
Introduction 

Most parametric statistical analysis methods require normality assumptions. When vi-
olated, statistical results from non-normally distributed data could be a cause of serious 
error. These are apparent obstacles for confident scientific results. Even though the cen-
tral limit theory could cover normality when the size of the sample is sufficient, many 
clinical and experimental data fail to satisfy normality assumptions despite a relatively 
large sample size. Fortunately, a simple statistical technique, variable transformation, pro-
vides a method to convert data distribution from non-normal to normal. Furthermore, 
the variable transformation could form a linear relationship between variables from a 
non-linear relationship and could stabilize estimated variance in linear modeling. 

Although variable transformation provides an appropriate method of parametric sta-
tistical analysis, interpretation of inferred results is quite a different problem. Variable 
transformation changes the distribution of data as well as its original unit of measure [1]. 
To interpret such results or to compare the results with others, back-transformation is es-
sential. Statistical analysis always assumes that there is a permissive error within the alpha 
limit because it is based on the probability. Back-transformation of error term included in 
statistical analysis requires complicated processes when sophisticated transformation 
methods are applied. 

This article covers general concepts of variable transformation, logarithmic transfor-
mation and back transformation that could be useful in medical statistics, and concepts 
of power transformation, especially about Box-Cox transformation. Finally, descriptions 
of general precautions when considering variable transformation are provided.  
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Statistical Round Several assumptions such as normality, linear relationship, and homoscedasticity are fre-
quently required in parametric statistical analysis methods. Data collected from the clini-
cal situation or experiments often violate these assumptions. Variable transformation pro-
vides an opportunity to make data available for parametric statistical analysis without sta-
tistical errors. The purpose of variable transformation to enable parametric statistical anal-
ysis and its final goal is a perfect interpretation of the result with transformed variables. 
Variable transformation usually changes the original characteristics and nature of units of 
variables. Back-transformation is crucial for the interpretation of the estimated results. 
This article introduces general concepts about variable transformation, mainly focused on 
logarithmic transformation. Back-transformation and other important considerations are 
also described herein. 

Keywords: Back-transformation; Box-Cox transformation; Homoscedasticity; Logarith-
mic; Normality; Power; Retransformation; Skewed distribution; Transformation. 

The Korean Society of Anesthesiologists, 2020

This is an open-access article distributed under the 
terms of the Creative Commons Attribution Non-Com-
mercial License (http://creativecommons.org/licenses/
by-nc/4.0/), which permits unrestricted non-commer-
cial use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

503Online access in http://ekja.org

http://crossmark.crossref.org/dialog/?doi=10.4097/kja.20137&domain=pdf&date_stamp=2020-12-01


Distribution of each variable and relationship 
between variables 

Before commencing statistical analysis, checking data distribu-
tion, the relationship between variables, missing data, and outlier 
controlling are appropriate method of statistical analysis and in-
ference, which allow us to overcome issues that may occur during 
analysis. Data distribution and relationships between variables 
determine unsuitable variables of skewed distribution and reveal 
the possibility of planned linear regression. 

The shape of data distribution is often couched in terms of rep-
resentative values, including mean, median, and values of disper-
sion such as standard deviation (SD), quartiles, range, maximum, 
and minimum. In addition, skewness and kurtosis reveals the 
more detailed shape of data distribution [2] and most statistical 
software provides extensive information about these factors. If 
one variable violates the normality assumption, distribution plot 
or skewness/kurtosis provide a clue regarding data distribution 

(Table 1). 
A quantile-quantile plot (Q-Q plot) with a normality test could 

imply the skewness of data distribution [3]. Normally distributed 
data appears as a rough straight line while skewed data presents a 
curved line on a Q-Q plot (Fig. 1). 

In a clinical situation, various data follow positively or negative-
ly skewed distributions. For example, in terms of mean arterial 
pressure, most people have normal blood pressure and some pa-
tients with hypertension would present higher mean arterial pres-
sure with a small portion of aggregate data. Randomly sampled 
mean arterial pressure data from the general population will have 
a positively skewed distribution. Plasma hemoglobin concentra-
tion from the general population will have a negatively skewed 
distribution if the incidence of anemia is higher than polycythe-
mia. 

According to the characteristics of data distribution, various 
transformation methods can be used to achieve satisfaction for 
the normality test (Table 1). These kinds of transformations could 

Table 1. Skewness, Characteristics of Distribution, and Recommended Choice of Transformation
Skewness >  0 <  0
Nomenclature Positively skewed distribution Negatively skewed distribution

Skewed right Skewed left
Characteristics Long right tail relative to left Long left tail relative to right
Recommended transformation to achieve normality Square root Power (square, cubic)

Reciprocal
Logarithmic
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Fig. 1. Quartile-Quartile plot (Q-Q plot) of original data and logarithmically transformed data. (A) Q-Q plot of original data. Upper tail of the 
plot seems to be going off from the straight line. This means that data has a probability of non-normal distribution. Mean and SD of this data is 
20.52 and 4.117. The skewness of this distribution is 0.56, and it is a positively skewed distribution. Shapiro-Wilk normality test statistics = 0.974, 
P = 0.047. (B) Q-Q plot of natural logarithmic transformed data. Non-normality of data distribution seems to be improved in the part of the upper 
tail. Mean and SD of transformed data is 3.0 and 0.201. Skewness of transformed data is −0.14, Shapiro-Wilk normality test statistics = 0.988, P = 
0.477.
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make the data symmetrically distributed and the absolute value of 
the skewness close to zero [1]. These transformation methods 
could be applied to ensure the linear relationship between vari-
ables. It is well known that many statistical modeling methods are 
based on the linear relationship between treatment and response 
variables, and forming an apparent linear relationship through 
variable transformation enhances statistical model estimation. A 
typical example is logit transformation, which is used for binomial 
logistic regression. The logit transformation converts the proba-
bility of an event to log odds, allowing regression analysis between 
the dichotomous outcome variable and the independent variable, 
which plays the role of the linear predictor. The odds ratio can be 
used to interpret logit transformed regression. However, if a trans-
formation is conducted with a variable using complex methods or 
if treatment and response variables are simultaneously trans-
formed, interpretation of estimated results may be challenging. 
Therefore, transformation should remain as simple as possible to 
ensure a comprehensive interpretation of statistically inferred re-
sults. 

Non-linear transformations 

Adding, subtracting, multiplying, or dividing with a constant is 
commonly considered as the linear transformation, because these 
transformations rarely affect the distribution of data, they only 
shift the geometric mean and SD to some extent by their nature. 
In contrast, other transformations, including logarithmic trans-
formation are referred to as non-linear transformation. They sta-
bilize dispersion, create a linear relationship between variables, 
and enable parametric statistical estimation with the normality 
assumption assured. 

Although these transformation methods provide a satisfying 
statistical result, the transformation itself forms an obstacle in 
terms of interpreting and reporting the statistical results. The 
transformed variable itself is sometimes meaningful without 
back-transformation. For example, a certain cancer incidence is 
proportional to the square of the smoking period. This result is 
based on the linear regression analysis with observed cancer inci-
dence and squared period of smoking, and its interpretation has 
meaning without back-transformation. We can present the col-
lected data with median and 1st and 3rd quartiles of the smoking 
period when the original data have violated the normality as-
sumption. If we compare the smoking periods between two 
groups and they require square transformation to keep the nor-
mality assumption, it is hard to interpret the clinical meaning of 
the mean difference of squared data. The difference between each 
squared value is not the same as the squared difference between 

the two original scaled values. In this situation, non-parametric 
analysis makes it easier to interpret the results.  

A non-linear transformation may sometimes be required to 
obey the assumptions for a specific statistical analysis such as 
multiple linear regression. If we use undiscerning transformation 
methods for numerous variables, it is hard to interpret estimated 
results. For complex statistical analysis, it is therefore better to use 
an interpretable transformation method. In addition, using a 
more liberal statistical method such as generalized linear or 
non-linear models may be more appropriate. 

Logarithmic transformation 

Applying a logarithmic transformation, each value is changed 
by the characteristics of the logarithm. Considering its features, 
the differences between transformed values become smaller than 
the original scale (Fig. 2). The logarithmic transformation com-
presses the differences between the upper and lower part of the 
original scale of data. For example, for data with 100 cases, its 
skewness of 0.56 changes to −0.14 after natural logarithmic trans-
formation. The results of the normality test using the Shap-
iro-Wilk test also changes its statistics from 0.974 (P =  0.047) to 
0.988 (P =  0.477). The Q-Q plot also is stabilized after logarith-
mic transformation (Fig. 1). As shown here, a logarithmic trans-
formation has a normalizing effect on the positively skewed dis-
tribution. This transformed distribution is referred to as ‘log-nor-
mal distribution.’ An interesting finding from the logarithmic 
transformation is that its effects cover normalizing the density of 
data and decreasing the SD, the latter provides greater opportuni-
ty to satisfy the equal variance test, which is frequently used for 
various parametric statistical inferences. From Fig. 1, the mean 
and SD of the original data are 20.52 and 4.117 become 3.0 and 
0.201 after logarithmic transformation. The coefficients of vari-
ances are 20.1% and 7.0% for original and logarithmically trans-
formed data, respectively. The coefficient of variance is a repre-
sentative value for a standardized measure of the dispersion of 
data distribution. A large value implies that one value from the 
data has a high risk of being far from the mean. With decreased 
SDs, the results of the equal variance test could be satisfied, and 
several comparison methods including Student’s t-test could be 
possible after logarithmic transformation of a variable1). 

Although we can generate the data for intended statistical anal-
ysis, the interpretation of statistically inferred data is another ob-

1)In the case of violated equal variance assumption, means comparison is possible through 
unequal variance t-test or unequal variance ANOVA using Welch’s test, which is based on 
the corrected degree of freedom.
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stacle. If we present the inferred data with a transformed scale, it 
is not easy to understand the results themselves. We therefore 
need back-transformation, which is the exponential transforma-
tion [4], for the statistical results. If we use natural logarithmic 
transformation, then back-transformation requires natural expo-
nential function. The calculation is simple, but interpretation is 
difficult. The mean value of logarithmic transformation should be 
converted to an exponential scale. Means of original and trans-
formed data are 20.53 and e3.00 =  20.09, respectively (Fig. 1). The 
mean value of 20.09, which is known as the geometric mean, is 
the back-transformed mean value from transformed data. The 
geometric mean is less affected by the very large values of original 
data than the corresponding arithmetic mean, which comes from 
a skewed distribution. SD should also be considered for back-trans-
formation from estimated values. However, for the moment of 
back-transformation, the meaning of ‘standard’ deviation loses its 
additive meaning because such data are not normally distributed 
[5]. Its interpretation does not make sense after back-transforma-
tion. Hence, the CI is usually reported for this situation [4,6]. A 
back-transformed CI allows better understanding on the original 
scaled data. For example, the mean and SD are 3.00 and 0.201 for 
natural logarithmic transformed data with a sample size of 100 
and its 95% CI is from 2.96 to 3.03. When back-transformation is 
performed with an exponential function, it changes into from 
19.31 to 20.89. Considering the geometric mean is 20.09, a 
back-transformed 95% CI does not have symmetric placement 
from the geometric mean value. We sometimes use a variable with 
the transformed form by default. Back-transformation is essential 
for statistical analysis and should be returned to its original scale 
when reporting the results. The one example is the antibody titer. 
If one patient with myasthenia gravis tested positive for anticho-
linesterase with an antibody titer 1:32, it  means that the number 
of dilutions should be repeated five times until the last seroposi-

tive results (25 =  32). Antibody titer itself has a characteristic of 
the powered value of dilution numbers, which is always is report-
ed as 1:2dilution numbers. Hence, the geometric mean should be pre-
sented as 2mean dilution number, not the mean of titers. 

Furthermore, mean difference obtained from the t-test does not 
imply a simple difference between estimated means when a loga-
rithmic transformation is used. Back-transformation from loga-
rithmic transformation leads to arithmetic difference of trans-
formed variables to ratio. The mean difference from two natural 
logarithmic transformed samples is X1-X2, and back-transforma-
tion results in eX1-X2 =  eX1/eX2. That is, the logarithmic transformed 
mean difference should be interpreted as a ratio of means when 
back-transformation is applied. For example, if the mean differ-
ence is 0.5, e0.5 =  1.65, mean from one sample has 65% higher val-
ue compared to the other mean. This should not be interpreted as 
165%, and we should consider the difference, not a simple ratio. 
The CI of the mean difference also can be interpreted in a similar 
way. If the estimated 95% CI of the above sample is 0.4–0.6, the 
back-transformed range is 1.49–1.83, its interpretation is ‘mean 
from one sample has a 65% higher value with a 95% CI ranging 
from 49% to 83% compared to the other mean.’ Reporting statis-
tics can be estimated using logarithmically transformed data. 
When reporting this, the information regarding transformation 
should be accompanied. Corresponding effect sizes and P values 
can also be reported as estimated. This interpretation approach 
can be applied to the statistical method of mean comparison. 

Pearson’s correlation analysis and linear regression analysis also 
require data normality. When the logarithmic transformation is 
applied to the data for the former, the result can be described as 
estimated. The correlation coefficient is a statistic that has the 
characteristics of effect size, and we do not need to conduct fur-
ther back-transformation. Only one thing should be done report-
ing results with the information about transformation. If logarith-
mic transformation is applied for linear regression, it produces 
more complex considerations in terms of results interpretation. 
Linear regression requires several assumptions, including the lin-
ear relationship between independent and dependent variables. 
To fulfill this assumption, variable transformation may be neces-
sary. If the dependent variable requires logarithmic transforma-
tion, the meaning of the regression coefficient changes from unit 
change to a ratio. Basically, the definition of the regression coeffi-
cient is that ‘a one-unit change in the independent variable pro-
duces an increase (decrease) in the dependent variable by the 
amount of regression coefficient.’ Arithmetic increment (decre-
ment) of the transformed dependent variable will be changed into 
a ratio with back-transformation of an exponential function. For 
example, the estimated regression coefficient is 0.1, e0.1 =  1.105, 

Fig. 2. The shapes of the logarithmic graph. Original values become 
transformed values through corresponding logarithmic transformations.
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means ‘for a one-unit increase in the independent variable, de-
pendent variable increases by 10.5%.’ Similar to the explanation of 
the mean difference, it should be noted that the interpreted value 
is not 110.5%. If the dependent variable is a common logarithmic 
transformed variable, a one-unit change in the independent vari-
able is the same as a tenfold increment in the original matric vari-
able. That is, a tenfold increment in independent variable produc-
es dependent variable changes by the estimated regression coeffi-
cient. Description with a 1% increment of the independent vari-
able is also possible. For the convenience, common logarithmic 
transformation is better for independent variable transformation. 
If natural logarithmic transformation is applied, interpretation is 
not easy with e as the base of the natural logarithm; the approxi-
mated value is 2.71828. If both dependent and independent vari-
ables are transformed with logarithmic transformation, we can in-
terpret the result as a percentile increment of the independent 
variable produces a percentile change in the dependent variable 
following the rule explained above. These interpretation rules can 
be applied to the other kind of general linear modeling method 
including ANCOVA and MANOVA. 

Several problems are reported regarding logarithmic transfor-
mation [7]. Such transformation is impossible when the values 
have negative or zero in its original metric. To overcome this 
problem, adding a positive constant to the original data is a com-
mon practice. However, the shape of the logarithmic graph subtly 
changes in the early stage from zero and then enters the fluent 
curve section in the later stage (Fig. 2). That is, the dispersion of 
logarithmically transformed data could be varied according to the 
added value from original scaled data. For example, assume two 
normally distributed data sets with mean =  0, SD =  1, n = 100 
and mean = 1, SD =  3, n = 100 using a random number creation 
function. Then, we add the integers that make all data have posi-
tive values. Logarithmic transformation with a base of 10 is ap-
plied to all datasets. Then, plotting their mean and SD in one 
graph, we can see the mean differences and SDs become smaller 
according to an increment of an added constant (Fig. 3). As a re-
sult, estimated t-statistics and P values are also changed, which in-
creases the statistical errors. These kinds of errors could only oc-
cur when the mean difference and SD are relatively small, but es-
timated t-statistic could increase as the added value increases even 
if mean difference and SD are large. These kinds of errors origi-
nate from the nature of logarithmic transformation; it increases 
the difference when the values are small and reduces the differ-
ence when the values are large. From the null hypothesis signifi-
cance testing viewpoint, the significance of the t-test may not 
change except when t-statistics are very near to the significance 
level. However, it should be noted that estimated statistics and 

performed power also change because logarithmic transformation 
stabilizes SD values. 

Power transformation and Box-Cox transformation 

Power transformation is a transformation method that uses a 
power function. If we use a number greater than 1 as an index of a 
power function, it could transform left-skewed data into near-nor-
mally distributed data. A specialized form of power transforma-
tion is the Box-Cox transformation [8], which is frequently ap-
plied to stabilize the variance of errors estimated during linear re-
gression or correlation analysis. There are several extended forms 
of Box-Cox transformation [9], the traditional method is as 
shown in (Equation 1) below. 

According to the value of λ, this performs various types of 
non-linear transformation. For example, λ =  −1 produces a recip-
rocal transformation, λ =  2 a square transformation, and λ =  0.5 
a square root transformation. Because it contains a constant, a 
somewhat linear transformation is also applied as we already 
know the linear transformation hardly effects the estimated statis-
tics. However, we should be cautious as such transformation could 
affect the statistical results, as described in the previous section. If 
λ =  0, the Box-Cox transformation is same as logarithmic trans-
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formation. Then, how can we determine the value of λ and how 
the Box-Cox transformation stabilizes the variance? We consider 
this using linear regression. Linear regression requires several as-
sumptions including homoscedasticity, which means all observed 
values are equally scattered from the estimated regression line. 
Several residual diagnostics provide about homoscedasticity. 
When the homoscedasticity is violated, the Box-Cox transforma-
tion could stabilize the variance of residuals. Using yλ instead of y 
in the linear regression model, for example, yλ =  αx + β + ε (α: re-
gression coefficient, β: constant, ε: error), several statistical soft-
ware programs2) find best estimated values of λ and its 95% CI 
based on the maximal likelihood method. Using this result, we 
can estimate the linear regression model with homoscedasticity. 
Although the Box-Cox transformation is an excellent tool to ob-
tain the best results of linear regression, it also has a serious prob-
lem of result interpretation. Back-transformation for this is not as 
simple as other non-linear transformations because it includes the 
error term, which is essential for the linear regression. There are 
several proposed back-transformation methods from the Box-
Cox transformation [10,11], which require complex statistical 
process. If we try to interpret as the transformed variable itself, we 
should also consider the transformed unit, which could lose its 
real meaning after transformation. Only when the other measures 
for stabilizing variance (homoscedasticity) have failed, should the 
Box-Cox transformation be considered. 

Conclusion 

Parametric statistical analysis is frequently used in medical re-
search. Unfortunately, many physicians have not recognized that 
these analytic methods require the normality of data distribution 
and other assumptions. There are many other analytic methods 
with more generous assumptions such as generalized linear or 
non-linear models. Nevertheless, we need simplified and intuitive 
analysis, including t-test and analysis of variances (ANOVA). 
Variable transformation is a powerful tool to make data normally 
distributed or to form a linear relationship of data. However, al-
most all of the transformed data should be back-transformed for 
the interpretation of the results. The transformation could be easy, 
it is possible to calculate the transformation in commonly used 
spreadsheet programs. However, back-transformation is not an 
easy process if complex or a combination of several transforma-
tions are used. Result interpretation also depends on the role of 
the transformed variable. It is relatively simple for a transformed 

independent variable to be compared to the transformed depen-
dent variable. When the dependent variable is transformed, 
back-transformation should rely on the transformed error term. 

Variable transformation provides an attractive and convenient 
method of enabling parametric statistical analysis, and data prepa-
ration should be considered a priori. Information about data dis-
tribution, such as skewness, range, mean, SD, median, and quar-
tiles, and the relationship between variables (scatter plot) can be 
used to derive the best method. Outlier controlling, missing data 
evaluation, and adequacy of sample size should be prioritized be-
fore variable transformation. If possible, using statistical analysis 
with generous assumptions is an option and non-parametric sta-
tistical analysis also guarantees a scientific result. 

Conflicts of Interest 

No potential conflict of interest relevant to this article was re-
ported. 

References 

1. Bland JM, Altman DG. Transforming data. BMJ 1996; 312: 770. 
2. Kim HY. Statistical notes for clinical researchers: assessing nor-

mal distribution (2) using skewness and kurtosis. Restor Dent 
Endod 2013; 38: 52-4. 

3. Michael JR. The stabilized probability plot. Biometrika 1983; 70: 
11-7. 

4. Olsson U. Confidence intervals for the mean of a log-normal 
distribution. J Stat Educ 2005; 13: 1.

5. Quan H, Zhang J. Estimate of standard deviation for a log-trans-
formed variable using arithmetic means and standard devia-
tions. Stat Med 2003; 22: 2723-36. 

6. Bland JM, Altman DG. Transformations, means, and confidence 
intervals. BMJ 1996; 312: 1079. 

7. Feng C, Wang H, Lu N, Chen T, He H, Lu Y, et al. Log-transfor-
mation and its implications for data analysis. Shanghai Arch 
Psychiatry 2014; 26: 105-9. 

8. Box GE, Cox DR. An analysis of transformations. J R Stat Soc 
Ser B (Method) 1964; 26: 211-43. 

9. Sakia RM. The Box‐Cox transformation technique: a review. J R 
Stat Soc Ser D (Stat) 1992; 41: 169-78. 

10. Taylor JM. The retransformed mean after a fitted power transfor-
mation. J Am Stat Assoc 1986; 81: 114-8. 

11. Spitzer JJ. Variance estimates in models with the Box-Cox trans-
formation: implications for estimation and hypothesis testing. 
Rev Econ Stat 1984; 66: 645-52.  

2)One easy way to perform the Box-Cox transformation is using the ‘MASS’ package in-
cluded in R system, which provides the command ‘boxcox’.

https://doi.org/10.4097/kja.20137508

Dong Kyu Lee · Data transformation

https://doi.org/10.1136/bmj.312.7033.770
https://doi.org/10.5395/rde.2013.38.1.52
https://doi.org/10.5395/rde.2013.38.1.52
https://doi.org/10.5395/rde.2013.38.1.52
https://doi.org/10.1093/biomet/70.1.11
https://doi.org/10.1093/biomet/70.1.11
https://doi.org/10.1093/biomet/70.1.11
https://doi.org/10.1080/10691898.2005.11910638
https://doi.org/10.1080/10691898.2005.11910638
https://doi.org/10.1002/sim.1525
https://doi.org/10.1002/sim.1525
https://doi.org/10.1002/sim.1525
https://doi.org/10.1002/sim.1525
https://doi.org/10.1136/bmj.312.7038.1079
https://doi.org/10.1136/bmj.312.7038.1079
https://doi.org/10.1136/bmj.312.7038.1079
https://www.ncbi.nlm.nih.gov/pubmed/25092958
http://www.ncbi.nlm.nih.gov/pubmed/25092958
http://www.ncbi.nlm.nih.gov/pubmed/25092958
http://www.ncbi.nlm.nih.gov/pubmed/25092958
https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
https://doi.org/10.2307/2348250
https://doi.org/10.2307/2348250
https://doi.org/10.2307/2348250
https://doi.org/10.1080/01621459.1986.10478246
https://doi.org/10.1080/01621459.1986.10478246
https://doi.org/10.1080/01621459.1986.10478246
https://doi.org/10.2307/1935988
https://doi.org/10.2307/1935988
https://doi.org/10.2307/1935988
https://doi.org/10.2307/1935988

	Introduction 
	Distribution of each variable and relationship between variables 
	Non-linear transformations
	Logarithmic transformation 
	Power transformation and Box-Cox transformation
	Conclusion
	Conflicts of Interest
	References

