citation [2,3]. They have become 
essential for making clinical decisions and developing health policies, which require bal-
anced decisions regarding effectiveness, tasks, and resources [3]. A systematic review at-
tempts to collate and identify the best available empirical evidence [1]. The research 
question of a systematic review usually focuses on pre-specified question(s). The search 
process for the evidence is comprehensive because a systematic review aims to find all the 
eligible evidence related to the research questions; it is also reproducible. The methodolo-
gy for a systematic review is clear, explicit, systematic, and rigorously focused on mini-
mizing bias, thereby providing more reliable findings [4,5]. The objective, inclusion and 
exclusion criteria, search strategy, selection and evaluation of articles, extraction of infor-
mation, methods for data synthesis, and presentation should be determined before the 
commencement of the study. 

However, a meta-analysis, per se, refers to a statistical analysis which quantitatively in-
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Review Article Most diseases have more than two interventions or treatment methods, and the applica-
tion of network meta-analysis (NMA) studies to compare and evaluate the superiority of 
each intervention or treatment method is increasing. Understanding the concepts and 
processes of systematic reviews and meta-analyses is essential to understanding NMA. As 
with systematic reviews and meta-analyses, NMA involves specifying the topic, searching 
for and selecting all related studies, and extracting data from the selected studies. To evalu-
ate the effects of each treatment, NMA compares and analyzes three or more interventions 
or treatment methods using both direct and indirect evidence. There is a possibility of sev-
eral biases when performing NMA. Therefore, key assumptions like similarity, transitivity, 
and consistency should be satisfied when performing NMA. Among these key assump-
tions, consistency can be evaluated and quantified by statistical tests. This review aims to 
introduce the concepts of NMA, analysis methods, and interpretation and presentation of 
the results of NMA. It also briefly introduces the emerging issues in NMA, including 
methods for evaluation of consistency. 
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tegrates and summarizes the results from separate studies [6] and 
investigates the source of heterogeneity [7]. A meta-analysis uses 
the results from multiple studies, provides more precise effect es-
timates, and increases statistical power [8]. Therefore, generaliz-
ing the results from individual studies aside from providing 
pooled analysis, a meta-analysis has the advantage of qualitatively 
assessing risk factors, investigating rare exposures and diseases, 
and studying heterogeneity (i.e., identifying the reason for the dif-
ference or dispersion between studies). 

However, meta-analysis has received criticism for the following 
reasons: 1) a single number cannot summarize the entire research 
field, 2) discrepancies exist between meta-analyses and large ran-
domized controlled trials (RCTs) [9], 3) a possible file drawer 
problem (publication bias) [10], and 4) mixing different kinds of 
studies without considering their heterogeneity causes the ‘apples 
and oranges’ conundrum [11]. Therefore, the validation or assess-
ment of the quality within or between the included studies is im-
portant as it can deteriorate the validity of the meta-analysis [6]. 

Introduction to NMA 

More than two interventions or treatment methods generally 
exist for most diseases, and not all existing interventions or treat-
ment methods are directly compared. Furthermore, the continu-
ally developing interventions or treatment methods are generally 
compared with placebo or standard interventions or treatment 
methods. They are not always compared with interventions or 
treatments currently employed in clinical practice. 

Most clinicians, patients, and health policymakers want to be 
aware of the interventions or treatment methods that are superior 
based on all available evidence. However, organizing or perform-
ing a mega-RCT that compares all existing interventions or treat-
ment methods that analyzes their effects and harms is practically 
impossible. 

NMA, an extension of the traditional pairwise meta-analysis, 
synthesizes, compares, and analyzes three or more interventions 
and treatment methods using both direct and indirect evidence to 
evaluate the effects or harms of each treatment. The NMA in-
cludes multiple groups and is also called ‘multiple-treatment me-
ta-analysis’. Moreover, NMA includes both direct and indirect 
comparisons and is also called ‘mixed-treatment comparison’. 

Therefore, the NMA aims to collect all the RCTs performed 
and to compare the effects and harms of all interventions or treat-
ment methods. The advantages of NMA are that (1) it provides 
useful evidence via indirect comparison even if no previous study 
has directly compared the effect and harm of the interventions or 
treatment methods; (2) because NMA uses information from 

both direct and indirect evidence, it increases the precision of es-
timate or power compared to that when using direct evidence 
alone; and (3) it ranks the relative effects and harm of all interven-
tions and treatment methods. 

Direct comparison refers to comparison of two or more inter-
ventions or treatment methods within a study, whereas indirect 
comparison refers to comparisons of interventions or treatment 
methods made through one or more common comparators [12]. 

In Fig. 1A, the solid blue and dotted red lines indicate direct 
and indirect comparisons, respectively. TA, TB, TC and TD are used 
as abbreviated version of treatment A, B, C and D in the following 
manuscript and figures. In this figure, TA serves as an anchor that 
indirectly compares TB and TC or TB, TC, and TD. TA (anchor) is 
also called a common comparator. TB and TC or TC and TD are in-
directly compared using anchor A. This type of comparison is 
called an ‘anchored indirect treatment comparison.’ When the 
shape formed by direct comparisons is incomplete, it is also called 
an ‘open triangle.’ 

A mixed-treatment comparison (Fig. 1B) exists when both di-
rect and indirect comparisons between TB and TC and through 
anchor A (not shown in the figure) are noted. When the shape 
formed by direct comparison is complete, it is also called a ‘closed 
loop’. Open triangles and closed loops together, as shown in Figs. 
1A and 1B, are called NMA. Mixed-treatment comparison can be 
explained as a generalized concept of the synthesis and summary 
of the effects of direct and indirect comparisons. 

The sample NMA presented in Table 1 includes seven studies. 
Studies 1, 2, and 7 directly compared TA and TB; studies 5 and 6 
directly compared TA and TC; and studies 3, 4, and 7 directly com-
pared TB and TC. In addition to information from the direct com-
parison of TA and TB, information from the indirect comparison 
can also be used to compare the two treatments. TA and TB can be 
indirectly compared using TC as a common comparator in studies 
3, 4, 5, and 6. As TC has also been investigated in study 7, TA and 
TB can also be indirectly compared via the common comparator 
TC in this study.  

Two studies compared TA versus TB and TA versus TC (Fig. 2A). 
The red rectangle represents the difference between the treatment 
effects of TA and TB (TAB =  TB − TA), and the sky blue rectangle 
represents the difference between the treatment effects of TA and 
Tc (TAC =  TC – TA). The difference between the treatment effects 
of TB and TC (TBC) may be obtained by subtracting the treatment 
effect of B from that of C (TBC =  TC – TB). However, it may lead to 
bias when the treatment effect of TA in study AB (a study that 
compared TA and TB is named study AB) may be different from 
that in study AC. Therefore, the possibility of baseline differences 
between studies regarding the treatment effect of A as a common 
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comparator should be considered (Fig. 2A). 
Critical views exist on indirect comparisons performed in 

NMA. First, although indirect comparisons assume randomiza-
tion, it is not randomized evidence. All interventions or treatment 
methods compared are not randomized across the studies. Statis-
tically, the indirect comparison is a specific type of meta-regres-
sion, and meta-regression only provides observational evidence. 
Second, constant critical voices have existed on whether indirect 
comparisons show better evidence compared with direct compar-
isons and whether NMA can be performed only by indirect com-
parison when no direct comparison is present [13]. 

Steps of NMA 

Attempt to include all relevant RCTs 

The first step in conducting an NMA is same as that in a con-

ventional meta-analysis. The author should define the research 
question based on population, intervention, comparison, and out-
come (PICO), eligibility criteria, search strategies, processes for 
study selection, data extraction, and quality assessment of studies. 
Studies that include a common comparator are important when 
defining the eligibility criteria. 

Explore network geometry 

In a scenario with studies comparing TA and TB (study AB) and 
TC and TD (study CD) (Fig. 2B), when no connection between the 
treatments is noted, the relative treatment effect between TAB (dif-
ference in the treatment effect of TA and TB) and TCD (difference in 
the treatment effect of TC and TD) cannot be assumed. However, 
with a study comparing TA and TC (study AC), TBC (difference in 
the treatment effect of TB and TC) can be assumed through the 
common comparator TA (Fig. 2C). Moreover, TAD (difference in 
the treatment effect of TA and TD) can be assumed through the 
common comparator TC (Fig. 2C). 

To allow comparisons of treatment effects across all interven-
tions and treatment methods, all included studies must be con-
nected in the network, which means that any two treatments can 
be compared either directly or indirectly through a common 
comparator. The network plots allow visual inspection of the di-
rect and indirect evidence (Supplementary Figs. 1A and 1B). 

Open triangle Closed loop

Anchored indirect treatment comparison Mixed treatment comparison

Network meta-analysis

BA

Fig. 1. Direct and indirect comparisons in network meta-analysis. (A) Direct (TA versus TB, TA versus TC, and TA versus TD) and indirect (TB versus 
TC and TC versus TD) comparisons anchored by TA. Anchored indirect treatment comparison is called an open triangle. (B) Direct comparisons are 
called a closed loop.

Table 1. The Example of Studies Comparing Each Treatment

Studies comparing treatments A vs. B B vs. C A vs. C
1 A B ○

2 A B ○

3 B C ○

4 B C ○

5 A C ○

6 A C ○

7 A B C ○ ○ ○

A A

B BC C

D DA

B C

A

B C
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Assess key assumptions 

NMA only provides observational evidence, as in a convention-
al meta-analysis, and the risk of confounding bias exists. To lower 
the risk of confounding bias, key NMA assumptions must be as-
sessed. Moreover, the key assumptions, including similarity, tran-
sitivity, and inconsistency, are explained separately in the follow-
ing section.  

Performance of analyses and NMA  

Free software, such as WinBUGS [14], R [15–17], Python, 
OpenBUGS [18], and ADDIS, or commercially available software, 
such as Stata [19], SAS, and Excel (NetMetaXL) [20], can be used 
to perform NMA statistics. Statistical approaches for NMA are di-
vided into frequentist and Bayesian frameworks [12]. Frequentist 
NMA can be performed using R (nemeta package [21]) and Stata 
software [19], and Bayesian NMA can be performed using R 
(gemtc [16], pcnemeta [17], and BUGSnet package [15]) and 
WinBUGS software. 

The frequentist framework NMA using Stata can be performed 
using the methods of White IR [19]. 

Key assumption in network meta-analysis 

To perform NMA using data from several studies, the following 
three assumptions must be satisfied [22]: similarity or homogene-

ity assumption generally applies to direct comparisons, transitivity 
assumption applies to indirect comparisons, and consistency as-
sumption applies to mixed comparisons (direct and indirect com-
parisons). 

Similarity and homogeneity for direct comparisons 

According to the concept of similarity or homogeneity, ‘com-
bining studies should only be considered if they are clinically and 
methodologically similar.’ Similarity or homogeneity is observed 
when the true treatment effects of two interventions or treatment 
methods are similar in direct comparisons, and heterogeneity ap-
pears when the true treatment effect varies. Similarity should be 
shown in PICO; for example, the similarity assumption may be 
violated if the administration methods for a similar drug are dif-
ferent (for example, injection and oral pill). The similarity is eval-
uated qualitatively; therefore, testing for the statistical hypothesis 
is not done. Similarity or homogeneity of the methodology em-
ployed in the included studies should also be observed. 

Transitivity for indirect comparisons 

Transitivity is the validity for logical reasoning, which means 
that the difference TAB and TAC, can be used to calculate the TBC, 
an indirect comparison. If the treatment effect of A is similar be-
tween the direct comparison of TAB and TAC, the common com-
parator A can be used from TAB and TAC, which is ‘transitive’ from 
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Fig. 2. The examples to calculate treatment effects between studies. 
(A) TBC (difference of treatment effect between TB and TC) can be 
calculated as TC−TB. However, an error can occur when a difference 
in the treatment effect of A exists. (B) No connection between the 
treatments exists. TAB and TCD cannot be assumed. (C) TBC can be 
assumed using the common comparator TA in study AB (a study that 
compares TA and TB) and study AC (a study that compares TA and TC), 
and TAD can be assumed using the common comparator TC.
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treatments B through A to C. 
Transitivity is a conceptual definition and an assumption that 

cannot be calculated. However, its validity can be evaluated in 
terms of the clinical, epidemiological, and methodological as-
pects. If intransitivity is suspected, the existence of an effect modi-
fier should be thoroughly examined. 

The distribution of patient and study characteristics, which are 
effect modifiers, must be sufficiently similar between studies AB 
and AC to generalize TAB to TAC. If an imbalance in the distribu-
tion of effect modifiers exists between the studies, incorrect esti-
mates may be obtained. Fig. 3 shows that the assumption of tran-
sitivity is violated when effect modifier D (between TA and TB) is 
not similar to effect modifier E (between TA and TC). 

For example, if study AB included 30 male and 30 female pa-
tients and study AC included 20 male and 20 female patients, 
combining both would satisfy the transitivity assumption because 
the gender distribution is same in both studies. The assumption of 
transitivity is violated if an imbalance exists between studies AB 
and AC. However, if an imbalance exists between studies AB and 
AC, the transitivity assumption is assumed to be satisfied if the 
gender distribution does not affect the outcome (i.e., gender is not 
an effect modifier). 

All treatments included in NMA should be ‘jointly randomiz-
able’, which means that a trial including all treatments would be 
clinically reasonable. It is assumed that the investigators have in-
cluded RCTs. Comparisons within an RCT are compared between 
the randomized groups, while those between RCTs are not ran-
domized. However, comparisons between RCTs are not random-
ized. Therefore, the comparisons between RCTs should be as-
sumed to be ‘jointly randomizable’ to perform an NMA. Thus, it 
is essential to consider this when conducting an evidence net-
work. Transitivity may be violated if the intervention or treatment 
method has a different target patient group or indication between 
studies. For example, when TA is the primary treatment and TB 
and TC are both primary and secondary treatments, patients in 
study BC cannot be assumed to be randomly assigned to study 
AC. 

Consistency for mixed comparisons 

Consistency, the agreement between direct and indirect evi-
dence for a given pair of intervention and treatment methods, is 
an objective assessment of transitivity during data manifestation. 
The consistency assumption is satisfied when the magnitude of 
the effect through direct and indirect comparisons is consistent. 
The consistency assumption is a statistical confirmation of transi-
tivity, which can be evaluated by determining if the effect size is 

similar through direct and indirect comparisons. Moreover, con-
sistency can be evaluated not in an open triangle but in a closed 
loop because only some comparisons are indirect in an open tri-
angle. 

Consistency is also called coherence or transitivity across loops. 
The four causes of inconsistencies are (1) chance, (2) genuine di-
versity, (3) bias in direct comparison, and (4) bias in indirect com-
parison [5]. 

Unlike similarity and transitivity, which are evaluated qualita-
tively, consistency is evaluated using a statistical method. Several 
statistical methods have been suggested to check the assumptions 
regarding consistency. Of these, six methods that are commonly 
used to assess NMA inconsistency have been described. 

Cochran’s Q statistics 
Cochran’s Q statistic is a commonly used method for assessing 

heterogeneity within the NMA [23]. When performing Cochran’s 
Q statistic, the null hypothesis is that the treatment effectiveness 
in all studies is equal. An alternative hypothesis is that the treat-
ment effectiveness in these studies is different [24]. 

Cochran’s Q statistic can be calculated by summing the squared 
deviations of each study’s estimate from the overall meta-analytic 
estimate, weighting the contribution of each study. P values for 
Cochran’s Q statistic can be obtained using the χ2 distribution [24]. 

The overall Cochran’s Q statistic from the fixed-effect NMA 
can be used for both within- and between-design heterogeneities. 
However, it has lower power in detecting heterogeneity when the 
numbers of included studies or samples size are small. 

The quantity of heterogeneity, I2, is provided to measure the de-
gree of inconsistency. I2 can be calculated as I2 =  100% ×  (Q − 

Fig. 3. Transitivity-visualized diagram. Transitivity between studies AB 
and AC via TA as a common comparator. The assumption of transitivity 
is violated when the effect modifier D (between TA and TB) is not 
similar to effect modifier E (between TA and TC).

A

A
E C

D
B

375https://doi.org/10.4097/kja.21358

Korean J Anesthesiol 2021;74(5):371-382



df) / Q, where Q is Cochran’s heterogeneity statistic and df is the 
degree of freedom. A value of 0% indicates no heterogeneity, and 
larger values indicate increasing heterogeneity. 

Loop inconsistency (Supplementary Fig. 2) 
The Bucher method is a simple z-test developed to assess loop 

inconsistency in loops of three treatments with two-arm trials in a 
network [25]. The measurement of loop inconsistency is dis-
cussed below. The absolute value of the difference in the effect size 
between the direct and indirect comparisons between treatments 
is called the IF. 

For example, IF for treatment BC is as follows: 
  
IF =  |μBC − μBC| =  |μAB − μAB| =  |μAC − μAC|, Where 
μBC is the indirect treatment effect of BC,  
μBC is the direct treatment effect of BC, 
μAB is the indirect treatment effect of AB, 
�μAB is the indirect treatment effect of AB and the difference in 
treatment effect of interventions A and B. 
μAC is the indirect treatment effect of AC, and 
μBC is the indirect treatment effect of AC. 

The variance of IF, var(IF), was calculated by summing the vari-
ance of direct and indirect comparisons. 

var(IF) =  var(μBC) + var(μBC) 

The null hypothesis is that the effect sizes of the direct and indi-
rect comparisons are equal, and the alternative hypothesis is that 
the effect sizes of the direct and indirect comparisons are differ-
ent. 

A test for H0: IF =  0 
A test for H1: IF ≠ 0 

Z is calculated by dividing IF by the square root of var(IF), and 
the distribution of z follows a standard normal distribution. 

z =   	      ~N(0, 1) 

The 95% CI of IF was calculated by the summation or subtrac-
tion of the square root of var(IF). 95% CI IF± 1.96√var(IF) 

If the 95% CI does not contain 0, the consistency assumption is 
rejected. These steps were repeated for each independent loop in 
the network. 

This method has the advantages of simplicity, ease of applica-
tion, and intuitive for loops with large inconsistencies. However, 

evaluating the consistency of the entire network and discriminat-
ing a particular comparison with a problem within the loop when 
inconsistency appears in the loop is difficult. Furthermore, multi-
ple testing must be considered, which may be both cumbersome 
and time-consuming when this approach is applied to a large net-
work wherein each treatment loop is considered one at a time 
[26,27]. 

Inconsistency parameter approach 
One of the most popular models for evaluating NMA inconsis-

tency is the inconsistency parameter approach proposed by Lu 
and Ades (Bayesian hierarchical model) [28]. This model is a gen-
eralization of the Bucher method and relaxes the assumption re-
garding consistency by including an inconsistency parameter 
(ωABC) in each loop wherein inconsistency could occur. 

Consistency model 
μBC =  μAC − μAB 

Inconsistency model 
μBC =  μAC - μAB + ωABC 

where 
μBC is the treatment effect of BC, 
μAB is the treatment effect of AB,  
μAC is the treatment effect of AC, and  
ωABC is the inconsistency parameter.  

These additional inconsistency parameters can be fitted as fixed 
or random effects. Models with and without inconsistency param-
eters are then compared to assess whether a network is consistent 
and arbitrarily chosen. An inconsistency model can be obtained 
by omitting the consistency assumption. If it is assumed that the 
inconsistency parameter (ωABC) is 0 in the inconsistency model, it 
can be classified as a consistency model. The distribution of the 
inconsistent variable is ωj~N(0,σ2). 

Node-splitting (Supplementary Fig. 3) 
Node-splitting is a conceptual extension of the loop inconsis-

tencies. This method separates the evidence into direct and indi-
rect evidence from the entire network and assesses the discrepan-
cy between them, which is repeated for all treatment comparisons 
[29]. When all treatment nodes are split simultaneously, they can 
be considered equivalent to the inconsistent parameter approach-
es of Lu and Ades. 

Different methods to evaluate potential differences in the rela-
tive treatment effects estimated by direct and indirect compari-
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sons are grouped as local and global approaches [29]. The afore-
mentioned three approaches, including Cochran’s Q statistic, the 
loop inconsistency approach, and the inconsistency parameter, 
provide a global assessment of network inconsistency. The 
node-splitting method was first proposed as a local approach to 
identify the treatment comparisons that cause inconsistencies 
[29]. 

Net heat plot (Supplementary Fig. 4) 
Krahn et al. [30] proposed a net heat plot to identify inconsis-

tencies within the NMA. They introduced a design-by-treatment 
interaction approach that relaxes one treatment loop to calculate 
the remaining inconsistency across the network. The net heat plot 
is used to check both inconsistencies and contributions. It is a ma-
trix visualization that shows inconsistency as highlight hotspots 
[30] (Supplementary Fig. 2). 

Design-by-treatment interaction approach 
This method evaluates whether a network as a whole demon-

strates inconsistency by employing an extension of a multivariate 
meta-regression that allows for different treatment effects in stud-
ies with different designs (the ‘design-by-treatment interaction 
approach’) [31] (Supplementary Fig. 2). This method simultane-
ously considers both heterogeneity and the inconsistency between 
different studies. 

To exemplify the idea of the design-by-treatment interaction 
approach, consider a network of evidence constructed from an 
ABC three-arm trial and an ABCD four-arm trial. Both the ABC 
and ABCD trials are inherently consistent. However, these two 
studies are considered to have different designs, and design incon-
sistency reflects the possibility that they may provide different es-
timates for similar comparisons (AB, AC, and BC). In these multi-
arm trials, the Lu and Ades model [14] (loop inconsistency) is not 
suitable. 

If an inconsistency exists in the NMA, any errors in the data ex-
traction process are first checked, following which the presence of 
potential effect modifiers in the inconsistent loop are then 
checked. Alternatively, subgroup analysis and meta-regression 
could be helpful in analyzing the effect of potential effect modifi-
ers on the results. Sensitivity analysis can also be performed to ex-
clude specific studies in which inconsistencies are present. Some-
times, the cause of the inconsistency cannot be elucidated, and se-
rious inconsistency remains despite these step-by-step efforts. 
Thus, in such situations, it is inappropriate to synthesize data us-
ing NMA.  

Statistical methods in NMA 

Two approaches exist to conduct the NMA: the Bayesian and 
frequentist frameworks [21]. The frequentist framework regards 
the parameters that represent the characteristics of the population 
as fixed constants and infers them using the likelihood of the ob-
served data. The frequentist framework calculates the probability 
under the assumption that the observed data repeats infinitely. 
The results of the frequentist framework are given as a point esti-
mate (effect measures such as odds ratio, risk ratio, and mean dif-
ference) with a 95% CI. Therefore, the frequentist framework is 
unrelated to external information, and the probability that the re-
search hypothesis is true within the current data is already speci-
fied. The frequentist method can only help decide whether to ac-
cept or reject the hypothesis based on the significance level. 

The Bayesian framework expresses the degree of uncertainty 
using a probability model by applying the probability concept to 
the parameters. Moreover, the Bayesian methods rely not only on 
the probability distribution of all the model parameters given the 
observed data, but also on the prior beliefs from external informa-
tion about the values of the parameters. It calculates the posterior 
probability, which is presented as a point estimate with a 95% 
credibility interval and is performed using Markov Chain Monte 
Carlo (MCMC) simulations, allowing the reproduction of the 
model several times until convergence (Supplementary Fig. 5) 
[21]. Unlike the frequentist method, the Bayesian method has the 
advantage of a straightforward way of making predictions and the 
possibility of incorporating different sources of uncertainty with a 
more flexible statistical model. Therefore, it is free from the effects 
of the large-sample assumption. Moreover, it can be used in 
NMAs involving a small number of studies. This method could 
be more logical and persuasive than the frequentist method. 

Similar to the traditional pairwise meta-analysis, NMA can uti-
lize fixed- or random-effect approaches. The fixed-effect approach 
assumes that the effect size and difference between each estimate 
from the included studies is attributable only to the sampling er-
ror. A random-effects approach assumes that the observed differ-
ence in the effect size considers not only sampling error but also 
the variation of true effect size across studies, called heterogeneity. 
When this concept is extended to NMA, the effect size estimates 
vary across studies as well as comparisons (direct and indirect). 
Therefore, both models were tested for each network. 

Choosing a better NMA model that fits the included data is im-
portant when using the Bayesian approach. Convergence of mod-
els derived from MCMC simulations can be assessed using trace 
and density plots and the Gelman–Rubin–Brooks methods with a 
potential scale reduction factor of up to 1 (Supplementary Figs. 6 
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and 7). The deviance information criterion (DIC) for changes in 
heterogeneity and statistical methods can also be used for model 
fit. However, a low DIC is more suitable (Supplementary Fig. 8). 

Result presentation 

Network plot 

The network plot is a concise visual presentation of the evi-
dence. The network plot is composed of nodes and edges, wherein 
the nodes represent the interventions or treatment methods com-
pared, and the edges represent the available direct comparison be-
tween interventions or treatment methods. In some packages or 
programs, the size of the nodes is proportional to the number of 
patients, and the widths of the edges are proportional to the 
amount of data (for example, the number of studies directly com-
pared or 1/standard error of treatment effect2; Supplementary 
Figs. 1A and 1B). 

The network plot is sometimes used to check the transitivity as-
sumption using a weighted edge proportional to the effect modi-
fier (for example, baseline risk) or applying color by a possible ef-
fect modifier (for example, risk of bias).  

Contribution plot 

The contribution plot is a diagram presenting the contribution 
of each direct comparison to the estimation of the network sum-
mary effect. In the contribution plot, the size of each square is 
proportional to the weight that is attached to each direct compari-
son (horizontal axis) and the estimation of each network summa-
ry effect (vertical axis). The number represents the weight per-
centage (Supplementary Fig. 9).  

Net heat plot 

The net heat plot, an extension of the contribution plot, is a dia-
gram that checks both contribution and inconsistency. In the net 
heat plot, the size of each square has a similar meaning to that in 
the contribution plot. The net heat plot also presents a matrix vi-
sualization that shows inconsistency as highlight hotspots [31]. 
The color of the diagonal line indicates the contribution to design 
inconsistency, and the color outside the diagonal indicates the de-
gree of inconsistency between the direct and indirect rationale of 
the design (Supplementary Fig. 4). 

Predictive interval plot 

A predictive interval plot (Supplementary Fig. 10) is a forest 
plot of the estimated summary effects, along with their CIs and 
their corresponding predictive intervals. The predictive interval 
shows the range of values of future results in specified settings of 
the predictors [32]. If a new observation is added, the 95% confi-
dence will fall within this range. 

Credible interval plot 

The credible interval plot (Supplementary Fig. 11) is a forest 
plot of the estimated summary effects, along with their credible 
intervals. A credible interval is that in which an unobserved pa-
rameter value falls with a particular probability in Bayesian statis-
tics. 

League table 

The league table shows the relative effectiveness of possible 
pairs of interventions and their 95% CI (Supplementary Fig. 12). 
For example, the first cell in the upper left corner shows that 
propofol has a postoperative nausea (PON) incidence risk ratio of 
0.77 (0.02–23.96) compared with palonosetron. Further, propofol 
shows a PON incidence risk ratio of 0.14 (0.01–2.54) compared 
with dexamethasone. 

Rankogram and cumulative ranking curve 

The rankogram presents the probabilities of each intervention 
or treatment method to be ranked at a specific place (1, 2, 3, etc.), 
based on the results of the NMA (Supplementary Fig. 13). The 
cumulative ranking curve represents the cumulative probabilities 
to reach a corresponding rank (the sum of the probabilities from 
those ranked 1, 2, 3, and so on; Supplementary Fig. 14). Using a 
cumulative ranking curve, the treatments can be ranked accord-
ing to the surface under the cumulative ranking curves (SUCRA) 
by summing all cumulative probabilities in the cumulative rank-
ing curve for each intervention or treatment method. The SUCRA 
value represents the probability that a treatment is among the best 
options. The Y-axis of the SUCRA value indicates the certainty of 
effectiveness in the network. Therefore, the rank of an interven-
tion in the network is higher if the intervention has a larger SU-
CRA value (Supplementary Fig. 15).  

https://doi.org/10.4097/kja.21358378

Ahn and Kang · Concepts of network meta-analysis



Emerging issues of network meta-analysis  

Multicomponent intervention and treatment method 

In standard NMA, all existing intervention and treatment 
methods are considered different nodes. However, an alternative 
model that utilizes the information that some intervention and 
treatment methods are combinations of common components is 
called component network meta-analysis (CNMA) [33]. Let us 
consider a network of six treatments presented in Fig. 4 that in-
cludes three two-arm studies comparing treatments A with B + C, 
B with A + C, and A + B with C. If no subnetwork is connected to 
the others, the networks are illustrated in Fig. 4A, which shows 
disconnected networks. CNMA models allow ‘reconnecting’ a 
disconnected network if the treatment and intervention methods 
have common components. Fig. 4B shows that all studies have 
common components A, B, and C, and their contributions can be 
estimated using the CNMA model. CNMA has two models (ad-
ditive and interactive). The additive CNMA model assumes that a 
combination of A and B (A + B) has similar treatment effects with 
the sum of treatment effects A and B. The interactive CNMA 
model allows for the interaction between treatments A and B. 
These models can now be analyzed in a frequentist framework 
using the R package netmeta. 

Multiple outcome-borrowing information 

For multiple outcome settings, the standard NMA model can 
be extended by borrowing information across outcomes as well as 
across studies by modeling the within- and between-study cor-
relation structure. For the next stage, the additional assumption 
that intervention effects are exchangeable between outcomes is 
utilized to predict effect estimates for all outcomes. Moreover, 

multivariate meta-analysis has more areas of meta-analysis to 
compare treatments with two or more endpoints [34,35]. The 
multivariate approach has an advantage over the univariate ap-
proach because it accounts for the interrelationship between out-
come and borrowed strength across studies and across outcomes 
via the modeling of the correlation structure [36]. NMA is anoth-
er rapid methodological development area [37], and multiple out-
come settings extended by borrowing information have been pro-
posed to enhance NMA methodology [38,39]. 

Conclusion 

NMA is a meta-analysis that synthesizes, compares, and ana-
lyzes three or more intervention/treatment methods, including 
both direct and indirect evidence extracted from various studies. 
Moreover, NMA collects information from direct and indirect ev-
idence, which improves estimate precision. Furthermore, NMA 
can compare the relative effects and rank the effects of all inter-
ventions of treatments. Although indirect comparison assumes 
randomization, this does not mean that randomization has been 
performed. Therefore, assumptions of similarity, transitivity, and 
consistency must be satisfied for NMA; there are various strate-
gies to overcome this challenge, and an NMA should not be per-
formed unless these criteria are satisfied. 
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Supplementary Materials

Supplementary Fig. 1. Network plot. (A) The nodes indicate the type 
of intervention or treatment method, and edges indicate direct com-
parison between intervention or treatment method. The size of nodes 
is proportional to the number of patients included and the width of the 
edges is proportional to the amount of information available (1⁄stan-

B + C B + C

A AB B

C C

A + C A + CA + B A + B

Fig. 4. Network of six treatments that includes three two-arm studies 
comparing treatments A with B + C, B with A + C, and A + B with 
C. (A) A disconnected network of three two-arm studies with six 
treatments. (B) The component network meta-analysis (CNMA) 
model enables connections between the treatments having common 
components.

A B
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dard error of treatment effect2). This figure is produced using STATA 
software. (B) The nodes indicate the type of intervention or treatment 
method, and edges indicate direct comparison between intervention or 
treatment method. The size of nodes is proportional to the number of 
patients included and the width of the edges is proportional to the 
amount of information available (number of studies directly com-
pared). This figure is produced using R software (netmeta package).
Supplementary Fig. 2. Loop inconsistency. This plot evaluates the in-
consistency of the network using a design-by-treatment interaction 
model in multi-arm trials. Dot and black line indicate the mean and 
95% confidence interval of loop inconsistency. When 95% confidence 
interval includes “0”, the assumption of consistency is satisfied. Howev-
er, 95% confidence interval does not include “0”, the assumption of 
consistency is satisfied.
Supplementary Fig. 3. Node-splitting plot. The forest plot shows a dif-
ference between the direct and indirect evidence for each pairwise 
comparison after node-splitting. White circle and black line indicate 
the mean and 95% confidence interval of loop inconsistency. This 
method is a conceptual extension of loop inconsistency. Node-splitting 
methods separates the evidence into the direct and indirect evidence 
from entire network and assessing the discrepancy between them, and 
repeated for all treatment comparisons.
Supplementary Fig. 4. Net heat plot. The gray square indicates the de-
gree to which treatment located in the column contributes to the over-
all estimate of the row. The color of the diagonal line means the contri-
bution to the inconsistency of the design, and the color outside the di-
agonal means the degree of inconsistency between the direct/indirect 
rationale of the design.
Supplementary Fig. 5. Markov chain Monte Carlo (MCMC) flow 
chart. Markov chain Monte Carlo (MCMC) simulation and conver-
gence diagnosis. Flow char of network meta-analysis using the “gemtc” 
R package using the Bayesian method. MCMC, Markov chain Monte 
Carlo; DIC, deviance information criterion. The process is follows as 
below. After coding the data, setup the network. After setting the net-
work, select network model (fixed or random). To verify if the MCMC 
simulation converged well, you can check MCMC error, DIC (devi-
ance information criterion), trace plot, density plot and Gelman-Rubin 
statistics. Then, select the MCMC convergence optimal model. Incon-
sistency test, forest plot, treatment ranking, league table can be per-
formed.
Supplementary Fig. 6. Trace and density plot. A trace plot shows the 
values that the relevant parameter took during the runtime of the chain, 
and density plot is the histogram of the values in the trace-plot of the 
relevant parameter in the chain. The trace plot with no specific pattern 
and with entangled chains, the convergence can be considered to be 
good. The density plot with significant difference for the same number 
of simulation means the convergence is not good.

Supplementary Fig. 7. Gelman-Rubin-Brooks Plot. In Gelman-Ru-
bin-Brooks methods, as potential scale reduction factor (PSRF) ap-
proaches 1, and the variations must be stabilized as the number of sim-
ulations increases. When PSRF approached to 1, and stabilized, it 
means good convergence.
Supplementary Fig. 8. Bayesian Statistics. DIC (deviance information 
criterion). DIC = Dbar+pD. The deviance information criterion (DIC) 
is expressed as DIC = Dbar+pD, where Dbar is the sum of residual de-
viances and pD is an estimated value of the parameter. Thus, the DIC 
considers both the fitness and complexity of the model, and the smaller 
the DIC is, the better the model.
Supplementary Fig. 9. Contribution plot. The size of each square is 
proportional to the weight which is attached to each direct comparison 
(horizontal axis) to the estimation each network summary effect (ver-
tical axis). The number presents the weight as percentage.
Supplementary Fig. 10. Predictive interval plot. Forest plot of success 
rate of supraglottic airway devices. Prl: predictive intervals. Black line 
represents 95% confidence interval. Red line represents 95% predictive 
interval. I-gel versus FLMA shows significant result when presented by 
95% confidence interval. However, considering 95% predictive inter-
val, which shows the range of values of the future result, the result be-
come insignificant.
Supplementary Fig. 11. Credible interval plot. Forest plot showing 
credible interval. Crl: credible intervals. Black outline circle represents 
odds ratio, and black line represents 95% credible interval. Credible in-
terval is an interval within which an unobserved parameter value falls 
with a particular probability in Bayesian statistics.
Supplementary Fig. 12. League table. RR (95% CI) is calculated be-
tween both horizontal axis treatment and vertical axis treatment. Com-
parisons between treatments should be read from left to right, and the 
estimates in the cell in common between the vertical axis treatment 
and the horizontal axis treatment. Treatments are reported from left 
upper quadrant to right lower quadrant as per the cluster ranking for 
transition and acceptability. For transition, an RR less than 1 favors the 
row-defined treatment. For acceptability, an RR less than 1 favors the 
row-defined treatment. RR: relative ration; CI: confidence interval.
Supplementary Fig. 13. Rankogram. Profiles indicate the probabilities 
for treatments to assume any of the possible ranks. It is the probability 
that a given treatment ranks first, second, third, and so on, among all of 
the treatments evaluated in the NMA.
Supplementary Fig. 14. The cumulative ranking curves. The profile in-
dicates the sum of the probabilities from those ranked first, second, 
third, and so on. A higher cumulative ranking curve (surface of under 
cumulative ranking curve [SUCRA]) value is regarded as an improved 
result for an individual’s intervention. When ranking treatments, the 
closer the SUCRA value is to 100%, the higher the treatment ranking is 
relative to all other treatments.
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Supplementary Fig. 15. SUCRA-Mean Ranking. Each color represents 
a group of treatment that belong to the same cluster. Treatments repre-
sented in the right upper quadrant are more effective and acceptable 
compare to the left lower quadrant.
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