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Background: Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemother-
apy (HIPEC) are high-risk extensive abdominal surgery. During high-risk surgery, less in-
vasive methods for cardiac index (CI) measurement have been widely used in operating 
theater. We investigated the accuracy of CI derived from different methods (FroTrac, 
ProAQT, ClearSight, and arterial pressure waveform analysis [APWA], from PICCO) and 
compared them to transpulmonary thermodilution (TPTD) during CRS and HIPEC in 
the operative room and intensive care unit (ICU). 
Methods: Twenty-five patients scheduled for CRS-HIPEC were enrolled. During nine pre-
defined time-points, simultaneous hemodynamic measurements were performed in the 
operating room and ICU. Absolute and relative changes of CI were analyzed using a 
Bland-Altman plot, four-quadrant plot, and interchangeability. 
Results: The mean bias was −0.1 L/min/m2 for ClearSight, ProAQT, and APWA and was 
−0.2 L/min/m2 for FloTrac compared with TPTD. All devices had large limits of agree-
ment (LoA). The percentage of errors and interchangeabilities for ClearSight, FloTrac, 
ProAQT, and APWA were 50%, 50%, 54%, 36% and 36%, 47%, 40%, 72%, respectively. 
Trending capabilities expressed as concordance using clinically significant CI changes were 
−7° ± 39°, −19º ± 38°, −13° ± 41°, and −15° ± 39°. Interchangeability in trending showed 
low percentages of interchangeable and gray zone data pairs for all devices.
Conclusions: During CRS-HIPEC, ClearSight, FloTrac and ProAQT systems were not 
able to reliably measure CI compared to TPTD. Reproducibility of changes over time using 
concordance, angular bias, radial LoA, and interchangeability in trending of all devices 
was unsatisfactory.  

Keywords: Cardiac output; Comparative study; Hyperthermic intraperitoneal chemother-
apy; Laparotomy; Pulse wave analysis; Thermodilution.

Introduction 

Hemodynamic monitoring is an essential part of patient care in the operating room 
(OR) and in the intensive care unit (ICU). Many hemodynamic measuring devices are 
available, with each having their own limitations [1–3]. In recent years, the use of invasive 
hemodynamic measuring devices has declined, as they have been linked to complications 
and the benefit for the patients is unclear [4]. Instead, there has been an increased focus 
on development of less invasive hemodynamic monitoring devices. In the perioperative 
period [5,6] hemodynamic measurements are used to minimize perioperative-related 
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complications [7,8]. The use of these devices in critically ill pa-
tients is still a subject of debate [5,9]. Most new non-invasive de-
vices are validated under stable ICU conditions. However, clinical 
conditions vary considerably in most studies, with both reference 
technique and clinical setting influencing the results [10]. 

In patients undergoing high risk surgery, goal directed therapy 
(GDT) using specific hemodynamic goals improves patient out-
comes [11,12]. Cardiac index (CI) is often an element within the 
treatment algorithm and can be measured using many devices 
[3,8,12]. Cytoreductive surgery (CRS) and hyperthermic intraper-
itoneal chemotherapy (HIPEC) are high risk extensive abdominal 
surgery having a curative intent. After extensive resections which 
can even be multi-organ resections in some cases, intravenous 
chemotherapy is followed by intraabdominal perfusion of chemo-
therapy at 42–43°C. This procedure is known to cause extensive 
fluid shifts [13] and inflammation [14] with periods of hemody-
namic instability. Advanced hemodynamic monitoring is used to 
tailor hemodynamic therapy [13], but complications can occur 
[4]. We evaluated three different methods to measure CI with 
variable levels of invasiveness and compared them to transpulmo-
nary thermodilution (TPTD), which is the standard measuring 
device during this extensive surgical procedure. Two devices, the 
FloTrac, Edwards Lifesciences, CA, USA, and ProAQT system, 
Pulsion Medical Systems, Germany; Maquet Getinge Group, Swe-
den, use waveform analysis. The ClearSight system, EV1000 Clin-
ical Monitor Platform, Edwards Lifesciences, CA, USA, uses vol-
ume clamp method. All were tested during different stages of this 
operation. CI obtained using arterial pressure waveform analysis 
(APWA) by the PiCCOTM system (Pulsion Medical Systems, Ger-
many; Maquet Getinge Group, Sweden) was also compared to 
TPTD to analyze drift. The accuracy of CI measurements and the 
reproducibility of CI changes over time using these devices were 
compared to TPTD measurements. The goal of the study was to 
investigate if one of the less invasive devices could replace TPTD 
measurements in the OR or in the ICU, thereby increasing patient 
safety in the future. 

Materials and Methods 

Study design 

This prospective and observational clinical cohort study was 
approved by the Medical Ethics Review Board of Arnhem-Nijme-
gen, the Netherlands, under the Number 2015-1793 (Dr. M. J. J. 
Prick, 21-05-2015). This study was registered at www.trialregister.
nl, under a national trial registry number of NTR5249. The study 
was conducted between November 2015 and June 2017 at the 

Radboud University Medical Center, Nijmegen, The Netherlands 
according to the Declaration of Helsinki 2013 and following the 
ICH guidelines for Good Clinical Practice. After obtaining writ-
ten informed consent, 25 patients older than 18 years who were 
scheduled for a CRS-HIPEC procedure were included. The study 
was performed in the OR and ICU of a university teaching hospi-
tal, Radboud University Medical Center, the Netherlands.  

The exclusion criteria were patients with known valvular heart 
disease (severe tricuspid or aortic valve insufficiency), cardiac ar-
rhythmias, or severe peripheral vascular disease as well as those 
who did not give informed consent. This study did not modify 
the standard perioperative or intensive care provided during and 
after the CRS-HIPEC procedure.  

Anesthetic management 

Standard patient monitoring, including continuous electrocar-
diogram, oxygen saturation and non-invasive blood pressure 
monitoring, were applied to all patients. All patients were given 
general anesthesia, supplemented with a thoracic epidural analge-
sia at T8–T10. Postoperative analgesic regimen consisted of pa-
tient controlled analgesia using ropivacaine with sufentanil  
2 mg/1 μg/ml. Continues infusion varied according to analgesic 
effect between 8–10 ml/h. Patient bolus was set at 2 ml with 20 
minutes lock out time. The epidural could be used in the peri-op-
erative period, this was left to the discretion of the anesthesiolo-
gist. After orotracheal intubation mechanical ventilation with tid-
al volumes of 6–8 ml/kg was initiated. FiO2 and positive end-expi-
ratory pressure were adjusted to maintain a peripheral oxygen sat-
uration above 94%. Respiratory rate was adjusted to maintain 
PaCO2 between 35–40 mmHg. General anesthesia was main-
tained using isoflurane. Multimodal anesthesia/analgesia was ad-
ministered using S-ketamine (10 mg loading dose followed by 10 
mg/h), dexamethasone 8 mg intravenously, and magnesium chlo-
ride (30 mg/kg loading dose in 30 min followed by 500 mg/h) 
[15–17]. After induction of general anesthesia, ultrasound-guided 
insertion (Sonosite, X-porte, USA) of the PiCCO catheter in the 
right femoral artery (Pulsion, ref. PV2015L20-A) and a central 
venous catheter (Vygon multicath 3+, ref. 6209.251) in the right 
internal jugular vein were performed. One hour before the end of 
the CRS period, folic acid and systemic 5-fluorouracil were ad-
ministered to all patients receiving oxiplatin as abdominal perfu-
sion chemotherapy [9]. The data from the PiCCO system was 
used by the attending anesthesiologist to guide hemodynamic 
management. At the end of surgery, the patients remained intu-
bated and were transferred to the ICU. 

Body temperature was obtained from the thermistor in the 
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TPTD system. 

Brief description of techniques 

Transpulmonary thermodilution measurement by the PiCCO® 
system (Pulsion Medical Systems, Germany; Maquet Getinge Group, 
Sweden) 

TPTD measurements using the PiCCO system is an invasive 
technique that uses intermittent bolus injection of cold saline 
through a central line above the diaphragm and a femoral arterial 
catheter with a thermistor tip to measure the thermodilution 
curve. Measurements were performed using the IntelliVue MX800 
or IntelliVue MP70 monitor (Philips, The Netherlands, software 
version J.10.52). This method provides the following variables: CI, 
global end-diastolic volume, intra thoracic blood volume, extra-
vascular lung water, global ejection fraction and pulmonary vas-
cular permeability index [18]. Intermittent bolus measurements 
are averaged and with this mean CI, pulse contour analysis of the 
PiCCO system (APWA) is (re)calibrated. The method is compa-
rable with pulmonary artery catheter-derived measurements, 
which makes it a good reference technique when assessing new 
hemodynamic measuring devices [19]. 

Non-invasive ClearSight™ system 
The ClearSightTM system (EV1000 Clinical Monitor Platform, 

Edwards Lifesciences, software version 1.8, USA) is an auto-cali-
brated measurement device that measures finger arterial blood 
pressure waveform using the volume clamp method and is auto-
matically calibrated using the Physical method. The finger pres-
sure waveform is transformed into a reconstructed brachial blood 
pressure waveform. The exact algorithm is explained elsewhere 
[20]. In summary, after applying a (size-specific) cuff to the finger, 
the arterial blood pressure waveform is obtained by the pressure 
in the cuff. An infrared transmission plethysmograph is used to 
measure the finger artery's diameter, which is used to keep the 
blood volume in the finger artery at a constant level [21]. By using 
the proprietary CO-Trek algorithm for pulse contour analysis on 
these non-invasively obtained arterial blood pressure waveforms, 
continuous cardiac output measurements are estimated.  

FloTrac/Vigileo™ system (Edwards Lifesciences, USA) 
The FloTrac/VigileoTM system is an auto-calibrated system that 

has updated its algorithm over the last few years [9]. The fourth-gen-
eration algorithm (Version 4.00) was developed to improve the per-
formance of the system during rapid vascular tone changes. The 
system calculates Cardiac Output (CO) as follows: CO =  PR ×  
SD (blood pressure [bp]) ×  χ, where PR =  pulse rate, SD [bp] =  

standard deviation of the arterial pressure, and χ =  auto-calibra-
tion factor that is part of a proprietary algorithm and incorporates 
the assessment of vascular tone based on waveform morphology 
analysis and patient characteristics. Initially, χ was recalculated 
every minute. With the fourth-generation FloTrac algorithm, a 
new component called Kfast was developed, which is inversely 
proportional to pressure and is added to χ, with the new compo-
nent calculated every 20 seconds. Thus, CO =  PR ×  SD [bp] ×  
K4 ×  Kfast using the latest algorithm [22]. 

PulsioFlex-ProAQT® system (Pulsion Medical Systems, Ger-
many; Maquet Getinge Group, software V4.0.0.7 A, Sweden) The 
Professional Arterial FlowTrending device (ProAQT) uses au-
to-calibrated pulse contour analysis. A special sensor is connected 
to an existing arterial catheter to provide beat-to-beat CI monitor-
ing. The initial CI is automatically determined using patient char-
acteristics and waveform analysis sampling at 250 Hz [23]. The 
statistical approach for autocalibration is the result of an analysis 
of a comprehensive database. The value of CI results from both 
the previous autocalibration and the pulse contour analysis that 
has run afterward. Hereafter, continuous cardiac indices are esti-
mated using the known PiCCO algorithm. Calibrating with an 
externally-derived CI is possible at any time. 

Protocol 

Patient and surgical characteristics were recorded. Age, height, 
weight, and gender were entered in all monitors. All monitor de-
vices were set up according to the operational manual provided 
by the manufacturer. All pressure transducers, including the 
ClearSight Heart Reference Sensor, were zeroed to the level of the 
right atrium. The FloTrac and ProAQT system were both con-
nected to the already in situ PiCCO arterial catheter. All clocks 
were synchronized. Simultaneous CI measurements were per-
formed at nine predetermined time-points (T1–T9): 

T1 =  after induction of general anesthesia but before surgical 
incision 

T2 =  30 minutes after the start of CRS 
T3 =  30 minutes before the end of CRS (in consultation with 

the surgeon or halfway iv chemotherapy) 
T4 =  after CRS, before the start of the HIPEC procedure 
T5 =  halfway through HIPEC 
T6 =  after the end of chemotherapy perfusion 
T7 =  at the end of surgery but still in the OR 
T8 =  approximately 6 hours postoperatively in the ICU 
T9 =  approximately 12 hours postoperatively in the ICU 
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Each TPTD measurement was performed in sets of three to five 
bolus injections of 20 ml of iced isotonic saline through the cen-
tral venous catheter irrespective of the ventilator cycle. The mean 
value was recorded as TPTD CI. All individual bolus measure-
ments were stored and used for the analysis of the precision of the 
reference method. APWA was also compared to TPTD to analyze 
drift. All devices provide continuous CI measurements, so we si-
multaneously used three minutes at the start of each of TPTD 
measurements to calculate the mean CI of all devices at each 
time-point. The mean values of these three-minute time frames 
were recorded and stored for analysis. All measurements were 
performed by a dedicated research group. 

Statistical analysis and data storage 

Statistical analyses were performed using IBM SPSS Statistics 
for Windows (Version 25.0, IBM Corp.) and GraphPad Prism 
(Version 5.03, GraphPad Software Inc.), figures were produced by 
SPSS and Microsoft Excel (2007, Version 12.0.6776.5000 SP3, Mi-
crosoft Corp.), and data were collected using Microsoft Access 
(2007, Version 12.0.6735.5000 SP3, Microsoft Corp.). P <  0.05 
was considered statistically significant. Patient characteristics are 
presented as mean (SD) or median [range] where appropriate. 

Agreement and thus interchangeability of the test devices with 
TPTD was examined with Bland-Altman analysis corrected for 
repeated measurements [24,25] and according to previously pub-
lished statistical suggestions [26–28]. Agreement was calculated 
using mean CI, and presented as bias and limits of agreement 
(LoA) with 95% confidence intervals (95% CI). A percentage of 
error (PE) of less than 30% was considered clinically acceptable 
[24–28]. The precision of the less invasive hemodynamic devices 
was calculated as the repeatability coefficient (RC, %) using raw 
CI data collected in the three minutes. The precision of the TPTD 
measurement was calculated using the 3−5 individual measure-
ments per time-point [28]. Proportional error (i.e. error depen-
dent on the magnitude of the measurement) was assessed with 
linear regression analysis [24]. Systemic vascular resistance index 
(SVRI) was calculated from 

(SVRI =  mean arterial pressure-central venous pressure ×  80 dyne.s/cm5m2). 
Trending abilities were assessed using a four-quadrant plot [29,30] 
and a polar plot [26,30]. Trend interchangeability was assessed 
within these plots and expressed as a number (percentage) using 
the method suggested by Fisher et al. [31]. Trend interchangeabil-
ity was considered to be excellent (≥  95%), good (≥  90%) [32], 
poor (75%–90%), or not clinically relevant (<  75%) according to 
its value. Trending ability was good when angular bias was within 
±  5° and radial LoA was between ±  30°. To decrease statistical 

  

noise delta (∆), CI <  10% was excluded in the polar plot analysis 
[26]. The precision of all devices was calculated using 2 ×  coeffi-
cient of variation [33]. All selected data were secured in a Castor 
electronic clinical research form (Castor EDC, CIWIT B.V., www.
castoredc.com), and were independently reviewed for consistency, 
accuracy, and errors by an external auditor. 

Sample size calculation 

Sample size and posthoc power analyses were calculated ac-
cording to Zou [34]. The presumed bias was 0 L/min/m2, the ex-
pected mean CI 3 L/min/m2, and the expected PE 30% [33], re-
sulting in an expected LoA of 0.9 L/min/m2 (30% ×  3.00 L/min 
/m2). Considering a clinical acceptable LoA of 0.6 L/min/m2 with 
the desired power of 0.80, this resulted in 130 paired measure-
ments [35]. Anticipating the possible loss of measurements in pa-
tients who would be inoperable (20%), we included 25 patients, 
thus anticipating 225 paired measurements per test device. 

Power analysis 

Using the ICU measurements and an inoperable rate of 16%, 
we obtained 170 to 195 paired measurements per device instead 
of the required 130 for an expected power of 0.80. Using a LoA of 
1.6 L/min/m2 and bias of −0.1 L/min/m2, these additional mea-
surements increased the power to detect LoA of 0.6 L/min/m2 to 
1.00. The data would allow us to correctly reject the null hypothe-
sis with a power of 0.80 (or type 2 error rate of 0.20) when the ex-
pected LoA would be at least 1.2 L/min/m2.  

Results 

Twenty-five patients were included in the study, their character-
istics summarized in Table 1. Individual patient data are listed in 
Table 2. Four patients had extensive disease, thus disqualifying 
them for the actual HIPEC. They were extubated at the end of the 
procedure and not admitted to the ICU; only their existing data 
was included in the analysis. Monitor-derived data were analyzed 
with one-way analysis of variance, as differences in CI measured 
with the test devices were normally distributed according to the 
D'Agostino and Pearson test (P =  0.489, P =  0.204, P =  0.522 for 
ClearSight, FloTrac, and ProAQT CI). 

TPTD vs. ClearSight™ 

TPTD CI ranged from 1.7 to 7 L/min/m2 while ClearSight CI 
ranged from 1.5 to 7.8 L/min/m2. In total, 171 paired measure-
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ments were obtained for both devices. The mean bias was −0.1 
(95% CI: −0.3, 0.0) L/min/m2, LoA ±  1.6 (95% CI: 1.4, 1.8) L/
min/m2, and PE was 50% (95% CI: 44%, 57%). The interchange-
ability rate was 36%. 

Trending analysis showed 65% uninterpretable data pairs of 
measurements and 13% interchangeability. Considering the re-
peatability of each measurement, 32% of pairs were uninterpreta-
ble and 8% were interchangeable. Using only clinically significant 
CI values, the chance of concordance was 85%. Polar plot analysis 
showed a mean angular bias of −7° and a radial LoA of ±  39° 
(95% CI: 34, 43°). 

TPTD vs. FloTrac/Vigileo™ 

TPTD CI ranged from 1.7 to 7.2 L/min/m2, while FloTrac CI 
ranged from 1.6 to 5.6 L/min/m2. In total, 198 paired measure-
ments were obtained. The mean bias was −0.2 (95% CI: −0.3, 
−0.1) L/min/m2 with a LoA of ±  1.6 (95% CI: 1.4, 1.8) L/min/m2 
and a PE of 50% (95% CI: 45%, 58%). The interchangeability rate 
was 47%. 

Table 1. Patient Characteristics

Patient factor  
Age (yr) 60.5 ±  13.2
Height (cm) 173.2 ±  8.6
Weight (kg) 83.4 ±  15.7
Gender (M/F) 15/10
Body mass index (kg/m2) 27.8 ±  4.6
ASA PS (I/II) 2/23
Duration of surgery (min) 390 (310, 458)
  CRS phase (T1–T4) 235 (151, 310)
  HIPEC phase (T4–T6) 121 (72, 141)
  Post-HIPEC phase (T6–T7) 38 (20, 56)
Chemotherapeutic agent 
  Mitomycin 5
  Cisplatin 1
  Oxaliplatin 15
  None 4
Norepinephrine dose (µg) 2018 (772, 8932)
Fluid balance (L)
  Fluid administration 4.9 (1.9, 20.1)
  Measured fluid loss −2.0 (−15.4, −0.3)
  Fluid balance 2.5 (−0.1, 13.3)
Values are presented as mean ± SD, median (Q1, Q3), or number of 
patients. Four patients were considered inoperable and did not receive 
HIPEC treatment. Cumulative norepinephrine dose and fluid balance 
are taken into account from the start of surgery to T7. ASA PS: American 
Society of Anesthesiologists physical status, CRS: cytoreductive surgery, 
HIPEC: hyperthermic intraperitoneal chemotherapy.
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Trending analysis showed 68% uninterpretable data pairs and 
9% interchangeability. Considering the repeatability of each mea-
surement, 33% of pairs were uninterpretable and 7% were inter-
changeable. After the exclusion of clinically insignificant CI 
changes, concordance was found to be 76%. Polar plot analysis 
showed a mean angular bias of -19° and a radial LoA of ±  38° 
(95% CI: 32, 41°). 

TPTD vs. PulsioFlex-ProAQT® 

TPTD CI ranged from 1.7 to 7.2 L/min/m2, while ProAQT CI 
ranged from 1.5 to 7.8 L/min/m2. A total of 178 paired measure-
ments were obtained with a mean bias of −0.1 (95% CI: −0.2, 0.0) 
L/min/m2, a LoA of ±  1.7 (95% CI: 1.5, 2.0) L/min/m2, and a PE 
of 54% (95% CI: 47%, 61%). The interchangeability rate was 40%. 

The trending analysis showed 70% uninterpretable data pairs 
and 11% interchangeability. Considering the repeatability of each 
measurement, 33% of pairs were uninterpretable and 13% were 
interchangeable. Analyzing clinically significant changes gave a 
concordance of 76%. Polar plot analysis showed a mean angular 
bias of -13° with a radial LoA of ± 41° (95% CI: 34, 43°). 

TPTD PiCCOTM vs. APWA PiCCOTM 

TPTD CI ranged from 1.7 to 7.2 L/min/m2, while APWA CI 
ranged from 1.5 to 7.0 L/min/m2. In total, 171 paired measure-
ments were obtained for both methods. The mean bias was −0.1 
(95% CI: −0.2, 0.1) L/min/m2, LoA was ±  1.2 (95% CI: 1.1, 1.4) L/
min/m2, and PE was 36% (95% CI: 32%, 41%). The interchange-
ability rate was 72%. 

Trending analysis showed 74% uninterpretable data pairs and 
6% interchangeability. Considering the repeatability of each mea-
surement, 36% of pairs were uninterpretable and 4% were inter-
changeable. Analyzing clinically significant CI changes, the con-
cordance was found to be 66%. Polar plot analysis showed a mean 
angular bias of -15° with a radial LoA of ± 39° (95% CI: 37, 40°). 

The graphical representation of the results is presented in Figs. 
1, 2, and 3, respectively, as follows: Bland Altman analysis (includ-
ing interchangeability), correlation analysis, and the four-quad-
rant plot (including interchangeability). Fig. 4 shows interchange-
ability in trending of all devices. In all graphs, the number of or-
ange (possibly interchangeable) and green (interchangeable) data 
pairs are more or less equal. This in contrast with the blue (unin-
terpretable) and red (not interchangeable) data pairs. Using the 
actual RC for each point reveals additional interchangeable pairs, 
which were otherwise classified as uninterpretable. Results from 
all devices at individual time-points are shown in Table 3. There 

were no significant differences between the devices themselves 
nor among different time-points. All had minimal bias but large 
LoAs, thus resulting in high PEs. 

During the HIPEC procedure, the intraabdominal temperature 
remained between 42–43°C for all patients. As a result, blood 
temperature significantly increased during this phase compared 
to pre-HIPEC blood temperature (P <  0.05). The SVRI during 
the CRS phase (T2−T4) was significantly lower (P <  0.05) com-
pared to T1. During this procedure, there were significant changes 
in the SVRI. During the HIPEC phase (T5−T6), SVRI was signifi-
cantly lower compared to the CRS (P <  0.05) and T1 phases (P <  
0.001). There was also a significant difference in SVRI between 
CRS and HIPEC phases (P <  0.05). 

The precision of the reference method TPTD, which was ex-
pressed as the repeatability coefficient, was 10%. The repeatability 
coefficients of Clearsight, FloTrac/Vigileo, ProAQT, and APWA 
were 8%, 9%, 10%, and 10%, respectively. This respectively corre-
sponds to 0.4 (95% CI: 0.3, 0.4), 0.4 (95% CI: 0.3, 0.4), 0.4 (95% 
CI: 0.4, 0.5) and 0.5 (95% CI: 0.4, 0.5) L/min/m2. Bias was depen-
dent on the magnitude of CI in ClearSight and APWA (0.22 and 
0.14 L/min/m2 per L/min/m2, respectively, zero bias at 3.7 L/min/
m2), but proportional LoAs were present in all devices (0.17, 0.30, 
0.21 and 0.10 L/min/m2 per L/min/m2) for Clearsight, FloTrac/
Vigileo, ProAQT and APWA, respectively. The estimated LoAs 
were 1.5, 1.4, 1.6 and 0.9 L/min/m2 for Clearsight, FloTrac/Vigil-
eo, ProAQT, and APWA, respectively. Bias in APWA CI was not 
dependent on time since last TPTD bolus calibration (linear re-
gression, R2 =  0.002; Pearson’s r =  −0.043, P =  0.603; Spearman’s 
ρ =  0.032, P =  0.704). 

Discussion 

In this perioperative validation study, we compared CI mea-
surements using less invasive hemodynamic monitoring devices, 
namely ClearSight, FloTrac and ProQAT, to that of TPTD mea-
surements during CRS-HIPEC operations. Our data show a neg-
ligible bias for all studied devices but a large LoA. 

Interchangeability rates, which are objective measurements of a 
device’s performance compared to a reference device as described 
by Lorne et al. [27], were well below clinically relevant levels. Us-
ing the measurement error of each individual pair of measure-
ments, and thus a nonconstant repeatability coefficient, worsened 
the interchangeability rates in all test devices. We could not deter-
mine the cut off for 95% interchangeability in any of the devices 
because the inclusion rate was well below 95% within any sub-
range, which underlines the lack of interchangeability. 

Considering the reproducibility of changes over time during 
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Fig. 1. Bland-Altmann plot of all devices vs. TPTD. Bland-Altman plot showing the agreement between ClearSight, FloTrac, ProAQT, APWA, 
and TPTD, respectively. All data are expressed as CI (L/min/m2). Solid lines indicate systematic bias ± limits of agreement (LoA). Dotted lines 
indicate the 95% CI around the bias and limit of agreement. Dashed lines indicate the inclusion zone using the repeatability coefficient of the 
thermodilution measurements. Green or red color: inclusion or exclusion of the data point using the repeatability coefficient of each data pair 
instead of using the overall inclusion zone. AWPA: arterial pressure wave analysis, TPTD: transpulmonary thermodilution, CI: cardiac index.

Fig. 2. Correlation plot of all devices vs. TPTD. Correlation plot of ClearSight, FloTrac, ProAQT, and AWPA vs. TPTD. All data are expressed as 
CI (L/min/m2). Clearsight R2 = 0.48; FloTrac R2 = 0.32; ProAQT R2 = 0.24; APWA R2 = 0.68 compared with TPTD. Solid lines indicate the line of 
identity considering systematic bias. Dashed lines indicate the inclusion zone using the mean repeatability coefficient of the test device and the 
reference device. Green or red color: inclusion or exclusion of the data point using the repeatability coefficient of each measurement instead of 
using the overall inclusion zone. TPTD: transpulmonary thermodilution, AWPA: arterial pressure wave analysis, CI: cardiac index.
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Fig. 3. Four-quadrant plot of all devices vs. TPTD Four-quadrant plot of the trending ability of ClearSight, FloTrac, ProAQT, and APWA vs. 
TPTD. The percentual increase or decrease from the preceding measurement is plotted as Δ%. Additionally, each data point is classified according 
to its interchangeability. Blue = uninterpretable change; red = test device and thermodilution measurements are not interchangeable; orange = ‘gray 
zone’ where test device and thermodilution could be interchangeable; and green = test device and thermodilution seem interchangeable. TPTD: 
transpulmonary thermodilution, AWPA: arterial pressure wave analysis.

ClearSight

FloTrac

ProAQT

APWA

ClearSight

FloTrac

ProAQT

APWA

0% 0%20% 20%40% 40%60% 60%80% 80%100% 100% BA
Fig. 4. Summary of trending analysis. The proportion of data points from Fig. 3 being classified as uninterpretable (blue), as not interchangeable 
(red), in the ‘gray zone’ of possible interchangeability (orange), and as interchangeable (green) are summarized per test device according to Fischer 
et al. [31]. Fig 4A left: Data points are classified using the mean repeatability coefficient of the thermodilution measurements. This results in 66, 
68, 70, and 74% uninterpretable pairs, and in 13, 9, 11, 6% interchangeable pairs for ClearSight, FloTrac, ProAQT, and APWA, respectively. Fig 
4B (right): Data points are classified using the repeatability coefficient of the thermodilution measurements for each data point. This results in 
32%, 33%, 32%, and 36% uninterpretable pairs; and in 8%, 7%, 13%, and 3% interchangeable pairs for ClearSight, FloTrac, ProAQT and APWA, 
respectively. Blue = uninterpretable data points; red = test device and thermodilution measurements are not interchangeable; orange = ‘gray zone’ 
where test device and thermodilution could be interchangeable; and green = test device and thermodilution seem interchangeable. AWPA: arterial 
pressure waveform analysis.
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this extensive surgical procedure, all devices had a concordance of 
<  92%. Only ClearSight had a concordance of 85%, which was 
closest to moderate trending. All devices showed systematic er-
rors, with mean angular bias found to be between −7° and −19°. 
The radial LoA of all devices were outside the acceptable range, 
and varied from ±  38° and ±  41°. 

Interchangeability in trending was defined using the measure-
ment error of both the test device and the reference device. Unin-
terpretable pairs resulted from a statistically negligible change in 
the reference CI because of overlapping errors of two consecutive 
measurements, leading to >  60% of measurement pairs being un-
interpretable. The proportion of either uninterpretable pairs 
(high) and interchangeable pairs (very low) was consistent with 
the results of Fischer et al. [31]. Using a nonconstant repeatability 
coefficient derived from the measurement error of each single 
measurement in both the test device and the reference device, 
both the proportion of uninterpretable pairs and the proportion 
of interchangeable pairs decreased. This is usually caused by a 
smaller individual repeatability coefficient (Table 3) and thus a 
smaller measurement error, which results in a larger number of 
statistically significant changes. The smaller individual repeatabil-
ity coefficients may or may not change the classifications of 
not-interchangeable (red), possibly interchangeable (orange), or 
interchangeable (green). We also analyzed the repeatability of the 
devices, which showed an inverse proportional relation with the 
magnitude of the CI. This may justify the use of the measurement 
error of each CI measurement instead of using just one global re-
peatability coefficient. Trend interchangeability was low for all de-
vices during this clinical procedure. The hemodynamic condi-
tions of patients in previous studies varied from being stable post 
cardiac surgery [9,21,22,36] to developing sepsis or septic shock 
[9,21,37,38]. If validated in the OR, it often concerned liver sur-
gery [9,37,38], and rarely, general surgery [39]. Most of these 
studies did not reach the criteria for interchangeability [23,36–41]. 
The trending ability of the devices in these studies varied and of-
ten showed conflicting results between the analyses used [21–
23,37–41]. Overall, the results support moderate trending at best 
[21,22,38,39,41]. Our results conducted in the OR and ICU were 
comparable with literature [9,21–23,36–41]. 

All devices showed minimal bias at any time-point but a large 
LoA. These results were comparable to results seen during sepsis 
or septic shock [9,21,37,38] or liver surgery [9,37,38] and recog-
nized for a decrease in vascular tone. Indeed, during CRS-HIPEC, 
the vascular tone significantly decreased (Table 3), which is also 
illustrated by the percentage of error of the APWA CI of 36%. 
These changes were unexpected during abdominal surgery. Our 
tested devices have shown to be sensitive to changes in vascular 

tone [22,37,40]. The aforementioned PE in combination with the 
short recalibration times (mean recalibration time was 63 min, SD 
59 min) illustrate the complexity of hemodynamic monitoring in 
this patient population. 

Many factors influence vascular tone during extensive surgical 
procedures, including the administration of general anesthesia, 
epidural analgesia, magnesium chloride infusion [17], as well as 
the patient’s immune response/inflammation [14,42]. Fluid ad-
ministration and inotrope and/or vasopressor therapy counteract 
hypotension. During this extensive surgery we found an increase 
in CI (+8%; 95% CI: 1%, 14%) and a decrease in SVRI (−17%; 
95% CI: −27%, −9%) despite increasing norepinephrine dosages 
(+65%; 95% CI: 37%, 93%) and rate of fluid administration 
(+148%; 95% CI: −12%, 310%). These data do resemble the he-
modynamic changes that take place during sepsis episodes, in 
which we know less invasive devices are less accurate [3,9,21,37–
39]. After the initiation of hyperthermic treatment, there was a 
significant reduction of SVRI (Table 3), which required an in-
crease in vasopressor support. Although GDT studies have been 
published using different devices [12], the exact position with re-
gards to the use of GDT remains unclear [43]. Results found in 
our study could have occurred in other studies involving liver sur-
gery [9,37,38] and extensive surgical procedures [12,43], which 
likely negatively influenced the results. 

Our recalibration moments were predefined and not influenced 
by the clinical situation. Time since the last calibration did not in-
fluence the bias between TPTD and APWA. To improve pulse 
contour-derived continuous cardiac index accuracy and precision, 
frequent recalibration is advised especially in hemodynamic chal-
lenging conditions. When to recalibrate remains unclear [44,45], 
Huber and colleagues advised that recalibration be initiated based 
on changes in APWA CI compared to the prior TPTD calibration 
[46]. 

Best TPTD measurement is achieved by creating a maximum 
temperature difference between the blood and injectate [47], with 
the maximal delta temperature measured at the thermistor tip. The 
accuracy of the measurements is not affected as long as the delta 
temperature is higher than >  0.3°C (verbal communication Pul-
sion/Getinge). We used a maximal amount of iced saline (20 ml) 
during the entire procedure. During HIPEC, the abdominal tem-
perature was kept between 42–43°C, thus causing an expected rise 
in intravascular temperature (Table 3). The combination of high 
blood temperature and ice water provided the best condition for a 
good measurement [47]. Injecting iced saline during TPTD mea-
surements did not alter abdominal temperature. Thus, there was 
no negative effect with regards to therapeutic effects during the 
HIPEC procedure. 
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Our study is a validation of extensive abdominal surgery and 
intensive care. In 25 patients and at nine predetermined time-
points, we obtained 718 paired measurements. This number ex-
ceeds that in most validation studies [21–23,39,41,45,48]. We 
were able to calculate the precision of the measurements and the 
precision of the agreement of all measuring devices as advised by 
Hapfelmeier et al. [28]. This allowed us to conclude that the unac-
ceptably high LoA and PE found in the present study were not at-
tributable to a large variation in the measurements [33]. We com-
bined old [24,25,33] and new [27,28] analyses for absolute values 
comparison. For the trending analysis, we also combined old and 
new values, combining the use of a four-quadrant plot [29,30], 
polar plot analysis [26], and interchangeability in trending [31], 
thus making the results robust. 

Although visually inspected, theoretical under- or over damp-
ening of the arterial waveform could have occurred during hemo-
dynamic measurements. We did not use the pulmonary artery 
catheter as a reference technique due to its complications and lack 
of benefit with its use. We instead replaced it with TPTD [2,4]. 
The anesthesia protocol was not standardized to the fullest extent 
possible. As most of our anesthetics influence vascular tone, this 
could have influenced our results. Bias and precision of the tested 
devices (including the reference method) used have shown to be 
sensitive to changes in vascular tone [37–41,44–46,48]. The data 
from the TPTD measurement was used by the attending anesthe-
siologist to guide hemodynamic management. Different interpre-
tations of these measurements could have led to different subse-
quent actions concerning fluid management and inotrope/vaso-
pressor therapy. We think these inconsistencies were mitigated by 
the heterogeneity of the CRS-HIPEC. 

Our study was also limited by the devices which we have used 
in this validation study combined with the selected CRS-HIPEC 
procedure. The generalization of these results could be question-
able. However, extensive surgical procedures are performed on a 
large scale, and thus, results from T1–T4 apply to extensive ab-
dominal surgery. Twenty-five patients were included and 718 
paired measurements were taken. Although this could still be 
seen as a small cohort, power calculation found this to be enough. 

During the HIPEC phase, blood temperature increased to a 
maximum mean temperature of 37.5°C (T5), with the intraperito-
neal temperature being 42–43°C All hemodynamic measurements 
were performed at “normal” blood temperatures (Table 3). How-
ever, one could argue that changes in temperature could have in-
fluenced our hemodynamic measurements in some way. 

The ClearSight, FloTrac, and ProAQT systems were not able to 
reliably measure cardiac output compared to TPTD with the PiC-
CO system during CRS-HIPEC, with these devices having large 

limits of agreement and unacceptably high percentage errors. Re-
producibility of changes over time using concordance, angular 
bias, radial LoA, and interchangeability in trending of all devices 
was unsatisfactory. 
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