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ABSTRACT 

Ischemia is the most common and important cause of injury to cardiomyocytes. Acute ischemia causes profound 
derangement of the cellular energetics and metabolism, and this ultimately leads to cell death. Experimental 
studies have demonstrated the presence of an endogenous protective mechanism that can diminish or delay cell 
death from ischemic insult; this is known as ischemic preconditioning. In this review, we summarize the recent 
knowledge of the cellular biology of acute ischemic injury and also signaling mechanisms of cardioprotection 
that are involved in preconditioning. Further, we briefly discuss the clinical implications. (Korean Circulation J 
2006;36:165-177)  
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Introduction 

 
Ischemia is by far the commonest form of injury 

inflicted upon the myocardium. The clinical presenta-
tion of myocardial ischemia encompasses a broad spec-
trum of anginal syndromes, myocardial infarction and 
congestive heart failure. Because of the widespread and 
increasing prevalence of coronary atherosclerosis, isch-
emic heart disease is currently the single most impor-
tant identifiable cause of cardiovascular morbidity and 
mortality throughout the world.1)  

During acute ischemia, the ensuing derangement of 
intracellular metabolism and energetics leads to the 
rapid demise of the myocardial cells if the cause of is-
chemia is not promptly removed. Actually, despite the 
progress in reperfusion therapy that has been made 
during the last decades, many patients with acute myo-
cardial infarction do not get the optimal therapy due 
to delays in their arrival to the hospital or the lack of 
medical resources.2) Therefore, a strategy that takes ad-
vantage of cells’ ability to prolong their survival under 
ischemic conditions can be an alternative way to pro-
tect the myocardium. 

This review is intended to describe the intracellular 
biology involved in acute ischemic injury, and to discuss 
the potential protective mechanisms inherent in cardio-

myocytes, which can promote the survival of cells under 
ischemic conditions. This review will not cover reper-
fusion injury per se. 
 

Cellular Injury in Acute Ischemic Stress 
 

The mammalian heart is an obligatory aerobic organ; 
it consumes more oxygen per minute than any other 
organ in the body.3) It cannot produce enough energy 
under anaerobic condition to maintain its essential 
cellular processes. Thus, a constant supply of oxygen is 
indispensable to sustain cardiac function and viability. 
Any abrupt cessation of the blood supply causes dra-
matic intracellular changes in the cardiomyocytes, and 
this ultimately leads to cell death. 
 
Metabolic changes 

The oxygen supply that’s available to the myocar-
dium is depleted within 10 second after the interrup-
tion of blood flow. In the absence of an oxygen supply, 
oxidative metabolism ceases, and the rate of anaerobic 
glycolysis increases dramatically to compensate for the 
loss of high-energy phosphate production.4) The source 
of glucose is entirely from glycogenolyis,5) although 
exogenous glucose can be used during less severe isch-
emia.6) Because even the maximum glycolytic rate can-
not adequately compensate for the loss of oxidative 
adenosine triphosphate(ATP) generation,7) the creatine 
phosphate(CP), which is the stored energy, is rapidly 
consumed. Consumption of this stored energy can save 
intracellular ATP during the first several minutes of 
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ischemia. However, once the CP stores are depleted, 
ATP levels decline precipitously.8) As the high-energy 
phosphate bonds are hydrolyzed, inorganic phosphate 
(Pi) and protons(H+) accumulate. 

In the continued absence of oxygen, anaerobic gly-
colysis produces lactate rather than acetyl-CoA. Res-
tricted washout in myocardial tissue allows for the 
accumulation of products of anaerobic metabolism 
and the nucleotide catabolites pool in the tissue. The 
build-up of lactate, H+ and the reduced form of the 
coenzyme nicotinamide adenine dinucleotide(NADH) 
progressively inhibits glycolysis at the level of glyceral-
dehyde phosphate dehydrogenase(GPD)(Fig. 1).9) The 
rate of anaerobic glycolysis markedly slows within 60 
seconds. The later cessation of glycolysis in ischemia is 
attributed to the very low sarcoplasmic ATP concen-
tration.10) In the absence of ATP, glycolysis is inhibited 
at the level of fructose-6-phosphate(F6P) because 
ATP is required to phosphorylate F6P to fructose-1, 6-
diphosphate(F1, 6P) via phosphofructokinase, which 
is the key rate-limiting enzyme in the glycolytic pathway. 
The accumulation of intracellular calcium([Ca2+]i) 
also inhibits glycolysis by facilitating binding of calmo-
dulin to phosphofructokinase.11) The end-result is a 
complete shutdown of the myocardial metabolism, and 
the myocyte is left with no means for maintaining its 
survival.  
 
Intracellular ion changes 

The intracellular ion homeostasis is profoundly dis-
turbed during ischemia, although the cause-and-effect 
relationship with ischemic injury is often difficult to 
ascertain. 1) Over the course of several minutes of is-
chemia, intracellular Na+([Na+]i) increases up to several 

times the normal level, in part through the entry of 
Na+ via the voltage-dependent channels,12) or through 
the action of Na+/H+ and Na+/Ca2+ exchange.13) Later 
during ischemia, inhibition of the Na+ pump that re-
sults from ATP depletion may cause accumulation of 
[Na+]i.14) Elevated [Na+]i may be a critical factor that 
contributes to other functional abnormalities such as 
an overload of intracellular Ca2+ or an K+ efflux. 2) A net 
cellular K+ loss occurs within 15-30 seconds after the 
onset of myocardial ischemia.15) This is predominantly 
due to an increase of the K+ efflux rather than a decrease 
of the K+ influx due to decreased activity of the Na+ 
pump.15) The con-sequent extracellular K+ accumula-
tion predispose the heart to the development of arrhy-
thmia. 3) Because numerous factors regulate intra-
cellular Ca2+([Ca2+]i) during ischemia, it has been 
difficult to determine [Ca2+]i levels in the ischemic 
heart in vivo. Although intracellular Ca2+([Ca2+]i) 
overload has been implicated in the pathogenesis of 
reperfusion injury, recent studies have indicated that 
[Ca2+]i rises after the onset of ischemia.16) This may be 
related to the increased [Na+]i,14) which served to drive 
Ca2+ intracelluarly via Na+/Ca+ exchange, or it may be 
secondary to the alterations in the calcium cycling of 
the sarcoplasmic reticulum.17) Elevated levels of [Ca2+]i 
lead to activation of the calcium-dependent enzymes, 
including proteases and phospholipases, which these 
can degrade various cellular structures.18)19) Furthermore, 
calcium overload in the mitochondria can induce open-
ing of the permeability transition pore(PTP), allowing 
the release of calcium, cytochrome c, nicotinamide ade-
nine dinucleotide(NAD) and apoptogenic factor into 
the cytosol.20) 
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Fig. 1. Energy metabolism of cardiomyocytes in the normal condition (A) and during ischemia (B). A: the normal myocardium generates most of
its ATP by oxidative metabolism and it generates less than 10% of its energy by anaerobic glycolysis. Fatty acid, in the form of fatty (acyl) esters
containing acyl-CoA (FA-Co-A), is the preferred metabolic substrate, with glucose accounting for the remaining part. B: in acute ischemia, oxidative
metabolism ceases almost immediately (shaded area), and the rate of anaerobic glycolytic metabolism dramatically increases to compensate. Restricted
washout and accumulation of ions and metabolites such as the hydrogenion (H+) and inorganic phosphate (Pi) suppress the glycolytic metabolism
(arrow), leading to a complete standstill of the energy generating machinery. ADP: adenosine diphosphate, ATP: adenosine triphosphate, FAD:
flavin adenine dinucleotide, FADH: the reduced form of the coenzyme flavin adenine dinucleotide, NAD: nicotinamide adenine dinucleotide,
NADH: the reduced form of the coenzyme nicotinamide adenine dinucleotide. 
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Structural changes  
Few changes occur in the ultrastructure of the my-

ocyte during the early phase of ischemic injury.21) The 
myofibrils of the myocytes are generally stretched, and 
glycogen deposits are diminished, reflecting the pre-
sence of anaerobic glycolysis. The chromatin of the nu-
cleus is aggregated peripherally and some of the mito-
chondria become swollen.  

After 30-40 minutes of severe ischemia, the injury 
becomes biologically irreversible. This transition to 
irreversibility is associated with new ultrastructural ch-
anges.21) These include diffuse mitochondrial swelling, 
the appearance of amorphous densities in the matrix 
space of the mitochondria, virtual absence of glycogen, 
marked peripheral aggregation of nuclear protein and 
the appearance of discontinuities in the cell mem-
brane.  
 

Cell Death in Acute Ischemia 
 
Apoptosis, oncosis and necrosis 

Cell death is an ultimate result of severe ischemia 
unless the ischemia is interrupted during its course. 
Conventionally, cardiomyocyte death following ischemia 
was considered to involve necrosis or ‘accidental cell 
death’. However, collective evidence over the last decade 
from several experimental and clinical studies have in-
dicated that early cell death after myocardial ischemia 
predominantly involves apoptosis followed by necrosis22) 
and/or ‘oncosis’.23) Apoptosis is a highly regulated, en-
ergy-dependent, sequential form of cell death that is 
characterized by such morphological features as mem-
brane blebbing, chromatin condensation, nuclear cond-
ensation and cell shrinkage.24) These changes are direct 
consequence of the activation of preexisting protease 
called caspases, which executes the cleavage of substrate 
such as cytoskeletal proteins, DNA repair enzymes and 
protein kinase.25) Oncosis is cell death that is charac-
terized by swelling, disruption of the sarcolemmma and 
the mitochondria, chromatin clumping and removal  

of debris by the inflammation process.24) Necrosis is the 
final, common process of cellular degradation, and this 
is regardless of the initial mode of cell death, be it apo-
ptosis or oncosis. 
 
Mode of death in the ischemic model 

Since its first discovery, apoptosis has been implicated 
in numerous cardiovascular diseases, including myo-
cardial infarction, reperfusion and heart failure.26) Ne-
vertheless, the relative contributions of apoptosis and 
oncosis during ischemia/reperfusion are a subject of 
fierce debate.27) Apoptosis might be directly initiated 
by the sub-lethal injury of cardiomyocytes in an energy-
depleted state. For example, hypoxia without depri-
vation of the glucose in media induces apoptosis in 
cultured rat cardiomyocytes.28) However, the role of apo-
ptosis does not appear important in the severe form of 
myocardial ischemia. A canine experiment showed that 
during global ischemia, apoptosis affects only a small 
fraction of myocytes while the majority of cells die by 
oncosis.29) An in vitro study with isolated adult rat 
cardiomyocytes showed that simulated ischemia mostly 
caused necrosis of cells.30) In our laboratory, we em-
ployed cultured neonatal rat ventricular myocytes 
(NRVMs) to test whether a simulated model of severe 
ischemia induces apoptosis.31) The ischemic condition 
was created by incubating cells with 95% N2 and 5% 
CO2 gas and depleting the glucose energy source of 
the media. Biochemical analysis and morphological 
examination revealed that under such conditions, most 
cells die by onconsis/necrosis(Fig. 2). Because apo-
ptosis is energy-dependent process, the decision bet-
ween oncosis and apoptosis may depend on the ATP 
concentrations.32) An ATP loss of more than 70%, as 
is present in severe ischemia, is not compatible with 
apoptosis and so it causes oncosis.32) Studies on human 
infarcts point to the fact that apoptosis in the center of 
the infarcted area is negligible while more cells are 
apoptotic in the border zone.33)34) Thus, the overall re-
sults from both experimental and clinical studies sup-

Fig. 2. Death of neonatal rat ventricular myocytes cultured under simulated acute ischemia. A: trypan blue staining 12 hours after ischemic culture
shows the dead cardiomyocytes, which failed to exclude the dye. B: annexin V/propodium iodide (PI) staining shows the uptake of red propodium
dye in the dead cardiomyocytes; this signified cell membrane disruption and oncotic cell death. C: the electron microscopic findings of dead cardio-
myocytes in simulated acute ischemia illustrate the features of oncontic cell death, including nuclei with serrated clumping of the peripheral
chromatin and diffuse mitochondrial swelling. No signs of apoptosis were observed, such as nuclear condensation or apoptotic bodies. 
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port that oncosis is the predominant mode of cell death 
in acute, severe ischemia. Apoptosis may be more res-
ponsible for the cell death occurring in reperfusion 
injury where large amounts of reactive oxygen species 
(ROS) are generated.35)36) There still exist unresolved 
issues regarding apoptosis in the pathogenesis of ische-
mic injury, especially as to the methods for quantifying 
and recognizing it.37) For example, ‘apoptotic’ myocytes 
in the infarct area appeared to be oncotic cells with 
DNA fragmentation when this was analyzed with a 
newer technique.23) Further studies are necessary to 
establish the role of apoptosis in myocardial ischemia. 
Identification of the mode of cell death does matter 
because understanding the mechanisms might allow 
for potential future therapeutic interventions to treat 
ischemia. 
 
Role of mitochondria  

The mitochondria play a key role in determining the 

cells’ fate during exposure to stress. Their role during 
ischemia/reperfusion is particularly important, not only 
because they are critically involved in the process of both 
apoptosis and oncosis, but also because they are asso-
ciated with a cardioprotective mechanism. Breakdown 
of the mitochondrial machinery for energy generation 
quickly leads to oncosis of the myocytes during ischemia. 

In apoptosis, the mitochondria participate in one of 
major signaling pathways(the intrinsic/mitochondrial 
pathway), leading to final activation of the caspase 
cascade(Fig. 3). Another pathway involves the external 
death receptors that are present on the cell surface(the 
extrinsic/death receptor pathway). In the extrinsic pa-
thway, binding of the ligand to the receptor promotes 
receptor trimerization and recruitment of such adaptor 
proteins as the TNF-R1 associated death domain(TR-
ADD) or the Fas associated death domain(FADD), 
which form a death-inducing signaling complex(DISC).38) 
Multiple procaspase-8 molecules bind to these adaptor 

Fig. 3. The major apoptotic pathways. In the extrinsic (death receptor) pathway, binding of the oligomerized ligand to its cognite cell surface receptor
initiates the formation of a multi-protein complex termed the death-inducing signal complex (DISC). This includes the recruitment of adaptor
proteins such as FADD: Fas associated death domain, TRADD: TNF-R1-associated death domain and procaspase-8, leading to dimerization and
the activation of procaspase-8. Activated caspase-8 cleaves and activates downstream procaspase-3. Once activated, caspase-3 executes the final process
of apoptosis. Caspase-8 also activates Bid (BH3[B cell leukemia/lymphom-2{Bcl-2} homology domain 3] interacting domain), a proapoptotic
protein, and Bid links the extrinsic and intrinsic pathways. In the intrinsic (mitochondrial) pathway, intracellular and extracellular death signals are
transmitted to the mitochondria via BH3-only protein (eg. Bid) and Bax (Bcl-2-associated X protein). Bax and Bak (Bcl-2 antagonist/killer, not
shown) stimulate the release of cytochrome c (red), and the other apoptogens. This process is opposed by Bcl-2. Cytochrome c, ATP (green),
Apaf-1: apoptosis proteinase activating factor-1 and procaspase-9 assemble into the apoptosome, leading to activation of procaspase-9, which
subsequently activates procaspase-3. TNF-R1: tumor necrosis factor type 1 receptor. 
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proteins via the death effector domains, resulting in 
proximity-induced cleavage and activation of caspase-
8.39) Active caspase-8 acts on a downstream target such 
as procaspase-3 to initiate a caspase cascade.  

In the intrinsic/mitochondrial pathway, members of 
the B cell leukemia/lymphom-2 gene(Bcl-2) family are 
important for the transduction of an internal apoptotic 
signal. Bcl-2 protein shares homology in several do-
mains; this is termed Bcl-2 homology(BH domains). 
The anti-apoptotic members of the Bcl-2 family in-
clude Bcl-2 and Bcl-XL and they share homology in 
the BH domains 1-4. The pro-apoptotic family mem-
bers generally lack the BH4 domain.40) The pro-apo-
ptotic family can be further subdivided into those 
members that share homology in domains 1, 2 and 
3(Bax and Bak), and the “BH-3 only” subset(Bid, Bad, 
Bnip/Nix and others) that share homology only in 
domain 3. Anti-apoptotic members such as Bcl-2 are 
localized on the cytoplasmic surface of the outer mito-
chondrial membrane where they sequester pro-apop-
totic BH-3 only protein, and so they prevent the acti-
vation of Bax and Bak.41) Apoptotic signaling initiates 
the movement of BH-3-only protein to the outer mi-
tochondrial surface where it triggers Bax or Bak to 
undergo a conformational change; this is followed by 
oligomerization and insertion into the outer mem-
brane. This is then followed by alterations of the mito-
chondrial structure that causes dissociation of cytoch-
rome c and permeabilization of the outer mitochon-
drial membrane, leading to release of apoptogenic fac-
tors such as cytochrome c, Smac/DIABLO, Omi/HtrA2, 
AIF and endonuclease G.42) cytochrome c, dATP, Apaf-
1 and procaspase-9 assemble into the apoptosome lea-
ding to procaspase-9, which subsequently activates pro-
caspase-3.43) The death receptor pathway and the mito-
chondrial pathway appear distinct, but cross-talk be-
tween the two pathways is possible: Bid is a substrate 
of caspase-8; thus, this is the connection between the 
extrinsic and intrinsic pathways.44) With regard to 
the upstream events, the intrinsic pathway integrates 
a broad spectrum of extracellular and intracellular st-
resses, in contrast to the extrinsic pathway that tran-
sduces a specialized set of death stimuli. The apoptotic 
stimulus for the intrinsic pathway during ischemia has 
not been clearly defined, but acidosis and intracellular 
Ca2+ have been shown to activate the mitochondrial 
pathway.45)  

Mitochondria use electron transport to generate 
a large electrochemical gradient across the inner 
membrane, which consists of the membrane poten-
tial(ᅀΨm® -200 mV, the major component under 
aerobic conditions) and a proton gradient(ᅀpH). 
This electrochemical gradient is then used by ATP 
synthase(F1-F0 ATPase) to phosphorylate ADP to ATP. 
To sustain the ᅀΨm requires that the inner mem-

brane (IM) remains relatively impermeable to ions, 
which is regulated by a multiprotein complex called the 
mitochondrial permeability transition(MPT) pore.46) 
The MPT pore is composed of adenine nucleotide tran-
slocator(ANT) at the inner membrane and the voltage-
dependent anion channel(VDAC, also called porin) 
at the outer membrane and cyclophilin D(CyP-D) in 
the matrix(Fig. 4).46) Mitochondrial permeability tran-
sition triggered by the opening of the MPT pore imme-
diately depolarizes the ᅀΨm; this causes ATP synthase 
to operate in reverse consuming ATP in a futile attempt 
to restore the proton gradient.47) This accelerates the 
depletion of cellular energy and hastens cell death. 
Mitochondrial permeability transition contributes to 
apoptosis by releasing apoptogenic proteins such as 
cytochrome c into the cytosol, although a non MTP-
mediated release model has been recently suggested.48) 
Mitochondrial permeability transition can also cause 
oncosis/necrosis in the ATP depleted state(Fig. 5).49) 
Thus, MTP-mediated cell death is the main process of 
apoptosis in reperfusion injury, whereas oncosis is the 
dominant mode in acute ischemia without reperfusion.49) 
 

Protection of Myocytes from Ischemic Injury 
 
Ischemic preconditioning 

Jennings and Reimer in 1986 discovered that myo-
cytes have an endogenous mechanism to protect them-
selves from lethal ischemic injury.50) They showed in an 
anesthesized dog experiment that repetitive episodes of 
brief ischemia markedly decreased the extent of my-
ocardial damage from a subsequent ischemic insult.50)    
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Fig. 4. Proposed model for the structure of the mitochondrial per-
meability transition (MPT) pore. The consensus model of the MPT
pore is comprised of a voltage-dependent anion channel (VDAC)
from the outer membrane, adenine nucleotide transporter (ANT)
from the inner membrane, cyclphilin D (CypD) from the matrix
and other proteins such as peripheral benzodiazepine receptor
(PBR), hexo-kinase (HK), and creatine kinase (CK). Atractyloside,
Ca2+ and reactive oxygen species (ROS) induce the mitochondrial
permeability transition, whereas bongkrekic acid blocks the mito-
chondrial permeability transition.  
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The concept of endogenous myocardial adaptation to 
sublethal ischemia that results in protection against 
subsequent ischemia has been termed ischemic pre-
conditioning. Most of the benefit from ischemic pre-
conditioning is observed within the time period of 1 
to 3 hours after treatment(classic or early precondi-
tioning), but a lesser protective effect can be seen again 
in 24 to 96 hours(delayed or late preconditioning).51)52) 
Besides reducing the infarct size, preconditioning has 
been shown to protect against other effect of ische-
mia/reperfusion injury such as arrhythmia.53)54) None-
theless, preconditioning delays but does not prevent 
myocyte death during the test episode of ischemia; if re-
perfusion of the ischemic myocardium does not follow, 
then myocardial necrosis is inevitable.  
 
Mechanisms of preconditioning 

The effect of preconditioning has been observed in 
all the mammalian hearts that have been tested thus 
far. Preconditioned myocardium exhibits metabolic 
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Fig. 5. Mitochondrial mechanisms of cell dysfunction and death in
ischemic myocardium. Ischemia causes the release of mitochondrial
perameability transition (MPT)-related cytochrome c, which then in-
duces caspase activation and apoptosis. Caspase activation feedback
may induce further release of cytochrome c, and the release of cyto-
chrome c is partially responsible for mitochondrial dysfunction; this
might lead to contractile dysfunction or oncosis/necrosis at the time
of reperfusion. 

Fig. 6. Overview of the preconditioning signaling. Primary signaling pathways: preconditioning leads to the release of adenosine, opioids and
bradykinin, which bind to the G protein coupled receptor (GPCR), and this initiates a signaling cascade that involves activation of phosphoino-
sitide-3-kinase (PI3K) and a variety of downstream kinases. Preconditioning also activate phosholipase (PLC and PLD) via GPCR, causing production
of diacylglycerol (DAG), which then activates protein kinase C (PKC). Preconditioning also induce generation of reactive oxygen species (ROS)
that may play a role in the activation of PKC and the other signaling events. Secondary signaling: a variety of primary signaling pathways converge
on a few mitochondrial proteins such as mitochondrial ATP-sensitive K+ channel (mitoKATP), the mitochondrial permeability transition (MTP)
pore and the bcl-2 family members. Modulation of these mitochondrial proteins results in altered metabolism and the inhibition of cell death, thus
resulting in cardioprotection. BAD: Bcl-2-antagonist of cell death, Bcl-2: B cell leukemia/lymphom-2, eNOS: endothelial nitric oxide synthase,
ERK: extracellular-regulated kinase, GSK: glycogen synthase kinase, IP3: inositoltrisphosphate, mTOR: mammalian target of rapamycin, p70S6K:
p70S6-kinase, PIP2: phosphatidylinositol bisphosphate, 12-LO: 12-lipoxygenase. 
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changes that are similar to those observed in reversible 
ischemia, but the preconditioned myocardium reacts 
to a second episode of ischemia differently than does 
the naive myocardium in that preconditioned myo-
cardium utilizes ATP and accumulates lactate and H+ 
much more slowly.55-57) Because lower levels of intra-
cellular ATP and higher levels of tissue lactate and H+ 
are strongly associated with ischemic cell death, it has 
been postulated that the preconditioned tissue dies 
more slowly because of this reduced energy demand.56)57) 
 
Signaling pathways in preconditioning 

The signaling pathways involved in cardioprotection 
are complex and recounting all of them is beyond the 
scope of this review. Acute preconditioning, which does 
not require new transcription, mediates cardiopro-
tection by modulating cell metabolism or the signaling 
pathways directly or by posttranslational modification 
of protein. Acute preconditioning consists of two part: 
the primary and secondary signaling pathways(Fig. 
6).58) The primary signaling pathways involve the 
release of substance such as adenosine, opiods or bra-
dykinins, which bind to the G protein-coupled recep-

tors(GPCR) and initiate a signaling cascade that in-
volves activation of phosphoinositide-3-kinase(PI3K), 
protein kinase B(PKB, also known as Akt), endoth-
elial NO synthase(eNOS), protein kinase C(PKC), 
glycogen synthase kinase 3β(GSK3β), mammalian 
target of rapamycin(mTOR) and p70S6-kinase(p70-
S6K). GPCR activation also causes the release of Gβγ, 
and this leads to activation of the extracellular-reg-
ulated kinase(ERK) pathways via an endosomal-sig-
naling pathway.58) These diverse signals converge on a 
few final common pathways, which are the secondary 
signal pathways, leading to the ultimate amelioration 
of cell death. Most of secondary pathways act on key 
mitochondrial proteins such as the mitochondrial 
ATP-sensitive K+ channels(mitoKATP), the mitochon-
drial permeability transition pore and the bcl-2 family 
members.58) 
 
Primary signaling: role of protein kinase C(PKC) 

Numerous studies have demonstrated the role of 
PKC for cardioprotection in preconditioning. GPCR 
activation leads to activation of phospholipases(PLC 
and PLD) and liberation of the second messenger dia-  
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Fig. 7. The different effects of protein kinase C (PKC) on myocardial protection from ischemic injury between neonatal and adult rats. A: trypan
blue staining of cultured adult rat ventricular myocytes (ARVM; a, c, e, g) and neonatal rat ventricular myocytes (NRVM; b, d, f, h). Dark colored
cells represent dead cells. a and b: cells cultured under a normal condition (95% O2+5% CO2, glucose substrate in media). c and d: cells
cultured under an ischemic conditon (95% N2+5% CO2, deprived of glucose in the culture media), e and f: cells under ischemic condition,
treated with PKC inhibitor staurosporin 100 mM. g and h: cells under the ischemic condition, treated with PKC activator 12-0-tetradecanoyl-
phorbol 13-acetate (TPA) 100 mM. B: the percentage of viable myocytes under an ischemia condition with the designated treatment. a: ARVM, b: 
NRVM. Activation of PKC with TPA markedly enhanced the survival of the ARVMs in the ischemic condition, while the effect of TPA on the
survival of NRVMs was minimal or nonexistent.  
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cylglycerol(DAG) for directly targeting the PKC.59)60) 
Reactive oxygen species(ROS), which are generated 
by preconditioning, have also been reported to be in-
volved in the activation of PKC.61) Inhibition of PKC 
has been shown to block the protection afforded by 
preconditioning, and the pharmacological activators of 
PKC have been shown to be cardioprotective.59)62) PKC 
exists in a variety of isoforms that exhibit structural 
and functional specificities.63) The amount of the cel-
lular PKC isoform in the myocardium can change by 
as much as several times during development from the 
neonate to the adult.64) Such a difference in the PKC 
isoform during development can translate into different 
capacities to protect myocytes from acute severe ische-
mia, which we have demonstrated in in vitro experiments 
(Fig. 7).65) Among the many PKC isoforms, PKCε
has been suggested to play a important role for cardio-

protection. Most studies have used specific inhibitors/ 
activators or they have observed the patterns of trans-
location of PKCεto indirectly demonstrate its role.66-68) 
We have recently conducted an experiment to directly 
show the protective effect of PKCεby expressing PKC
εin cardiomyocytes using the lenti viral vector. The 
cultured neonatal rat ventricular myocytes, which have 
a low level of intracellular PKCε, were subjected to 
simulated ischemia. For in vivo study, left coronary artery 
ligation model was used in the adult rat heart. The ex-
pression of PKCεin cultured neonatal cardiomyocytes 
markedly reduced the cell death during the simulated 
ischemia, and it reduced the infarct size by 49% in the 
adult rat heart(Fig. 8). Experiments on transgenic mice 
having the cardiacspecific overexpression of PKCεhave 
also shown the endogenous protection.69) Taken together, 
these findings strongly support a role for PKCεin pre-
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Fig. 8. Protective effect of the protein kinase Cε isoform (PKCε) expression via the lentiviural vector. The experiment was performed in cultured
neonatal rat ventricular myocytes (A and B) under simulated ischemia conditions, and the coronary ligation model of the adult rat (C and D). A:
microscopic findings of NRVMs cultured under the designated conditions. a; NRVM cultured under a normal condition (95% O2+5% CO2 and
glucose substrate in media), b; NRVM cultured under an ischemic condition (95% N2+5% CO2 and deprived of glucose in the culture media), c;
NRVM under the ischemic condition treated with an empty vector, d; NRVM under the ischemic condition and treated with PKC activator 12-0-
tetradecanoylphorbol 13-acetate (TPA), e; NRVM under the ischemic condition treated with an empty vector and TPA, f; NRVM under the
ischemic condition and treated with PKCε vector and TPA. B: percentage of cell death of the NRVMs treated with the designated condition. The
PKCε expression and TPA treatment (I+PKC+TPA) significantly reduced the death of the NRVMs in a simulated acute ischemic condition
(Ischemia)(58.1±7.2% vs 77.6±12.8%, p<0.05). C: representative samples stained by phthalocyanin blue and triphenyltetrazolium chloride
(TTC) from the removed section of rat myocardium that underwent left coronary ligation. The perfused myocardium is stained blue by phtha-
locyanin blue. Ischemic, but viable myocardium is stained red by TTC. The nonviable, infracted area is not stained by either dye, and it remains
white in color. Left panel; myocardium injected with control buffer before coronary artery ligation (control), Right panel; myocardium injected
with PKCε vector before coronary ligation. D: the quantitative data shows that compared with the control (control MI), injection of the PKCε
vector into the myocardium (PKCε MI) reduced the area of infarction by 49%, which was statistically significant (p<0.01).  
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conditioning. 
The downstream target of PKC in cardioprotection 

needs to be elucidated. PKC, via phosphorlyation, may 
activate the mitochondrial KATP channel70) and trans-
cription factors, including the nuclear factor κB(NF-κ
B),71) and PKC may modify other myofibrillar and 
cytoskeletal proteins.72) In addition, several types of non-
receptor tyrosine kinase(particularly Src and Lck) may 
be linked in the signaling cascades either upstream 
and/or downstream of PKC and their targets.73) A recent 
study has reported that ERK and PKCεare contained 
in a multimeric mitochondrial signaling complex, and 
PKC might lead to activation of ERK.74) Whether 
activated ERK leads to activation of the mitoKATP ch-
annel remains to be seen. 
 
Secondary signaling pathway: role of mitochondrial  
proteins 

The diverse pathways initiated during precondi-
tioning seem to converge on secondary signals that 
integrate the signals from different pathways. To achieve 
cardioprotection, these signaling pathway or end eff-
ectors must reduce cell death, be it from oncosis or 
apoptosis. Much data has suggested that mitochondrial 
proteins are the possible candidates as end effectors. 
Because mitochondria are the primary organelle in-
volved in ATP production, which is essential for main-
taining cell integrity, and as mitochondria are also key 
players in the process of apoptosis, mitochondrial com-
ponents such as bcl-2 can inhibit both oncosis and 
apoptosis.75) Other mitochondrial proteins like the 
mitochondrial KATP(mitoKATP) channel, the apoptotic 
proteins such as BAD and the mitochondrial perm-
eability transition(MPT) pore, are suggested as possible 
end effectors. However, it is still possible that a non-
mitochondrial component, i.e., the cytoskeleton or 
membrane proteins, can be targets in the secondary 
pathways for cardioprotection.76)  

A wealth of recent evidence has indicated that 
activation of the mitoKATP channel is important in 
cardioprotection.77-79) Selective activators of the mitoKATP 
channel, which do not activate the sarcolemmal KATP 
channel, have been shown to be cardio-protective, and 
selective mitoKATP channel inhibitors block the pro-
tection afforded by preconditioning.77)78)80) The mech-
anisms by which activation of mitoKATP channel can 
reduce cell death are not well understood. Three mec-
hanisms have been suggested. These include inhibition 
of mitochondrial calcium uptake, modulation of ROS 
and modulating the mitochondrial permeability of the 
MPT pore.58)79) Activation of mitoKATP channel induces 
ᅀΨm depolarization, and this reduces the driving 
force for Ca2+ uptake by mitochondria and thereby pre-
vents mitochondrial matrix Ca2+ overload, which is a 
major trigger for MPT.81) MitoKATP activation also causes 

mild mitochondrial swelling, and this is proposed to 
protect the mitochondrial intermembrane contact site 
and thereby limit the depletion of adenine nucleotide 
from the matrix,82) although there is conflicting data 
reporting that the changes in the mitochondrial volume 
do not correlate with protection.83) Finally, it has been 
shown that preconditioning or mitoKATP channel acti-
vation causes the increased generation of mitochon-
drial ROS, which can trigger the cardioprotective action 
of preconditioning.84) Much of data have been collected 
from studies on isolated cells or from mitochondrial 
studies, making it difficult to determine whether the 
conclusions are relevant in the context of the whole 
heart. However, overall, these studies lend strong sup-
port that there are robust links between mitoKATP and 
cardioprotection.  
 

Clinical Implications 
 

Understanding the mechanisms underlying cell death 
and protection during acute ischemic insult might 
help researchers find ways to develop novel therapeutic 
measures. Earlier efforts have attempted to enhance 
metabolic tolerance during ischemia. Experimental stu-
dies have suggested that an increased level of glycolytic 
substrate enhances ATP synthesis in hypoxic tissue.85) 
Clinically, the efficacy of supplying glucose has been 
tested by infusing a glucose-insulin-potassium(GIK) 
solution to the patients with acute myocardial infarction 
(AMI). In the era of reperfusion, some studies have 
suggested that GIK infusion may reduce the mortality 
rate in certain groups of patient,86) but other studies 
have failed to show clear benefit.87) Thus, the role of 
GIK infusion in AMI remains to be clarified. Inhibi-
tion of the Na+/H+ exchanger(NHE) attenuates the Ca2+ 
overload and following pathologic consequences in car-
diomyocytes during ischemia, exerting a cardioprotec-
tive effect.88) A number of animal studies have indicated 
that inhibition of NHE, especially the sarcolemmal 
isofom NHE-1, can reduce the infarct size, remodeling 
and heart failure in postinfarction myocardium.89)90) In 
one clinical study, administration of cariporide, a selec-
tive inhibitor or NHE-1, in the patients with AMI after 
percutaneous coronary intervention resulted in increa-
sed ejection fraction, reduced infarct size and reduced 
end-systolic volume.91) In the Guard During Ischemia 
Against Necrosis(GUARDIAN) trial,92) cariporide re-
duced the incidence of periorperative myocardial in-
farction in the patients undergoing coronary artery 
bypass surgery. However, in other studies, the effect of 
NHE inhibitor on the infarct size or postoperartive 
cardiac events was not positive.93) Therefore, although 
some of the collected data appears to be promising, 
more research is needed to establish the clinical benefits 
of administering NHE inhibitors. 
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A number of efforts to utilize the component of pre-
conditioning have centered on the pharmacological 
manipulation of opening the KATP channel, which is a 
central mechanism for cardioprotective signaling. In 
animal studies, the KATP channel openers(KOC) such 
as bimakalim, nicorandil and diazoxide exhibited pre-
conditioning mimetic properties,77)94)95) while KATP ch-
annel blockers can actually block ischemic precon-
ditioning.96) The protective effects of nicorandil have 
been also shown in human in the setting of acute myo-
cardial infarction. Intravenous nicorandil in conjunc-
tion with coronary angioplasty was associated with 
improved left ventricular function, improved wall mo-
tion score and better clinical outcomes, including re-
duced frequency of heart failure and malignant arrhy-
thmia, compared to angioplasty alone in the patients 
suffering with anterior AMI.97) The salutary effect of 
nicorandil has been highlighted in a recent study sh-
owing that a single administration of nicorandil before 
reperfusion in ST-segment-elevation myocardial infarc-
tion reduced the post-myocardial infarction death (Fig. 
9).98) Thus, although these study didn’t have sufficient 
statistical power, they did imply that the effect of phar-
macological preconditioning, via the use of KATP ch-
annel openers, can actually translate into clinical benefit. 
Further studies that will have adequate statistical power 
will give a definite solution with respect to the thera-
peutic potential of using pharmacological precondi-
tioning with KATP channel openers in the setting of 
acute ischemic heart disease. 
 

Conclusion 
 

Cardiomyocytes require a constant flow of substrate 

and oxygen for maintaining their activity and vitality, 
and they are vulnerable to ischemic insult. Acute isch-
emia causes profound disturbance in the cellular ener-
getics and metabolism. Cell death is inevitable if the 
interrupted blood flow is not promptly restored. Evi-
dence from different experiments have suggested that 
most cardiomyocytes under the condition of acute, 
severe ischemia die via oncosis rather than from apo-
ptosis. The discovery of ischemic preconditioning has 
provided a novel strategy for salvaging the cardiomy-
ocytes from ischemic injury. Preconditioning activates 
diverse upstream pathways(the primary signaling) that 
seem to converge on the final effectors(the secondary 
signaling). Experimental studies have indicated that 
some molecules such as PKCεare central coordinators 
in the primary signaling. As for the secondary sig-
naling, there is abundant evidence linking the opening 
of the mitoKATP channels and protection against isch-
emic injury. Mitochondria play an important role in 
acute ischemia because they are critically involved both 
in the process of cell death and protection. Clinical 
studies have suggested that pharmacological precondi-
tioning with KATP channel openers can alleviate the 
injury from acute myocardial infarction when they are 
used in conjunction with reperfusion therapy. Further 
studies are needed to definitely assess the clinical be-
nefit of pharmacological preconditioning.  
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