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ABSTRACT

Apoptosis is a tightly regulated, cell deletion process that plays an important role in various cardiovascular diseases, such as 
myocardial infarction, reperfusion injury, and heart failure. Since cardiomyocyte loss is the most important determinant of 
patient morbidity and mortality, fully understanding the regulatory mechanisms of apoptotic signaling is crucial. In fact, the 
inhibition of cardiac apoptosis holds promise as an effective therapeutic strategy for cardiovascular diseases. Caspase, a critical 
enzyme in the induction and execution of apoptosis, has been the main potential target for achieving anti-apoptotic therapy. 
Studies suggest, however, that a caspase-independent pathway may also play an important role in cardiac apoptosis, although 
the mechanism and potential significance of caspase-independent apoptosis in the heart remain poorly understood. Herein 
we discuss the role of apoptosis in various cardiovascular diseases, provide an update on current knowledge about the mo-
lecular mechanisms that govern apoptosis, and discuss the clinical implications of anti-apoptotic therapies. (Korean Circ J 
2010;40:299-305)
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Introduction

Heart disease is the leading cause of morbidity and mor-
tality in the developed world. Apoptosis, a highly regulated 
cell death process, plays an important role in numerous 
pathologic conditions involving the heart,1)2) and the inhibi-
tion of apoptosis is emerging as a potential therapeutic strat-
egy. This review provides an overview of the evidence for 
apoptosis in cardiovascular disease, discusses the molecular 
pathways that may be involved, and reviews the clinical im-
plications.

Apoptosis in Cardiovascular Diseases

Apoptosis has been shown to be involved in both acute and 

chronic loss of cardiomyocytes in myocardial infarction, isc-
hemic heart disease, reperfusion injury, various forms of car-
diomyopathy, and the development of both acute and chronic 
heart failure.3-5) Animal and human studies have demonstrat-
ed that apoptosis is present in the border zone of the infarct-
ed myocardium in the early phase, confirming the important 
role of apoptosis in acute myocardial loss after myocardial in-
farction.6) 

Further studies showing that apoptosis is also present mon-
ths later suggest that apoptosis may also play a role in remod-
eling and in the subsequent development of heart failure.7) 
Since cardiomyocyte loss is the most important determinant 
of morbidity and mortality after myocardial infarction, pre-
venting cardiomyocyte loss becomes a critical issue in the man-
agement of myocardial infarction. A better understanding of 
the regulatory mechanisms of apoptotic signaling is crucial in 
devising such strategies.

In contrast to acute myocardial injury, the pathogenesis of 
chronic heart failure is characterized by the progressive loss 
of cardiomyocytes evolving over months to years. Numerous 
studies involving human and animal models of heart failure 
suggest that apoptosis may be an important contributor to 
cardiomyocyte loss in the setting of heart failure.3) However, 
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since the prevalence of apoptosis is very low in most forms of 
chronic heart failure (usually <0.1% terminal deoxynucleo-
tidyl transferase dUTP nick end labeling-positive cells), whe-
ther or not apoptosis significantly contributes to the patho-
genesis of heart failure or is an epiphenomenon associated 
with end-stage heart failure is still debated.5) Nevertheless, 
even at a very low level, the contribution of apoptosis over 
months to years is likely to prove clinically significant in pa-
tients with chronic heart failure. The current dilemmas are what 
forms of cell death (apoptotic vs. non-apoptotic) predomi-
nate in chronic heart disease, and whether or not the inhibi-
tion of cell death in the form of chronic inhibition therapy will 
prove beneficial in blocking the progression of clinical heart 
failure.

Mechanism of Apoptosis

Over the last two decades, much work has been done to id-
entify and elucidate the molecular mechanisms that regulate 
and execute apoptosis. These studies have shown that apop-
tosis is a tightly regulated, cell death process that involves close 
interactions among various pro- and anti-apoptotic molecules.  
It is generally agreed that apoptosis cannot be strictly identi-
fied by only one or two characteristics. In fact, a number of dif-
ferent types of mechanisms have been identified and charac-

terized, such as intrinsic vs. extrinsic pathway or caspase-de-
pendent vs. caspase-independent apoptosis. 

Caspase-mediated apoptosis
The caspases are a family of cysteine proteases that cleave 

target proteins at specific aspartate residues.8)9) The caspases 
are produced as zymogens that are activated after cleavage of 
their prodomains.8) Caspases are grouped based on structure 
and function. Initiator caspases possess a long prodomain 
with a functionally important interacting domain. Caspase-9 
and -8 are examples of initiator caspases, which act upstream 
to initiate and regulate apoptosis, and downstream to activate 
effector caspases. In comparison, effector caspases, such as 
caspase-3, are characterized by short prodomains, and gen-
erally depend on initiator caspases for activation. Studies show 
that homologous deletions of specific caspases most often 
cause tissue-specific or stimulus-dependent effects, rather than 
a global suppression of cell death.10) These findings suggest 
that distinct sets of caspases may be involved in specific apop-
totic pathways, and they likely act in a tissue-specific manner. 
In general, caspase-mediated apoptosis occurs either by ex-
trinsic (involving death receptors) or intrinsic (mitochondria-
mediated) pathways (Fig. 1).11-16) These two pathways usually 
converge on a common effector caspase, such as caspase-3, 
to execute the final morphologic and biochemical alterations 

Fig. 1. Schematic diagram of apoptotic signaling. Apoptosis can be initiated by caspase-dependent or -independent mechanisms. In caspase-
dependent mechanism, either death receptor or mitochondria (or both) are involved in initiation of apoptosis. In the caspase-independent me-
chanism, apoptotic factors, such as AIF, are released from the mitochondria, which trigger the apoptotic cascade. AIF: apoptosis inducing factor.
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that are characteristic of apoptosis.8) 

Extrinsic death receptor apoptotic pathway in cardiovascu-
lar disease 

The death receptor-mediated pathway is initiated by the 
binding of a death ligand {e.g., Fas ligand (FasL) or tumor 
necrosis factor-alpha (TNF-α)} to a membrane-bound death 
receptor (e.g., Fas or TNF-α receptor).14) This interaction leads 
to the recruitment of a death domain {e.g., Fas-associated 
death domain (FADD)}, which activates caspase-8 followed 
by the downstream effector caspases. Several studies suggest 
that the extrinsic apoptotic pathway has an important patho-
physiologic role in the pathogenesis of heart failure.17-23) The 
importance of FADD, for example, has been demonstrated 
by gene knockout, which causes embryonic lethality result-
ing from heart failure and abdominal hemorrhage.17) Com-
ponents of the death receptor-mediated apoptotic pathway 
are up-regulated in cardiomyocytes during myocarditis, par-
ticularly in immune-mediated cardiomyopathy.18) In human 
immunodeficiency virus cardiomyopathy, both death recep-
tor- and mitochondria-mediated apoptosis pathways are in-
volved in the apoptosis of cardiomyocytes.19) In addition, sev-
eral studies have reported that failing human myocardium 
expresses high levels of TNF-α,20)21) and transgenic mice over-
expressing cardiac-specific TNF-α develop dilated cardiomy-
opathy.22)23) These data suggest that increased levels of TNF-α 
are detrimental to the heart by activation of the death receptor 
pathway.

The Fas pathway may be an important mediator of cardio-
myocyte apoptosis during ischemia/reperfusion (I/R) in vivo. 
Various knockouts of the death receptor pathway have been 
shown to improve cardiac function after I/R injury by inhib-
iting apoptosis. Mice lacking Fas exhibit reduction in infarct 
size after I/R.24) However, the heart has high levels of death 
receptor pathway inhibitors, such as apoptosis repressor with 
caspase recruitment domain (ARC) and FLICE-inhibitory pro-
tein. Indeed, cardiac-specific overexpression of FasL does 
not cause increased cardiomyocyte apoptosis,23)25) and TNF 
receptor 1 or 2 knockout in mice does not affect infarct size 
after coronary artery ligation.26) These findings suggest that 
although the death receptor-mediated pathway could be im-
portant in certain situations (e.g., autoimmune-mediated he-
art failure), the role of the death receptor-mediated pathway 
in myocardial infarction or I/R is unclear. 

Intrinsic mitochondria-mediated apoptotic pathway in car-
diovascular diseases

Mitochondria constitute approximately 30% of the cell vol-
ume in cardiomyocytes, and play an essential role by generat-
ing adenosine triphosphate (ATP) for cellular function. How-
ever, upon apoptotic stimulation, such as oxidative stress and 
serum deprivation, mitochondria become a critical organelle 

in the initiation of cell death. In the mitochondria-mediated 
or intrinsic apoptotic pathway, an apoptotic insult induces the 
mitochondria to release cytochrome c into the cytosol.11) Th-
ere mitochondria forms an activation complex, the apopto-
some, with apoptotic protein activating factor-1 (Apaf-1) and 
caspase-9.12)27) Apoptosome formation results in the autopro-
cessing of caspase-9, as well as the activation of downstream 
caspases, such as caspase-3.12)15) 

The regulation of the release of apoptotic factors, such as 
cytochrome c from mitochondria, is modulated by the Bcl-2 
family of proteins. The Bcl-2 family of proteins can be cate-
gorized as either anti-apoptotic (e.g., Bcl-2 and Bcl-xL) or 
pro-apoptotic (e.g., Bad, Bak, and Bax).28)29) One of the pro-
apoptotic members, Bcl-2-interacting protein (Bid), may re-
gulate the interaction between death receptor and mitochon-
drial pathways. Bid is usually located in the cytosol, but when 
it is cleaved to ‘truncated Bid’ (tBid) by activated caspase-8, 
Bid translocates to the mitochondria and regulates cyto-
chrome c release.30) The protective role of anti-apoptotic Bcl-2 
in the heart is demonstrated by the fact that cardiac-specific 
overexpression of Bcl-2 significantly reduces infarct size af-
ter I/R.31)32) Deleting pro-apoptotic Bax also results in reduced 
infarct size and improved function after experimental myo-
cardial infarction.33)

Additional regulatory mechanisms of caspase-mediated pa-
thways involve caspase inhibitors. Inhibitor of apoptosis pro-
teins (IAPs) are prototypical inhibitors of caspases that block 
caspase function, usually by directly binding to the caspas-
es.34) Cardiac-specific overexpression of cIAP2 reduces in-
farct size after I/R in isolated perfused hearts.35) Another im-
portant caspase inhibitor is ARC, which is found in high levels 
in skeletal muscle and heart.36)37) ARC interacts with upstream 
caspases and has been shown to block caspase-2 and -8, as 
well as cytochrome c release. The overexpression of ARC de-
creases infarct size after I/R.38) We have also identified other 
anti-apoptotic factors, such as HS-1 associated protein-1 (HAX-
1), which acts by directly interacting with pro-caspase-9, and 
prevents its activation.39) 

Caspase-independent apoptosis (Fig. 1)
Although caspase activation is most likely the predominant 

mechanism in the induction of apoptosis, accumulating evi-
dence demonstrates that apoptosis may also be mediated by 
mechanisms that do not involve caspases.40-42) The so-called 
caspase-independent pathways involve the release of apoptot-
ic factors, such as apoptosis inducing factor (AIF), from mi-
tochondria to the cytosol followed by translocation to the 
nucleus, where they cause deoxyribonucleic acid (DNA) frag-
mentation without concurrent caspase activation.43)44) In con-
trast to caspase-mediated apoptosis, which is characterized by 
an oligonucleosomal DNA fragmentation in multiples of -200 
bp with an advanced chromatin condensation pattern, caspase-
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independent apoptosis is characterized by large scale DNA fr-
agmentation (-50 kbp) with an early chromatin condensation 
pattern.41)42) The potential importance of caspase-independent 
pathways in the heart is highlighted by the fact that cardio-
myocytes contain high levels of endogenous caspase inhibi-
tors, thereby making them relatively resistant to caspase-de-
pendent apoptosis.40) Thus, the role of caspase-independent ap-
optosis may be amplified in the heart. 

Apoptosis-inducing factor
The best documented example of caspase-independent ap-

optosis involves AIF,41-43)45)46) AIF is a flavoprotein localized 
in the mitochondrial intermembrane space and is required 
for oxidative phosphorylation.47) Upon apoptotic stimulation, 
AIF is released into the cytosol and translocates into the nucle-
us to induce DNA fragmentation without caspase activation.41) 
This notion is supported by the fact that microinjection of 
AIF into cells induces apoptotic changes, such as chromatin 
condensation, that are not blocked by a caspase inhibitor 
(zVAD.fmk),41)48) In the heart, AIF has been implicated in 
apoptosis induced by oxidative stress, ischemia reperfusion, 
and heart failure in vitro and in vivo.49)50) AIF also accumu-
lates in the cytosolic and nuclear fractions of the heart fol-
lowing I/R.51) We have demonstrated significant activation 
of caspase-independent apoptosis in the Dahl salt-sensitive 
rat model of heart failure.52) We have also recently shown that 
AIF-induced apoptosis is activated in cardiomyocytes, espe-
cially in hypertrophic cardiomyocytes.53)  

Despite its pro-apoptotic function, AIF has also been shown 
to possess an essential pro-survival function. Homozygous 
AIF knockout in a mouse is lethal to embryos,54) and the Har-
lequin (Hq) mouse, which expresses 10-20% of normal AIF 
levels, is prone to increased damage from I/R injury.55) In ad-
dition, a mouse with cardiac and skeletal muscle-specific kn-
ockout of AIF develops severe dilated cardiomyopathy and 
skeletal atrophy accompanied by defective mitochondrial re-
spiratory activity.56) How, then, is AIF able to function as both 
a survival and a death-inducing factor? An elegant study by 
Cheung et al.57) using gene-targeted mice with various AIF mu-
tants demonstrated that AIF is required for cell survival and 
normal mitochondrial respiration in neurons. On the other 
hand, during apoptotic stimulation, the pro-apoptotic func-
tion of AIF is recognized when AIF is released from mitoch-
ondria and translocates to the nucleus, where it promotes DNA 
damage. 

Other factors involved in caspase-independent apoptosis
Other caspase-independent apoptotic effectors have been 

demonstrated, including endonuclease G (Endo G), serine 
protease high temperature requirement protein A2 (HtrA2/
Omi), and Bnip3. Endo G, a conserved nuclease, is involved 
in mitochondrial DNA replication with important roles in 

recombination and repair. Similar to AIF, Endo G translocates 
from the mitochondria to the nucleus during apoptosis and 
induces DNA fragmentation independent of caspases.58-60) 
Endo G and truncated AIF become the essential mediators of 
apoptosis in a caspase-independent manner in cardiomyo-
cytes.61) Interestingly, Endo G null mice, however, do not have 
any obvious defects in development or in the regulation of 
apoptosis.58)59) HtrA2/Omi, a mitochondrial serine protease 
with pro-apoptotic properties, may also contribute to caspase-
independent apoptosis.62) There is evidence that HtrA2/Omi 
also translocates from the mitochondria to the cytosol dur-
ing I/R to induce apoptosis. In heart, a specific HtrA2/Omi 
inhibitor, ucf-101, has also been shown to attenuate apopto-
sis and decrease infarct size.63) 

Other types of cell death

Endoplasmic reticulum-stress death pathway
The endoplasmic reticulum (ER) is responsible for the syn-

thesis and folding of secreted proteins, as well as Ca2+ storage. 
Several studies have demonstrated a role for ER stress in the 
pathogenesis of diabetes and heart failure.64) Consistent with 
these observations, defective ER quality control in transgenic 
mice with mutant KDEL receptor (a receptor for ER chaper-
ones) causes dilated cardiomyopathy,65) suggesting that apop-
tosis mediated by ER stress may be a significant contributor to 
cardiovascular disease. ER stress-induced cell death may oc-
cur via two different mechanisms. Under ER stress, activated 
caspase-12 activates caspase-3, leading to apoptosis.66) The sec-
ond death-signaling pathway activated by ER stress is activa-
tion of a transcriptional program via up-regulation of the tran-
scription factor, CHOP/GADD 153. CHOP activates the tr-
anscription of genes encoding pro-apoptotic proteins, includ-
ing the BH3-only protein, Puma.67) Recently, it has been sug-
gested that Puma is a critical component of ER stress-induced 
apoptosis in cardiac myocytes.68) The Bcl-2 proteins have been 
shown to localize to the ER, where they can regulate the levels 
of Ca2+ stored in the ER.69)

Non-apoptotic cell death
This review is focused on apoptotic cell death, but non-ap-

optotic mechanisms, such as necrosis and autophagy, are 
also important cell death processes in heart. Necrosis, which 
has often been viewed as an accidental and uncontrolled cell 
death process, might also be a highly orchestrated type of pro-
grammed cell death, such as apoptosis, and this subset of reg-
ulated necrosis is termed necroptosis.70) Unlike apoptosis or 
necrosis, autophagy is primarily involved in survival. Autoph-
agy enables cells to dispose of cytoplasm and organelles by 
fusing vesicles containing cellular components and lysoso-
mes.71) However, several studies have demonstrated that au-
tophagy has features resembling apoptosis, including a pos-
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sible association with the caspases and Bcl-2.72-75) We also re-
cognize that there is considerable controversy at present ar-
ound differentiating the various types of cell death. There 
may be a spectrum of different mechanisms, and which mode 
of cell death predominates depends on the specific type of 
apoptotic stimuli, the degree of insult, and the intracellular 
ATP concentration. These are important and controversial is-
sues at this time, and further studies are needed to clarify these 
modes of cell death. 

Inhibition of Apoptosis as Therapy  
for Cardiovascular Disease

Since apoptosis is implicated in the pathogenesis of many 
different cardiovascular diseases, the inhibition of apoptosis 
promises to be an extraordinarily important target for thera-
peutic intervention. Even though the therapeutic targeting 
of apoptotic pathways has potential in the treatment of heart 
failure, several important questions remain to be answered. 
First, it has not been shown whether or not the inhibition of 
apoptosis can delay or prevent the development of heart fail-
ure. It is possible that inhibiting apoptosis may simply result 
in the activation of another mode of cell death, such as ne-
crosis, which may have more deleterious effects on neighbor-
ing cells and ultimately a worse outcome. Although the early 
studies on animal models of heart failure have been encour-
aging, the long-term consequences of inhibiting apoptosis in 
the heart are not known. Second, the safety of anti-apoptotic 
therapy has not been rigorously tested. Apoptosis is needed 
for the normal functioning of various cell systems, such as 
the immune system, and an excessive inhibition of apoptosis 
is associated with lymphoma or autoimmune disorders. Th-
erefore, the chronic systemic inhibition of apoptosis may have 
significant deleterious consequences in non-cardiac organs. 
Third, anti-apoptotic therapy for heart failure may not apply 
to all types of heart failure. The most ideal conditions for anti-
apoptotic intervention, in our opinion, occur in transient and 
acute insults, such as reperfusion. During reperfusion, cardio-
myocyte apoptosis occurs at a high rate during a defined time 
period; thus, a short treatment period may be highly effec-
tive. Moreover, a short therapeutic course has the additional 
benefit of minimizing the possible deleterious side effects aris-
ing in other organ systems.

Future Outlook and Conclusion

It is clear that apoptosis plays a critical role in the pathogen-
esis of various cardiovascular diseases and the inhibition of 
apoptosis promises to be an extraordinarily important target 
for therapeutic intervention. However, more work is neces-
sary to understand the molecular mechanisms that govern 
these processes, and the significance of apoptosis in heart fail-

ure. For example, although caspase inhibition has been shown 
to reduce the acute loss of myocardium in various animal mo-
dels,76)77) caspase inhibition might not be completely effective 
in blocking apoptotic cell death.78) With the potentially sig-
nificant contribution of caspase-independent apoptotic cell 
death in the heart, it is important to better define the role of 
the caspase-independent pathway in cardiac apoptosis at this 
time. Further work must be carried out in well-defined ex-
perimental frameworks that are tissue-targeted and time-spe-
cific, with clear quantitative end points. Only then will we be 
able to conduct meaningful human studies to answer the qu-
estion of whether the inhibition of apoptosis in heart failure 
will translate into clinical benefit.
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