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Reduction of beta cell function and a beta cell mass is observed in both type 1 and type 2 diabetes. Therefore, restoration of this 
deficiency might be a therapeutic option for treatment of diabetes. Islet transplantation has benefits, such as reduced incidence of 
hypoglycemia and achievement of insulin independence. However, the major drawback is an insufficient supply of islet donors. 
Transplantation of cells differentiated in vitro or in vivo regeneration of insulin-producing cells are possible approaches for beta 
cell/islet regenerative therapy. Embryonic and adult stem cells, pancreatic ductal progenitor cells, acinar cells, and other endo-
crine cells have been shown to differentiate into pancreatic beta cells. Formation of fully functional beta cells and the safety of 
these cells are critical issues for successful clinical application.
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INTRODUCTION

Diabetes mellitus, a metabolic disorder, results from an inade-
quate mass of insulin-producing pancreatic beta cells [1-3]. 
Various formulations of short- and long-lasting insulin have 
been used to control blood glucose levels. However, the tight 
regulation of insulin in response to physiological change is not 
possible. This lack of regulation results in episodes of hyperg-
lycemia and hypoglycemia. The development of a therapeutic 
method to regulate precisely the blood glucose levels will en-
able better management of diabetes. One logical therapeutic 
approach is the restoration of a functional beta cell mass.
  Islet transplantation into diabetic patients is a promising 
method for restoring the functional beta cell mass. However, 
the limited supply of islets cannot meet the patient demand, 
and post-transplant immunosuppression can produce serious 
side-effects. To overcome these limitations, various methods 
providing an alternative source of insulin-producing cells are 
being investigated. Some of these methods include engineer-

ing non-beta cells to produce insulin, differentiation of insu-
lin-producing cells from embryonic and adult stem/progeni-
tor cells, and transdifferentiation of extra-pancreatic and pan-
creatic cells. In addition, in vivo regeneration of islet cells is be-
ing investigated.
  In this review, we will provide recent advances, as well as re-
search progress on beta cell replacement and regeneration ther-
apy for treatment of diabetes using various strategies (Fig. 1).

ISLET TRANSPLANTATION

Islet or pancreas transplantation is a method to normalize met-
abolic control in a way that cannot be achieved with exogenous 
insulin. It was shown that whole pancreas transplantation ame-
liorated the complications associated with chronic hyperglyce-
mia and eliminated the need for daily insulin injections. This 
procedure improved the quality of life. However, pancreas al-
lografting caused immediate surgical risks and long-term com-
plications [4]. 
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  The first trial of islet transplantation was performed in ro-
dent models and later in type 1 diabetic patients [5]. Short-term 
insulin independence was achieved in about 10% of the trans-
plant recipients. Further advances in the islet isolation proce-
dure and more effective immunosuppression strategies with a 
steroid-free regime called the “Edmonton protocol” [6] have 
been made. The success rate in achieving insulin-independence 
in islet-transplanted patients has been greatly improved. Recent-
ly it was reported that 70% of the transplant recipients showed 
insulin independence [7]. However, the lifelong immunosup-
pressive regimes to prevent transplant rejection and recurrence 
of autoimmune responses to beta cells are expensive and de-
crease the quality of life.
  A variety of strategies to protect the transplanted islets from 
immune attack have been reported. One of these involves pre-
venting the activation of antigen-presenting cells. Regulating 
the immune system by shifting the pathogenic effector cells to 
protective regulatory cells and blocking co-stimulatory path-
ways provides an alternative to immune attack. Another strat-
egy is to engineer beta cells that are resistant to immune attack. 
Protective effects on transplanted islet cells can be gained by 
the transduction of genes for the expression of cytokines, anti-
apoptosis molecules, or growth factors [8].
  Another strategy to protect islets from immune attack in-
volves the microencapsulation of islets within synthetic poly-
mers. There is easy passage of small molecules, such as glucose, 

amino acids, and insulin. However, larger molecules, like anti-
bodies and immune cells cannot gain entry. A major limitation 
of the microencapsulation strategy is its lack of biocompatibili-
ty. Oxygen deprivation presents another limit for the long-term 
survival of islets within a microcapsule [9].
  A major hurdle for islet transplantation is a lack of an islet 
source to meet the needs of all type 1 diabetic patients. This 
paucity is secondary to the limited supply of cadaveric pancre-
as donors. Embryonic, fetal, neonatal, or adult porcine islets 
are possible sources for transplantation, since easily available 
pigs have many physiological similarities to humans [10,11]. 
However, there is a problem secondary to the hyperacute rejec-
tion of xenotransplants that carry the Gal-α-Gal antigen. An-
other possible source of beta cells for transplantation is prima-
ry beta cells that are immortalized by transduction with onco-
genes for expansion. These also have a conditional expression 
system that can reverse oncogene expression [12,13]. However, 
this strategy carries the possibility of impaired insulin secretion 
and tumorigenicity.
  Significant progress has been made in improving the immu-
nosuppressive regimes. In particular, increasing the tolerance 
of islet transplants and reducing transplant rejection are nec-
essary. There is also a need to find an unlimited source of insu-
lin-producing cells that are required for the wider clinical ap-
plication of islet transplantation.
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Fig. 1. Possible strategies for beta cell replacement and regeneration therapy. Insulin-producing cells can be restored by transplan-
tation of cells derived from in vitro or in vivo regeneration. Transplantation of islets from normal subjects, insulin-producing cells 
differentiated from stem and/or progenitor cells in vitro, or non-β cells (e.g., hepatocytes) engineered to produce insulin can result 
in insulin production and control blood glucose levels. Introduction of stem cells, β cell growth factors or stimulation of β cell dif-
ferentiation transcription factors can regenerate β cells in vivo, which then produce insulin and control blood glucose levels.



79

Cell Replacement and Regeneration Therapy for Diabetes

Korean Diabetes J 2010;34:77-83www.e-kdj.org

INSULIN-PRODUCING NON-BETA CELLS

Genetically engineering non-beta cells to express insulin is an 
attractive strategy. The engineered cell will become an alterna-
tive insulin-producing cell that will have an advantage over in-
tact islets. Non-beta cells may not be recognized by beta cell-
specific autoimmune responses. A variety of cell types, includ-
ing fibroblasts, hepatocytes, neuroendocrine cells, and muscle 
cells, have been engineered to produce insulin with varying de-
grees of success [8].
  Since hepatocytes have a glucose-sensing system similar to 
that in pancreatic beta cells like glucose transporter 2 (GLUT2) 
and glucokinase, they draw much attention as target cells for 
insulin production. A preclinical model of diabetes was correct-
ed by autologous transplantation of primary hepatocytes that 
were non-virally transduced with a glucose-responsive promot-
er-regulated insulin gene construct [14]. Intestinal K cells, pos-
sible surrogate beta cells, contain the necessary enzymes for 
processing proinsulin to insulin and have exocytotic mecha-
nisms. A murine enteroendocrine cell line expressing insulin 
under the control of a glucose-dependent insulinotropic poly-
peptide not only reversed diabetes when transplanted, but also 
produced insulin in response to glucose [15]. Transplantation 
of bone marrow mesenchymal stromal cells expressing insulin 
under the glucose-responsive early growth response gene (EGR-
1) promoter resulted in the remission of diabetes in mice [16].
  The regulation of insulin production by glucose-responsive 
promoters in non-beta cells exhibits slow kinetics, which may 
cause hypoglycemia. This situation is due to the requirement 
for insulin transcription and translation, as compared with the 
rapid release of insulin from beta cells by exocytosis. Pancreat-
ic beta cells have unique characteristics specific to the produc-
tion of insulin, such as specific peptidases, glucose-sensing sys-
tems, and secretory granules that can release insulin promptly 
by exocytosis in response to extracellular glucose levels. Thus, 
it is very difficult to mimic this tight regulation of insulin pro-
duction in response to physiological levels of glucose in non-
beta cells. 

STEM CELL-DERIVED BETA CELLS

Multiple studies have shown that it is possible to direct in vitro 
differentiation of stem and progenitor cells toward insulin-pro-
ducing cells. Embryonic stem (ES) cells have the potential to 
generate unlimited quantities of insulin-producing cells. The-

oretically, ES cells could be expanded indefinitely in the undif-
ferentiated state and then differentiated into functional beta 
cells [17]. Two major strategies are used for the differentiation 
of ES cells into insulin-producing cells: the embryoid body for-
mation and the definitive endoderm formation. A recent re-
port showed that the stepwise differentiation of ES cells, which 
mimics endogeneous pancreatic development, could generate 
functional beta cells [18]. However, the yield is still very low 
and the differentiated beta cells are much less functional as com-
pared with primary islets. More efficient protocols need to be 
developed for the differentiation of ES cells into mature func-
tional beta cells.
  Adult stem cells are the most important source for cell ther-
apy for various disease models, as they are free from the ethical 
problems of ES cells and could provide an unlimited resource. 
Many studies reported that insulin-producing cells can be gen-
erated from adult stem/progenitor cells that are present in bone 
marrow, adipose tissue, liver, intestine, spleen, salivary glands, 
neuronal tissues, and umbilical cord blood [19]. 
  Adult stem/progenitor cells from liver tissue are a good source 
for making insulin-producing cells, as the liver and pancreas 
share common bipotential precursor cells within the embry-
onic endoderm. Isolated neurogenein 3 (Ngn3)-positive cells 
from the injured adult mouse pancreas [20] or clonally identi-
fied cells from adult pancreatic islets and ductal populations 
[21] have the ability to differentiate into cells with beta cell func-
tion. Umbilical cord blood (UCB)-derived mesenchymal stem 
cells (MSCs) may be an ideal source of stem cells that can be 
obtained without pain or risk of viral contamination to the do-
nor. UCB-derived MSCs have a multi-lineage differentiation 
capacity under specific manipulation of the culture conditions. 
Several studies have shown that UCB stem cells can be differ-
entiated into insulin-producing cells.
  Adipose tissue-derived stem cells (ADSCs) are located with-
in the stromal vascular fraction of adipose tissue. ADSCs can 
be isolated in high numbers from human adipose tissue at low 
risk to the patient. An interesting study reported the successful 
differentiation of functional insulin-producing cells from the 
stem cells of human eyelid adipose tissue using a two-step cul-
ture condition [22]. Similar to other stem cells, Pdx-1-trans-
duced ADSCs derived from human or murine tissue could dif-
ferentiate into insulin-expressing cells under specific culture 
conditions [23]. Thus, ADSCs have the potential as a useful 
source for cell replacement therapy in diabetes.
  Despite the success of the differentiation protocols, as de-
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scribed in this review, none of the protocols are yet able to pro-
duce fully functional mature beta cells. Further research is re-
quired to understand how endogenous beta cells differentiate 
and to develop methods for generation of sufficient functional 
beta cells for clinically applicable therapies for diabetes.

IN VIVO REGENERATION OF BETA CELLS	

Approaches for in vivo regeneration are to stimulate replication 
of beta cells and induce neogenesis. The beta cell mass normal-
ly fluctuates in response to environmental and physiological 
changes. Beta cells can replicate throughout life, although at a 
low level. This replication can be stimulated by pregnancy and 
diabetogenic stimuli, such as glucose and free fatty acids, sug-
gesting that beta cell growth can be artificially induced.
  Growth factors, such as activin A and hepatocyte growth fac-
tor, have been used to induce beta cell replication. Other fac-
tors, like a combination of epidermal growth factor (EGF) and 
gastrin, keratinocyte growth factor, betacellulin (BTC), and 
glucagon-like peptide-1 (GLP-1) or its long-lasting homolog, 
exendin-4, have also been used to induce beta cell replication. 
In addition, members of the regenerating protein family, such 
as Reg protein and islet neogenesis gene associated protein (IN-
GAP), can stimulate proliferation of beta cells and have been 
investigated as potential therapies for diabetes [24].
  Both GLP-1 and EGF have been combined with gastrin as a 
therapy to restore the beta cell mass. These treatments restored 
normoglycemia in autoimmune non-obese diabetic (NOD) 
mice, both by restoring the beta cell mass and by downregulat-
ing the immune response [25,26]. In a similar study, combina-
tion therapy with EGF and gastrin induced neogenesis of hu-
man beta cells from pancreatic duct cells in vitro, as well as from 
human pancreatic cells implanted into immunodeficient NOD.
scid mice [27].
  Clinical trials are underway for beta cell regeneration in type 
1 diabetes using synthetic exendin-4 (AC2993). Further clini-
cal trials using immune suppressors and EGF and gastrin ana-
logs (E1-INFTM) for type 1 and type 2 diabetes have been re-
ported [28]. In phase 2 clinical trials, INGAP peptide revealed 
no consistent treatment effects on fasting glucose, insulin, or 
C-peptide in type 1 and type 2 diabetic patients, although the 
effects on HbAlc and stimulated C-peptide were promising [29]. 
  The expression of beta cell transcription factors either with 
or without a signaling molecule, such as a growth factor, has 
shown to be a successful method of generating new insulin-

producing cells. Delivery of the pancreatic and duodenal ho-
meobox-1 (Pdx-1) gene into the mouse pancreas or intraperi-
toneal injection of Pdx-1 protein induced beta cell neogenesis 
and ductal proliferation [30]. Delivery of the Pdx-1 gene along 
with the BTC gene into the pancreas of streptozotocin-induced 
diabetic rats via ultrasound-targeted microbubble destruction 
normalized blood insulin and C-peptide levels. Blood glucose 
levels were maintained below 200 mg/dL [31]. Intraperitoneal 
injection of recombinant Pdx-1 into streptozotocin-induced 
diabetic mice increased islet cell numbers and proliferation in 
pancreata [32]. 
  An exciting report demonstrated that expressing a specific 
combination of three transcription factors, Pdx-1, Ngn3, and 
musculoaponeurotic fibrosarcoma oncogene homolog A 
(MafA), resulted in amelioration of hyperglycemia. The tran-
scription factors were administered by an adenoviral mediated 
delivery reprogrammed pancreatic exocrine acinar cells into 
beta cells. These beta cells were indistinguishable from endog-
enous islet beta cells in size, shape, and ultrastructure [33].
  Transcription factors, such as Pdx-1 and NeuroD, have been 
used not only to stimulate new insulin-producing cells in the 
pancreas, but also to confer beta cell-like characteristics to non-
islet tissue, such as in the liver and the intestine.
  Systemic injection of recombinant Pdx-1 resulted in expres-
sion of insulin and other genes related to pancreatic function 
not only in the pancreas, but also in the liver [32]. Many meth-
ods have been tried to differentiate liver cells into insulin-pro-
ducing cells. Delivery of the Pdx-1 gene or NeuroD and BTC 
genes to the liver resulted in the expression of insulin and oth-
er islet-specific genes in liver. These genes ameliorated hyperg-
lycemia in diabetic mice [34,35]. Systemic delivery of Pdx-1 
carrying the VP16 transcriptional activation domain (Pdx-1/
VP16) or Ngn-3 and BTC gene resulted in insulin production 
in liver [36,37]. 
  In vivo regeneration in the intestine has also been investigat-
ed. Forced expression of Pdx-1 [38], MafA [39], or GLP-1 [40] 
in intestinal epithelia by adenovirus-mediated gene transfer 
induced the expression of insulin and lowered blood glucose 
levels in streptozotocin-induced diabetic animals. 
  The injection of stem/progenitor cells was shown to induce 
insulin-producing cells. It is unclear whether the injected stem/ 
progenitor cells differentiate into insulin-producing cells or ex-
ert other effects that preserve or increase the beta cell mass. The 
injection of allogeneic splenocytes, in combination with com-
plete Freund’s adjuvant (to prevent anti-islet autoimmunity), 
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corrected diabetes in diabetic NOD mice [41]. However, it re-
mains to be determined whether the injected splenocytes are 
the true source of insulin-producing cells. A successful clinical 
trial involving autologous hematopoietic stem cell transplanta-
tion and immune suppressor in diabetic patients was reported 
[42]. Although beta cell function was shown to be increased, 
the mechanism of action was unclear. In vivo islet cell regener-
ation therapy is very challenging. Most methods are still in the 
early stages and are not yet ready for clinical application.

CONCLUSION

Significant progress has been made in cell-based therapies to 
treat diabetes. Islet transplantation is a promising strategy for 
the reconstitution of a functional beta cell mass. This method 
provides stable glycemic control without hypoglycemic epi-
sodes, as well as independence from exogeneous insulin. How-
ever, a shortage of islet donors is a major limiting factor for cell 
replacement therapy in type 1 diabetes. The differentiation of 
pluripotent stem/progenitor cells into insulin-producing cells 
creates a possible source for the generation of therapeutic in-
sulin-producing cells. However, the clinical application of this 
technology is slow. Beta cell growth and differentiation factors, 
the expression of beta cell transcription factors, and the injec-
tion of stem/progenitor cells has been used to regenerate beta 
cells in vivo. Most results have been obtained from studies with 
animal models, but very little has been tried clinically. The de-
velopment of beta cells and their maintenance postnatally needs 
to be fully understood. The underlying mechanisms for the nor-
mal renewal process in adults will accelerate the clinical appli-
cation of islet cell replacement and regeneration therapy for 
diabetic patients. 
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