## Hypoxia에 의한 혈관이완과 수축의 기전에 관한 연구

강 복 순·이 영 호

## Study on the Mechanism of Hypoxic Induced Vasodilatation and Vasoconstriction

Bok Soon Kang, MD and Young Ho Lee, PhD

Department of Physiology, Yonsei University College of Medicine, Seoul, Korea

## **ABSTRACT**

**Background**: Although hypoxic pulmonary vasoconstriction (HPC) and hypoxic coronary vasodilatation (HCD) have been recognized by many researchers, the precise mechanism remains unknown. As isolated arteries will constrict or relax in vitro in response to hypoxia, the oxygen sensor/transduction mechanism must reside in the arterial smooth muscle, the endothelium, or both. Unfortunately, much of the current evidence is conflicting, especially concerning to the dependency of HPC and HCD on the endothelium and the role of the K<sup>+</sup> channel. Therefore, this experiment was attempted to clarify the dependency of HPC and HCD on the endothelium and the role of the  $K^+$  channel on HPC and HCD. **Methods**: HPC was investigated in isolated main pulmonary arteries precontracted with norepinephrine (NE). HCD was investigated in isolated left circumflex coronary artery precontracted with prostaglandin F2 . Vascular rings were suspended for isometric tension recording in an organ chamber filled with Krebs-Henseleit solution. Hypoxia was induced by gassing the chamber with 95% N<sub>2</sub> + 5% CO<sub>2</sub>, which was maintained for 15 -25 min. Results: 1) Hypoxia elicited a vasoconstriction in NEprecontracted pulmonary arteries with endothelium, but a vasodilatation in PGF<sub>2</sub> -precontracted coronary arteries with and without endothelium. There was no difference between the amplitude of the HPC and HCD induced by two consecutive hypoxic challenges and the effect of normoxic and hyperoxic control Krebs-Henseleit solution on subsequent response to hypoxia. 2) Inhibition of NO synthesis by the treatment with N w-nitro-L-arginine reduced HPC in pulmonary arteries, but inhibition of the cyclooxygenase pathway by treatment with indomethacin had no effect on HPC and HCD, respectively. 3) Blockades of the TEA-sensitive K<sup>+</sup> channel abolished HPC and HCD. 4) Apamin, a small conductance Ca<sub>2</sub>+-activated K<sup>+</sup> (K<sub>Ca</sub>) channel blocker, and iberiotoxin, a large conductance  $K_{Ca}$  channel blocker, had no effect on the HCD. 5) Glibenclamide, an ATP-sensitive  $K^+$  ( $K_{ATP}$ ) channel blocker, reduced HCD. 6) Cromakalim, an KATP channel opener, relaxed the coronary artery precontracted with prostaglandin F2 . The degree of relaxation by cromakalim was similar to that by hypoxia and glibenclamide reduced both hypoxia- and cromakalim-induced vasodilations. 7) Verapamil, a Ca<sup>2+</sup> entry blocker, caffeine, a Ca<sup>2+</sup> emptying drug; and ryanodine, an inhibitor of Ca<sup>2+</sup> release from SR, reduced HPC, respectively. Conclusion: HPC is dependent on the endothelium and is considered to be induced by inhibition of the mechanisms of NO-dependent vasodilation while HCD is independent of the endothelium and is considered to be induced by activation of the K ATP channel. (Korean Circulation J 1998;28(12):2011-2029)

**KEY WORDS**: Hypoxia · Nnitric oxide · Glibenclamide · K<sup>+</sup> channel · Pulmonary artery · Coronary Artery.

: 1998 6 10 : 1999 2 5

: , 120 - 752 134

: (02) 361 - 5192 · : (02) 393 - 0203

E - mail: bsgang@yumc.yonsei.ac.kr

```
10)
                    서
                             론
                                                                    11)
                    40 mmHg
                                               (hy -
poxia)
                                 (ischemia)
가
                                             가
                                                                                     가
                                                                                     가
                                        (hypoxia)
                                                               K<sup>+</sup> channel
                                                             가
                                                                                        nitric oxide
                                                                                         2)9)12 - 14)
                     40 mmHg
                                 (ventilation)
                                                                        (endothelium - derived contracting fa -
      (perfusion)
                                                         ctor; EDCF)
                                                           15)16)
         가
                                                                                                    K<sup>+</sup> cha-
           가
                                                         nnel
                                                           3)17)18)
                                                                                    가
                                                           indomethacin
                                              (Hyp-
                                                                        19)
oxic pulmonary vasoconstriction; HPC)
                   2)3)
                               HPC
                                                                 ATP - sensitive \ K^+ \ channel(K^+_{ATP} \ channel)
                                    HPC가
                                                                20)
  ,4)
                         가
                                         biphasic
                    .5)
                                                                                                        HPC
                                                            HCD
           Yuan 2)
                                                                   . In vitro
                                                HPC
가
                                  HPC가
                                                                                       oxygen sensor가
                   , Bonnet 6)
                           HPC
     HPC
                                                             가
                                                                                      HPC
                                                                                               HCD
                                                                            K<sup>+</sup> channel
                     .2)
                                                             가
                                     ,7)8)
                                                                                                  (
                                                                 )
```

```
10<sup>-6</sup> M acetylcholine
                                                                 )
                     재료 및 방법
                                                                    21)
실험재료
                                                                                                        glass syringe
                                                                                                        blood gas ana -
                                                                         bath
                                                               lyzer(Radiometer, Cophenhagen, Denmark)
                                                                        (P<sub>02</sub>)
                                                                                 рΗ
                                                               약 물
  Sprague - Dawley rat
                                  (decapitation)
                                                                                                L - norepinephrine bi -
        95% O<sub>2</sub>+5% CO<sub>2</sub>
                                          Krebs - Hens -
                                                               tartrate(NE), prostaglandin F2 (PGF2 ), acetylc -
           (KH; mM; NaCl 119, KCl 4.6, CaCl2 2.5,
eleit
                                                               holine chloride, N - nitro - L - arginine(L - NNA), in -
NaHCO<sub>3</sub> 25, MgCl<sub>2</sub> 1.2, KH<sub>2</sub>PO<sub>4</sub> 1.2, glucose<sup>11)</sup>
                                                               domethacin, apamin, iberiotoxin, tetraethylammo -
                                                               nium chloride(TEA), glibenclamide, cromakalim
                                                (prepar -
ation chamber)
                                                               verapamil
                                                                                     Sigma Chemicals (St. Louis, MO,
                            가
                                                               USA)
                    가
                                                               실험방법
                                                                 1
                                                                                                       0.5 g
                                                                                   10<sup>-7</sup> M NE
                                                                  가
                                                                           1
                                                                                            3
        2.0 2.5 kg
                                       (ear vein) pe -
                                     heparin(2,000 IU/
ntobarbital sodium(60 mg/kg)
                                                                                                                KCI
                                                                  40 mM K<sup>+</sup>
                                                                                           KΗ
                                                                 가 40 mM
kg)
                                                                                   NaCl
                                               95% O<sub>2</sub>+
5% CO<sub>2</sub>
                        KΗ
                                                                                                                       가
                                                                                                  0.4 g
                                                                             70 mM high - K+
                                                                                 1
                                               가
                                                main pu -
                                                                           PGF_2 (1.5 × 10<sup>-6</sup> M)
Imonary artery
                      left circumflex coronary artery
   4 5 mm
                         (ring)
  (chamber)
                     L - shaped rod
                                                                                              (ring)
                                                                                                                    (or -
     strain gauge transducer
                                                               gan bath)
                                                                             95% O<sub>2</sub> + 5% CO<sub>2</sub>
                                                                                                       (hyperoxic gas)
                    가
      (ring)
                                  37
                                                               가
                                                                              KΗ
                                                                                       (P_{O2} = 543 \pm 8 \text{ mmHg}, pH = 7.
     KΗ
                    1
                                                               38 \pm 0.02)
                                           가
                                                                          20% O<sub>2</sub>+5% CO<sub>2</sub>+75% N<sub>2</sub>
                                                  10<sup>-7</sup> M
                                                                        (normoxic gas)가
                                                                                                                  (P<sub>02</sub> =
        70 mM high K<sup>+</sup>
NE
                                                               134 \pm 12 mmHg, pH = 7.39 \pm 0.02)
                                      KΗ
KCI
            가 70 mM
                                                                                          가
                                                                                                                95% N<sub>2</sub>
                               NaCl
```

```
(P<sub>02</sub>
±5% CO<sub>2</sub>
                  (hypoxic gas)가
                                                 KΗ
                                                                                              곀
                                                                                                         과
=30.1\pm0.3 mmHg, pH = 7.39\pm0.02)
           15 25
                                                                     폐동맥 및 관동맥의 수축력에 대한 저산소증의 효과
      (ring)
                       95% O<sub>2</sub>+5% CO<sub>2</sub>
                                                   가
ΚH
                           가
                                                                        Fig. 1
                                          KΗ
                                                    60
    reoxygenation
                                                                        . Fig. 1
                              10<sup>-7</sup> M NE(
                                                                            가
                                                                                                                         1 2
                                                          1.5 \times
10<sup>-6</sup> M PGF<sub>2</sub>
                                                                                                           가
                                                                                                                         가
                                                                                . 20 25
                                                                                                                         reoxyge -
                                                      reoxy -
                                                                                                                    가
genation
                                                                     nation
                                                                                       NE
                                                                                                    가
                                             가
                                                           re -
                                                                                                                               . Fig.
                                                                     1B
oxygenation
                                                                                    40 mM K<sup>+</sup>
                                                                                                                              100%
                                   가
                                 incubation
                      L - NNA(10^{-5} M)
NO
       , cyclooxygenase pathway
                                                           in -
domethacin(10<sup>-5</sup> M)
                                                                                                      A_2
                                                                       (A_1)
      Ca<sup>2+</sup>
                               Ca<sup>2+</sup>
                                                      Ca<sup>2+</sup>
                                                                                    250
                                             verapamil(10<sup>-5</sup>
  가
                                                                            Tension (% Contraction to KCI)
                                                                                    200
M), caffeine(20 mM)
                                ryanodine(5 µM)
                                                                                    150
               K<sup>+</sup> channel
                                                tetraethyla -
                                                                                    100
mmonium chloride(TEA; 10 mM), apamin(10<sup>-7</sup> M),
                                                                                     50
iberiotoxin(5 \times 10^{-8} M), glibenclamide(10^{-6} M)
                                                                                      0
                                                                       (B)
cromakalim (5 \times 10^{-6} \text{ M})
                                                                                             KCI
                                                                                                          EC<sup>-</sup>
                                                                     Fig. 1. Effect of hypoxia on contractile responses in rat pul-
```

PGF<sub>2</sub> (

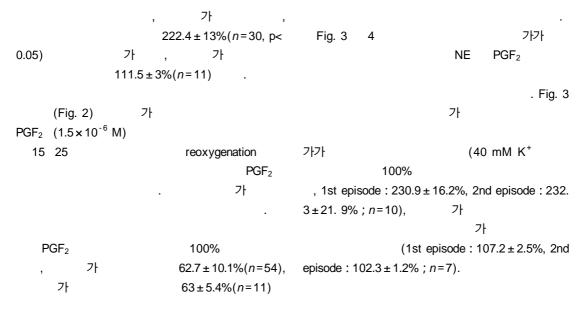
mean ± SE

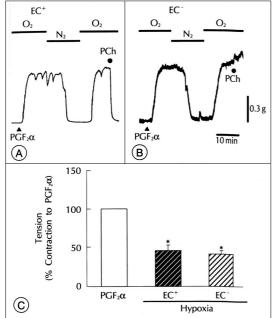
. n

unpaired t test

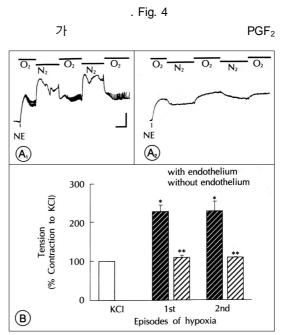
**Fig. 1.** Effect of hypoxia on contractile responses in rat pulmonary arteries.  $A_1$ ,  $A_2$ : shows typical response to hypoxia in rings of pulmonary artery with ( $A_1$ ) and without ( $A_2$ ) endothelium. B: shows mean response of pulmonary artery with ( $EC^+$ ; n=30) and without ( $EC^-$ ; n=11) endothelium under the same conditions. The preparations were contracted with norepinephrine (NE;  $10^{-7}$  M). hypoxia was induced by switching from 95% O<sub>2</sub>+5% CO<sub>2</sub> (O<sub>2</sub>) to a 95% N<sub>2</sub>+5% CO<sub>2</sub> gas mixture (N2). Data are expressed as mean ± SE. \*: significant difference between 40 mM c\*-induced contraction and hypoxia-induced contraction (p<0.05). \*\*: significant difference between preparations with and without endothelium (p<0.05). Horizontal scale bar: 100 mm, Vertical scale bar: 100 mg.

)

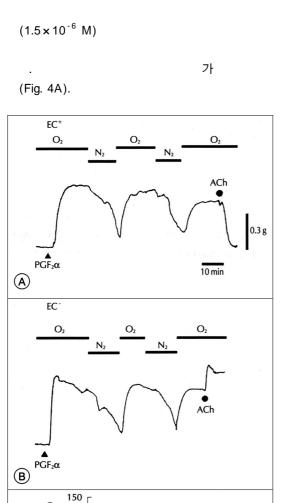

결과분석 및 통계처리

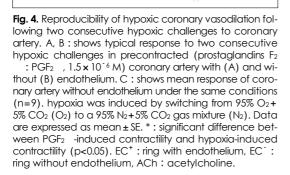

40 mM K<sup>+</sup>

Student's paired


0.05

(%)

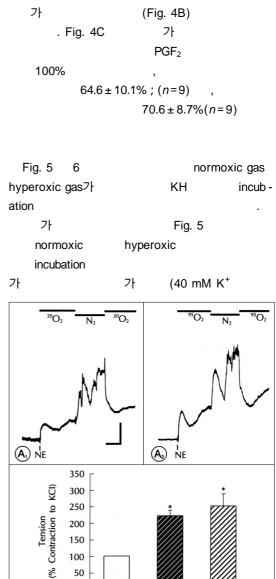



**Fig. 2.** Effect of hypoxia on the contractile responses in rabbit coronary artery. A, B: shows typical response to hypoxia in rings of coronary artery with (A) and without (B) endothelium. C: shows mean response of coronary artery with (EC $^+$ ; n=54) and without (EC $^-$ ; n=11) endothelium under the same conditions. The preparations were contracted with prostaglandins F2 (PGF2, 1.5×10 $^{-6}$  M). hypoxia was induced by switching from 95% O2+5% CO2 (O2) to a 95% N2+5% CO2 gas mixture (N2). Data are expressed as mean  $\pm$  SE.  $^*$ : significant difference between PGF2 induced contractility and hypoxia-induced contractility (p <0.05). EC $^*$ : ring with endothelium, EC $^-$ : ring without endothelium, ACh: acetylcholine.



**Fig. 3.** Reproducibility of two consecutive hypoxic challenges to pulmoanry arteries.  $A_1$ ,  $A_2$ : shows typical response to two consecutive hypoxic challenges in precontracted (norepinephrine; NE,  $10^{-7}$  M) pulmonary artery with ( $A_1$ ) and without ( $A_2$ ) endothelium. B: shows mean response of pulmonary artery with ( $EC^+$ ; n=10) and without ( $EC^-$ ; n=7) endothelium under the same conditions. Data are expressed as mean  $\pm$  SE. \*: significant difference between 40 mM K\*-induced contraction and hypoxia-induced contraction (p<0.05). \*\*\*: significant difference between preparations with and without endothelium (p<0.05). Horizontal scale bar: 10 min, Vertical scale bar: 100 mg.






1st+

Нурохіа

2nd



**Fig. 5.** Effect of normoxic or hyperoxic control Krebs-Henseleit solution on subsequent response to hypoxia in pulmonary arteries with endothelium. A<sub>1</sub>, A<sub>2</sub>: shows typical recording to effect of normoxic (A<sub>1</sub>) or hyperoxic (A<sub>2</sub>) control Krebs-Henseleit solution on subsenquent response to hypoxia in precontracted (norepinephrine; NE,  $10^{-7}$  M) pulmonary artery. B: shows mean response of pulmonary artery incubated with normoxic (20% O<sub>2</sub>) and hyperoxic (95% O<sub>2</sub>) control Krebs-Henseleit solution under the same conditions (n=11). Data are expressed as mean± SE.\*: significant difference between 40 mM K\*-induced contraction and hypoxia-induced contraction (p<0.05).

20%

95%

0

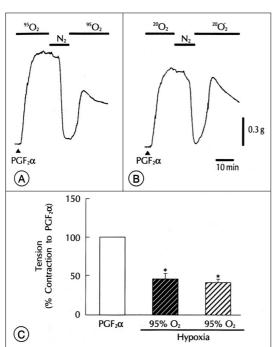
 $\bigcirc$ 

KCI

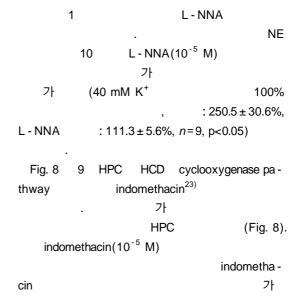
Contraction to PGF<sub>2</sub>α)

%

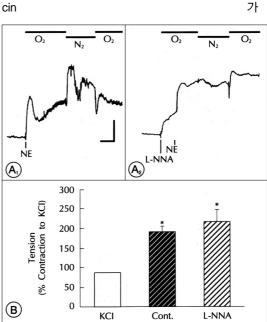
(c)


100

50

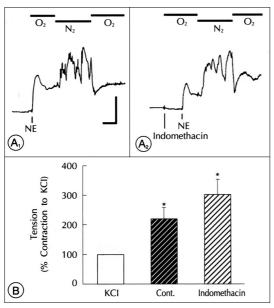

0

 $PGF_2\alpha$ 

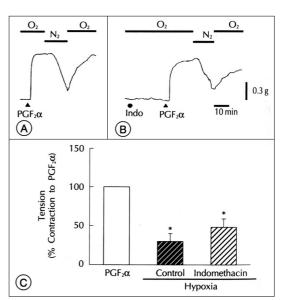

100% , nor moxic gas:  $228.4 \pm 13.5\%$ , hyperoxic gas:  $253.0 \pm$ 39.4%, n=11). 가 Fig. 6 hyperoxic normoxic in cubation 가 (PGF<sub>2</sub> 100% , hyperoxic gas: 62.  $8 \pm 6.3\%$ , n = 20, normoxic gas :  $67.3 \pm 7\%$ , n = 7). HPC 및 HCD에 대한 NO 합성억제 및 cyclooxygenase pathway의 차단 효과 Fig. 7 HPC NO L - NNA<sup>22)</sup>



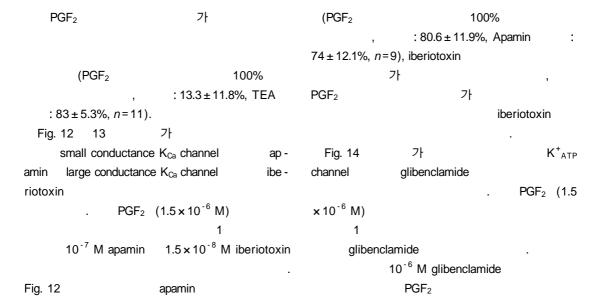
**Fig. 6.** Effect of hyperoxic or normoxic control Krebs-Henseleit solution on subsequent response to hypoxia in coronary artery without endothelium. A, B: shows typical recording to effect of hyperoxic (A) or normoxic (B) control Krebs-Henseleit solution on subsequent response to hypoxia in precontracted (prostaglandins  $F_2: PGF_2$ ,  $1.5 \times 10^{-6} M$ ) coronary artery. C: shows mean response of coronary artery incubated with hyperoxic (95O<sub>2</sub>: n=20) and normoxic (20O<sub>2</sub>: n=7) control Krebs-Henseleit solution under the same conditions. Hypoxia was induced by switching from 95%  $O_2+5\%$   $CO_2$  ( $O_2$ ) to a 95%  $N_2+5\%$   $CO_2$  gas mixture ( $N_2$ ). Data are expressed as mean ± SE. \*: significant difference between  $PGF_2$  -induced contractility and hypoxia-induced contractility (p<0.05).

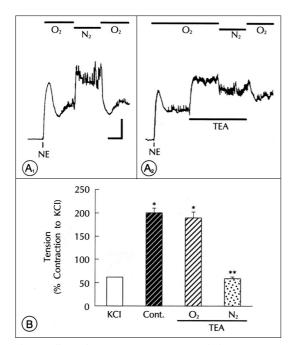



NE

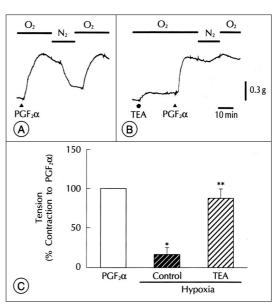



**Fig. 7.** Effect of inhibiting NO synthesis by Nw-nitro-L-arginine on response to hypoxia in pulmonary arteries with endothelium.  $A_1$ ,  $A_2$ : shows typical response to hypoxia in precontracted (norepinephrine; NE,  $10^{-7}$  M) pulmonary artery with ( $A_2$ ) and without ( $A_1$ ) N -nitro-L-arginine (L-NNA,  $10^{-5}$  M). B: shows mean response of pulmonary artery with (L-NNA) and without (Cont.) N -nitro-L-arginine under the same conditions (n = 9). N -nitro-L-arginine was applied 30 - 40 min before testing their efficacy. Data are expressed as mean  $\pm$  SE. \*: significant difference between 40 mM K\* - induced contraction and hypoxia-induced contraction (p<0.05). \*\*: significant difference between preparations with and without N -nitro-L-arginine (p<0.05). Horizontal scale bar: 10 min, Vertical scale bar: 100 mg.


(40 mM K<sup>+</sup> 100% Fig. 10 . Fig. 10 11 : 228.4 ± 38.5%, in -NE domethacin :  $295.6 \pm 69.2\%$ , n=8, Fig. 5B) 1 1 mM TEA NE (Fig. 9) indomethacin(10<sup>-5</sup> M) TEA NE 가 : PGF<sub>2</sub> (40 mM K<sup>+</sup> 100% 100% ,  $68.7 \pm 7.9\%$ , Indomethacin  $: 54.3 \pm 7.5\%,$ : 228.5 ± 10.4%, TEA : 114.1 n = 6, Fig. 5C).  $\pm 5.7\%$ , n=8). Fig. 11  $PGF_2$  (1.5 x 10<sup>-6</sup> M) HPC 및 HCD에 대한 K<sup>+</sup> channel blocker의 효과 **HPC** HCD K<sup>+</sup> channel 10 mM TEA TEA<sup>17)</sup> non - specific K+ channel TEA **HCD** 가 **HPC** 

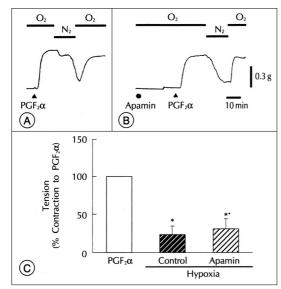



**Fig. 8.** Effect of blockading cyclooxygenase pathways by indomethacin on response to hypoxia in pulmonary arteries with endothelium.  $A_1$ ,  $A_2$ : shows typical response to hypoxia in precontracted (norepinephrine; NE,  $10^{-7}$  M) pulmonary artery with ( $A_2$ ) and without ( $A_1$ ) indomethacin ( $10^{-5}$  M). B: shows mean response of pulmonary artery with (Indomethacin) and without (Cont.) indomethacin under the same conditions (n=8). Indomethacin was applied 30 - 40 min before testing their efficacy. Data are expressed as mean  $\pm$  SE. \*: significant difference between 40 mM K\*-induced contraction and hypoxia-induced contraction (p<0.05). Horizontal scale bar: 10 min, Vertical scale bar: 100 mg.

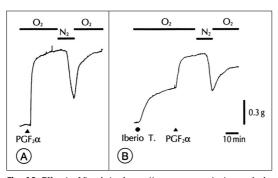



**Fig. 9.** Effect of indomethacin on the response to hypoxia in coronary artery without endothelium. A, B: shows typical response to hypoxia in the precontracted (prostaglandins  $F_2: PGF_2$ ,  $1.5 \times 10^{-6}$  M) coronary artery without (A) and with (B) indomethacin ( $10^{-5}$  M). C: shows mean response of coronary artery with (Indomethacin) and without (Control) indomethacin under the same conditions (n=6). Indomethacin was applied 20 - 30 min before testing effect of hypoxia efficacy. Hypoxia was induced by switching from 95%  $O_2+5\%$   $CO_2$  ( $O_2$ ) to a 95%  $N_2+5\%$   $CO_2$  gas mixture ( $N_2$ ). Data are expressed as mean  $\pm$  SE. \*: significant difference between  $PGF_2$ —induced contractility and hypoxia-induced contractility (p<0.05). Indo: indomethacin.



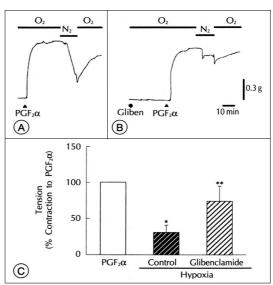



**Fig. 10.** Effect of TEA on response to hypoxia in pulmonary arteries with enodthelium.  $A_1$ ,  $A_2$ : shows typical response to hypoxia in precontracted (norepinephrine; NE,  $10^{-7}$  M) pulmonary artery with ( $A_2$ ) and without ( $A_1$ ) TEA (1 mM). B: shows mean response of pulmonary artery with (TEA) and without (Cont.) TEA under the same conditions (n=8). TEA was applied after norepinephrine-induced precontraction. Data are expressed as mean  $\pm$  SE. \*: significant difference between 40 mM K\*- induced contraction and hypoxia- or TEA-induced contraction (p<0.05). Horizontal scale bar: 10 min, Vertical scale bar: 100 mg.

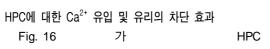



**Fig. 11.** Effect of tetraethylammonium chloride on the response to hypoxia in coronary artery without endothelium. A, B: shows typical response to hypoxia in precontracted (prostaglandins  $F_2: PGF_2$ ,  $1.5 \times 10^{-6} \, M$ ) coronary artery without (A) and with (B) tetraethylammonium chloride (TEA, 10 mM). C: shows mean response of coronary artery with (TEA) and without (Control) TEA under the same conditions (n=11). TEA was applied 25 min before testing effect of hypoxia. Hypoxia was induced by switching from  $95\% \, O_2 + 5\% \, CO_2 \, (O_2)$  to a  $95\% \, N_2 + 5\% \, CO_2 \, gas$  mixture ( $N_2$ ). Data are expressed as mean  $\pm \, SE. \, *: \, significant \, difference between <math>PGF_2$ —induced contractility and control (p<0.05). \*\*: significant difference between control and TEA group (p<0.05).

(PGF $_2n$  100% , : 69 ± 8.3%, Glibenc - lamide : 27.2 ± 16.6%, n = 7).




**Fig. 12.** Effect of apamin on the response to hypoxia in coronary artery without endothelium. A, B: shows typical response to hypoxia in precontracted (prostaglandins  $F_2: PGF_2: 1.5 \times 10^{-6}$  M) coronary artery without (A) and with (B) apamin ( $10^{-7}$  M). C: shows mean response of coronary artery with (Apamin) and without (Control) apamin under the same conditions (n=9). Apamin was applied 20-25 min before testing effect of hypoxia. Hypoxia was induced by switching from 95% O<sub>2</sub>+5% CO<sub>2</sub> (O<sub>2</sub>) to a 95% N<sub>2</sub>+5% CO<sub>2</sub> gas mixture (N<sub>2</sub>). Data are expressed as mean  $\pm$  SE.  $\pm$ : significant difference between PGF<sub>2</sub>-induced contractility and hypoxiainduced contractility (p <0.05).




**Fig. 13.** Effect of iberiotoxin on the response to hypoxia in coronary artery without endothelium. A, B: shows typical response to hypoxia in precontracted (prostaglandins  $F_2: PGF_2$ ,  $1.5 \times 10^{-6}$  M) coronary artery without (A) and with (B) iberiotoxin (Iberio T.,  $5 \times 10^{-8}$  M). Iberiotoxin was applied 30 min before testing effect of hypoxia. Hypoxia was induced by switching from 95%  $O_2+5\%$   $CO_2$  ( $O_2$ ) to a 95%  $N_2+5\%$   $CO_2$  gas mixture ( $N_2$ ).

가 Fig. 15  $K^{+}_{ATP}$ glibenclamide가  $K^{\dagger}_{ATP}$ channel channel opener cromakalim . Fig. 15A  $PGF_2$  (1.5 × 10<sup>-6</sup> M) , reox ygenation , 95% O<sub>2</sub> + 5% CO<sub>2</sub>가 1.5 × 10<sup>-6</sup> M cromakalim , 10<sup>-6</sup> M glibenclamide (Fig. 15B) cromakalim Fig. 15C cromaka lim  $55.9 \pm 9.1\%$ ,  $46 \pm 13\%$  (n =7) , glibenclamide  $112.5 \pm 102\%$ ,  $8.9 \pm 1.2\%$  (n=7)



**Fig. 14.** Effect of glibenclamide on the response to hypoxia in coronary artery without endothelium. A, B: shows typical response to hypoxia in precontracted (prostaglandins  $F_2: PGF_2: 1.5 \times 10^{-6} \, M$ ) coronary artery without (A) and with (B) glibenclamide (Gliben,  $10^{-6} \, M$ ). C: shows mean response of coronary artery with (Glibenclamide) and without (Control) glibenclamide under the same conditions (n=7). Glibenclamide was applied 25 min before testing effect of hypoxia. Hypoxia was induced by switching from  $95\% \, O_2 + 5\% \, CO_2 \, (O_2)$  to a  $95\% \, N_2 + 5\% \, CO_2 \, gas$  mixture ( $N_2$ ). Data are expressed as mean ± SE. \*: significant difference between  $PGF_2$ —induced contractility and control (p<0.05). \*\*: significant difference between control and glibenclamide group (p<0.05).



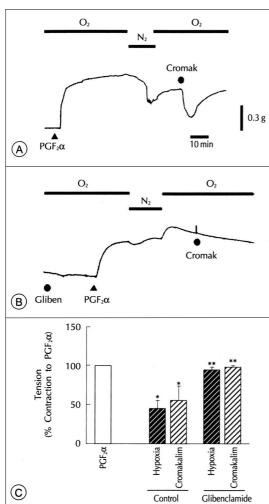
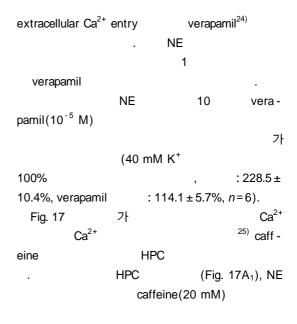
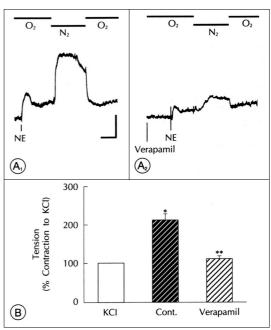
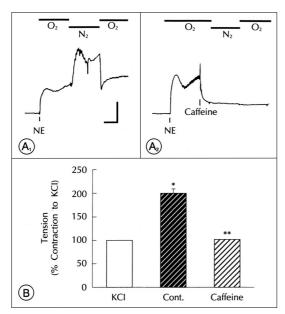
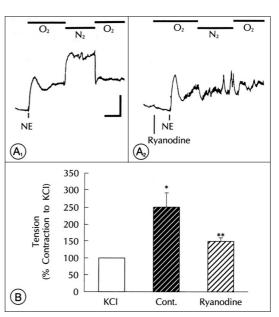






Fig. 15. Effect of glibenclamide on the response to hypoxia and cromakalim in coronary artery without endothelium. A, B: shows typical response to hypoxia and cromakalim (Cromak,  $5 \times 10^{-6}$  M) in precontracted (prostaglandins  $F_2$ : PGF<sub>2</sub>, 1.5 x 10<sup>-6</sup> M) coronary artery without (A) and with (B) glibenclamide (Gliben, 10<sup>-6</sup> M). C: shows mean response of coronary artery with (Glibenclamide) and without (Control) glibenclamide under the same conditions (n=7). Glibenclamide was applied 25 min before testing effect of hypoxia. Hypoxia was induced by switching from 95%  $O_2$ +5%  $CO_2$  ( $O_2$ ) to a 95%  $N_2$ +5%  $CO_2$  gas mixture (N<sub>2</sub>). Data are expressed as mean ± SE. \* : significant difference between PGF2 -induced contractility and hypoxia or cromakalim-induced contractility (p<0.05). \*\*: significant difference between control and glibenclamide group (p<0.05).






**Fig. 16.** Effect of verapamil on response to hypoxia in pulmonary arteries with endothelium.  $A_1$ ,  $A_2$ : shows typical response to hypoxia in precontracted (norepinephrine; NE,  $10^{-7}$  M) pulmonary artery with ( $A_2$ ) and without ( $A_1$ ) verapamil ( $10^{-5}$  M). B: shows mean response of pulmonary artery with (Verapamil) and without (Cont.) verapamil under the same conditions (n=6). Verapamil was applied 20 min before testing their efficacy. Data are expressed as mean  $\pm$  SE. \*: significant difference between 40 mM K\*- induced contraction and hypoxia-induced contraction (p<0.05). Horizontal scale bar: 10 min, Vertical scale bar: 100 mg.



**Fig. 17.** Effect of caffeine on response to hypoxia in pulmonary arteries with endothelium.  $A_1$ ,  $A_2$ : shows typical response to hypoxia in precontracted (norepinephrine; NE,  $10^{-7}$  M) pulmonary artery with ( $A_2$ ) and without ( $A_1$ ) caffeine (20 mM). B: shows mean response of pulmonary artery with (Caffeine) and without (Cont.) caffeine under the same conditions (n=7). Caffeine was applied after norepinephrine-induced precontraction. Data are expressed as mean  $\pm$  SE. \*: significant difference between 40 mM K\*-induced contraction and hypoxia-induced contraction (p<0.05). \*\*: significant difference between preparations with and without caffeine (p<0.05). Horizontal scale bar: 10 min, Vertical scale bar: 100 mg.



**Fig. 18.** Effect of ryanodine on response to hypoxia in pulmonary arteries with endothelium. A<sub>1</sub>, A<sub>2</sub>: shows typical response to hypoxia in precontracted (norepinephrine; NE,  $10^{-7}$  M) pulmonary artery with (A<sub>2</sub>) and without (A<sub>1</sub>) ryanodine (5  $\mu$ M). B: shows mean response of pulmonary artery with (Ryanodine) and without (Cont.) ryanodine under the same conditions (n=9). Ryanodine was applied 30 - 40 min before testing their efficacy. Data are expressed as mean  $\pm$  SE. \*: significant difference between 40 mM K<sup>+</sup> - induced contraction and hypoxia-induced contraction (p<0.05). \*\*: significant difference between preparations with and without ryanodine (p<0.05). Horizontal scale bar: 10 min, Vertical scale bar: 100 mg.

```
NE
                                                                                  고
                                                                                           찰
                                         가
(Fig. 17A<sub>2</sub>)
        (40 mM K+
                                            100%
                                  : 203.1 ± 8.6%, ca -
                                                            폐동맥에서 저산소증의 효과
              : 101.2 \pm 0.3\%, n=7, p<0.05).
ffeine
  Fig. 18
                       가
                     Ca<sup>2+</sup>
Ca<sup>2+</sup>
                                                                                              K<sup>+</sup> channel
                                                                                    2)3)5)26)
                                     HPC
     ryanodine
                          Fig. 18A<sub>1</sub>
   HPC
                                Fig. 18A<sub>2</sub>
        ryanodine(5 µM)
                                                                                     main pulmonary artery
                                                                                                              (20
                                                                            (30 mmHg)
             가
                                     (40 mM K+
                                                            25 )
                                                                                              가
                 100%
                                                                                     HPC
       : 253.0 \pm 36.4\%, ryanodine
                                             : 144.4 ±
9.5\%, n=9, p<0.05).
                                                                 HPC
```

|                                       | ,                  |         | factor(EDCF)              |                     |                     | 가                               | .33)34)                |
|---------------------------------------|--------------------|---------|---------------------------|---------------------|---------------------|---------------------------------|------------------------|
|                                       | normoxia           | hyp -   | EDCF                      | 3가                  | 가                   |                                 |                        |
| eroxia                                |                    |         |                           |                     |                     | EDCF                            | , <sup>33)</sup> mec - |
|                                       |                    |         | hanical stretcl           | h                   | Εſ                  | OCF <sub>2</sub> <sup>35)</sup> | 가                      |
| monophasic contracti                  | ion                |         |                           |                     |                     |                                 | peptide                |
| 2)27)                                 |                    |         | endothelin <sup>36)</sup> | . De M              | ey Va               |                                 | e(1983) <sup>33)</sup> |
|                                       | 가                  | bi -    | 가                         |                     | •                   | EDRI                            |                        |
| phasic contraction                    | 5)28)              |         |                           | フ                   | ŀ                   |                                 |                        |
| biphasic contra                       | action             |         |                           |                     |                     |                                 |                        |
| ·                                     |                    |         |                           |                     | Εſ                  | OCF가                            |                        |
| HPC                                   |                    |         |                           | EDCI                | F EDCF              | = <sub>1</sub>                  |                        |
| .29)                                  | ,                  |         |                           |                     |                     |                                 |                        |
| 가                                     | .3)                |         | Vanhoutte(1               | 987) <sup>35)</sup> |                     | EDCI                            | F <sub>2</sub> pro-    |
| pulmo                                 | onary vascular res | istance | staglandin H <sub>2</sub> | •                   | .36)                |                                 | staglandin             |
| ·                                     | •                  |         | H₂7ŀ HPC                  |                     |                     | 가                               | 16)34)                 |
| main first branch                     |                    | ,29)    |                           | HPC                 | cycloox             | ygenas                          | e inhibitor            |
| HPC                                   | HPC                | ·       | indo                      | methacin            | •                   | , 0                             | 15)16)                 |
| 가                                     |                    |         | prostacyclin              | 5                   | 가                   |                                 |                        |
| HPC                                   |                    |         |                           | 38)                 | HPC E               | DCF                             |                        |
| HPC 가                                 |                    |         |                           | .34)                |                     |                                 | ind -                  |
| <sup>2)26)</sup> 가                    |                    |         | omethacin                 |                     | NE                  | :                               |                        |
| ·                                     | HF                 | PC      |                           | HPC                 |                     | 가                               |                        |
| 3)27)                                 | 가                  |         | 가                         | HPC                 | prostag             |                                 |                        |
| HPC                                   | 가                  |         |                           |                     |                     |                                 |                        |
|                                       | 가                  |         | H                         | HPC EDC             | F                   | endo                            | othelin                |
|                                       | 가 HPC              |         | endo                      | thelin HP           | C medi              | ator                            |                        |
|                                       |                    |         | .13) Endothel             | lin                 |                     |                                 |                        |
| HPC                                   | 2가                 | -       |                           |                     | <sup>29)</sup> endo | thelin                          |                        |
| . , HPC                               | C endothelium - o  | derived |                           |                     |                     |                                 | 35)                    |
| relaxing factor(EDRF) N               | 10                 |         | HP                        | C                   |                     | normo                           | xia                    |
| 가 . <sup>30)</sup>                    |                    | 가       |                           |                     | HPC                 | endot                           | helin                  |
|                                       | NO L               | - NNA   |                           |                     | ,                   |                                 |                        |
| basal NO                              |                    |         |                           | 20 25               |                     |                                 | en -                   |
| 가 HPC                                 |                    | NO      | dothelin                  |                     |                     |                                 |                        |
|                                       | HPC                | 가       |                           | HPC                 |                     |                                 |                        |
| <sup>28)</sup> 가 <sup>27)31</sup>     | )                  |         |                           |                     | basal NO            | )                               |                        |
|                                       |                    |         |                           |                     |                     |                                 |                        |
|                                       | EDRF               |         |                           | HPC                 |                     |                                 |                        |
|                                       | EDRF               |         | K <sup>+</sup> char       | nnel 7              | ŀ                   | .17)39)                         |                        |
| 가 가                                   | .32)               |         | patch                     | clamp               |                     |                                 | voltage -              |
| HPC endothelium - derived contracting |                    |         | dependent dela            | ayed rectifie       | r K⁺ char           | nnel                            | 40)                    |

| fetal pulmonary artery           | /                                       | $K_{Ca}$               | K <sub>Ca</sub> ch        | nannel                                |                     | 77)                    |
|----------------------------------|-----------------------------------------|------------------------|---------------------------|---------------------------------------|---------------------|------------------------|
| channel                          | .41)                                    |                        | NO가 ATP-s                 | sensitive K <sup>+</sup> ch           | annel               |                        |
|                                  | ŀ                                       | < <sup>+</sup> channel |                           | 45)                                   | NO                  | K <sup>+</sup> channel |
| oxygen sensing                   |                                         |                        |                           |                                       |                     |                        |
| . <sup>42)</sup> HF              | PC K <sup>+</sup> cahnnel               |                        | ,                         |                                       | NO                  | K⁺ cha-                |
|                                  | HPC                                     |                        | nnel                      | 가                                     | HPC                 |                        |
| 43)                              |                                         | voltage                |                           | TEA가 non -                            | specific K          | C <sup>+</sup> channel |
| dependent Ca <sup>2+</sup> chann | nel 가                                   | J                      |                           |                                       | · channel           |                        |
|                                  |                                         |                        |                           |                                       | PC                  | K⁺ cha-                |
| non - s                          | pecific K <sup>+</sup> channel          |                        | nnel                      |                                       |                     | del -                  |
| TEA                              | , · · · · · · · · · · · · · · · · · · · |                        |                           | K <sup>+</sup> channel <sup>40)</sup> | K <sub>Ca</sub> cha |                        |
|                                  | ·                                       | TEA                    | .,                        |                                       | caffeine            |                        |
| HPC가                             |                                         | voltage                |                           | Ca <sup>2+</sup>                      |                     | Ca <sup>2+</sup>       |
| dependent Ca <sup>2+</sup> chann | iel v                                   | erapamil               |                           |                                       | HPC                 |                        |
| HPC                              |                                         | от а <b>р</b> анти     |                           |                                       | •                   |                        |
| 0                                |                                         | ·                      |                           | NOZŁ (                                | caffeine - s        | ensitive               |
| K <sup>+</sup> channel           | TEA가                                    | ,17)                   | ryanodine - se            |                                       | a <sup>2+</sup>     | Ca <sup>2+</sup>       |
| verapamil                        | Ca <sup>2+</sup>                        | ,<br>가                 | . ,                       | K <sub>Ca</sub> cha                   |                     | 가                      |
| 41                               |                                         | memb -                 |                           | <b>0</b> 0                            |                     | HPC                    |
| rane - sensitive dye             | Ca <sup>2+</sup> sensitive dv           |                        |                           |                                       | (Fig. 19).          | -                      |
|                                  |                                         |                        |                           |                                       | channel             |                        |
|                                  | Ca <sup>2+</sup> 가                      |                        |                           | NO가                                   | Ca <sup>2+</sup>    | Ca <sup>2+</sup>       |
| 41)                              |                                         |                        |                           |                                       | channel             | -                      |
| HPC                              |                                         |                        | (Fig. 1                   |                                       |                     | NO                     |
| K <sup>+</sup> channel           |                                         |                        | (1.19                     | K <sup>+</sup> cha                    | nnel NC             | _                      |
| Ca <sup>2+</sup>                 | 가                                       |                        |                           | Ca <sup>2+</sup>                      |                     | K <sup>+</sup> ch -    |
|                                  | ·                                       |                        | annel                     |                                       | char                |                        |
| TI                               | EA verapamil                            |                        |                           |                                       |                     |                        |
|                                  |                                         |                        | EC                        |                                       |                     |                        |
|                                  | K⁺ ch                                   | nannel                 | L-A                       | rginine Hunov                         | → NC                | $\rangle$              |
| HPC                              |                                         |                        |                           | Нурох                                 | la                  |                        |
|                                  | 가                                       |                        |                           |                                       | NC.                 | )                      |
| ,<br>HPC                         | HPC                                     | L - NNA                | a.,                       |                                       |                     |                        |
|                                  |                                         | TEA                    | SM                        | 7:                                    | $\overline{}$       |                        |
| verapamil                        | NO                                      |                        | ( s                       | $R \qquad \qquad [Ca^{2+}]_1$         | ↑ NC                | )                      |
|                                  |                                         | NO                     |                           | - [Ca ]                               |                     |                        |
| 가                                | K <sup>+</sup> channel                  | (activ -               |                           |                                       | ĵ                   | <del> </del>           |
| ity) 가                           |                                         | NO                     | * 1                       |                                       | K Chan              | ll<br>nel              |
| ··· <b>J</b> / · · · · ·         | NO ł                                    | C <sup>+</sup> channel | Fig. 10 A possib          | alo mochanisma                        | 1/2                 |                        |
| 가 HPC                            |                                         | (Fig. 19).             |                           | ole mechanism o<br>rat pulmonary a    |                     |                        |
| -                                |                                         |                        | 1.1 4 1 0000 0 0 tlo 1001 | unala (II) . savraav                  | alamana ratio       | uluma NIO . mi         |

hannel Fig. 19. A possible mechanism of hypoxic pulmonary vasoconstriction in rat pulmonary artery. EC: endothelial cell, SM: smooth muscle, SR: sarcoplasmic reticulum, NO: nitric oxide. tric oxide.

NO가

44)

|                      |                      |                                     |                       |                                    | 가 left                               | circumflex cor             | onary art -                        |
|----------------------|----------------------|-------------------------------------|-----------------------|------------------------------------|--------------------------------------|----------------------------|------------------------------------|
|                      |                      | 가                                   | HPC가                  | ery gluco                          | se가                                  | KH                         | 95%                                |
|                      | HPC가 L - NN          | IA                                  |                       | N <sub>2</sub> + 5% CC             | $O_2$                                |                            |                                    |
| HPC                  | N                    | 10                                  |                       | Р                                  | GF <sub>2</sub>                      |                            |                                    |
|                      | . TEA                | , verapamil, c                      | affeine ry -          |                                    |                                      |                            | ,                                  |
| anodine              |                      | HPC                                 |                       |                                    | ,                                    | hyperoxic (                | gas nor-                           |
|                      |                      | NO가                                 |                       | moxic gas                          |                                      |                            |                                    |
| K                    | <sup>+</sup> cahnnel |                                     | Ca <sup>2+</sup>      |                                    |                                      | HCD                        | K <sup>+</sup> <sub>ATP</sub> ch - |
|                      | Ca <sup>2+</sup>     |                                     |                       | annel                              |                                      |                            | . ,                                |
|                      | 1                    | NO                                  |                       |                                    |                                      | 가                          |                                    |
|                      |                      |                                     |                       | cycloooxyg                         | enase inhibitor                      | indomethaci                | n <sup>23)</sup>                   |
|                      |                      |                                     |                       |                                    | HCD가                                 |                            | pr -                               |
|                      |                      |                                     | -                     | ostaglandin                        | HCD                                  |                            |                                    |
|                      |                      | HF                                  | C                     | . n                                | on - specific K <sup>+</sup>         | channel                    | TEA <sup>17)</sup>                 |
| N                    | O가                   | K⁺                                  | channel               | 가 HCD                              |                                      | •                          |                                    |
| 기                    |                      |                                     |                       | ,                                  |                                      |                            |                                    |
| C                    | Ca <sup>2+</sup>     |                                     |                       | K <sup>+</sup> A                   | TP channel                           |                            |                                    |
|                      |                      | basal NO                            |                       |                                    | sulfonylu                            | rea compound               | gliben -                           |
| 가                    | K⁺ ch                | annel                               |                       | clamide가 H                         | HCD                                  |                            | . Gliben -                         |
|                      |                      |                                     | age dependent         | clamide                            | antidiabeti                          | c sulfonylurea             | compound                           |
| Ca <sup>2+</sup> cha | nnel                 | Ca <sup>2+</sup>                    | 가                     | 가                                  |                                      | C <sup>+</sup> ATP channel |                                    |
|                      |                      |                                     |                       |                                    | .46)                                 |                            |                                    |
|                      |                      |                                     |                       |                                    | $K^{+}_{ATP}$ char                   |                            | St -                               |
| 관동맥에서                | 너의 저산소증의 :           | 효과                                  |                       | anden (19                          | 989) <sup>49)</sup> patch            | clamp                      |                                    |
| pa                   | atch clamp           |                                     |                       | ,                                  | glibenclami                          | de-sensitive c             | hannel                             |
|                      | norm                 | oxia                                |                       |                                    |                                      |                            |                                    |
| ATI                  | P K <sup>+</sup> ATP | channel                             |                       |                                    | Daut (19                             | 90) <sup>20)</sup> perfus  | sed guinea                         |
|                      | ,                    |                                     | 가                     | pig heart                          | HCD                                  | glibencl                   | amide                              |
| ATP                  |                      | K <sup>+</sup> <sub>ATP</sub> chani |                       |                                    |                                      | •                          |                                    |
|                      |                      | . <sup>46 - 48)</sup>               | $K^{+}_{ATP}$ channel |                                    | 가                                    |                            |                                    |
|                      | K <sup>+</sup>       |                                     |                       | K <sup>+</sup> <sub>ATP</sub> chan | nel                                  |                            |                                    |
|                      |                      |                                     | .49)                  | •                                  |                                      | glibe                      | nclamide -                         |
|                      |                      |                                     |                       | sensitive K                        | <sup>+</sup> channel                 |                            |                                    |
|                      | K <sup>+</sup>       | ATP channel                         |                       |                                    |                                      | 49)                        | ,                                  |
|                      |                      |                                     |                       | 가                                  | 가                                    |                            |                                    |
|                      |                      |                                     |                       | glibe                              | enclamide - sens                     | itive K <sup>+</sup> chann | el                                 |
|                      |                      | gliben                              | clamide               |                                    | gluc                                 | ose가                       | KH                                 |
|                      |                      | -                                   |                       |                                    | 가                                    | НС                         | D가                                 |
| KH                   | glucose              | 2 - deoxyglu                        | oose                  |                                    | glii                                 | benclamide                 |                                    |
|                      |                      | 50)                                 |                       |                                    | K <sup>+</sup> <sub>ATP</sub> channe | el HCD                     |                                    |

| . K <sup>+</sup> <sub>ATP</sub> channel |                        |                                       | $,^{62)}$ IP $_3$                     |                          |                                       |  |
|-----------------------------------------|------------------------|---------------------------------------|---------------------------------------|--------------------------|---------------------------------------|--|
| antihypertensive drug cromakalim        |                        |                                       | 63)                                   |                          |                                       |  |
| ,,                                      | Ü                      |                                       |                                       | Ca <sup>2+</sup>         | Ca <sup>2+</sup>                      |  |
|                                         |                        | , glibenclamide                       |                                       | 64)                      |                                       |  |
| HCD cromakalim                          |                        | , 3                                   |                                       | Ca <sup>2+</sup>         |                                       |  |
|                                         |                        |                                       |                                       | PGF <sub>2</sub>         |                                       |  |
| ·                                       |                        | K <sup>+</sup> <sub>ATP</sub> channel |                                       | K <sup>+</sup> ATP chann | nel K <sup>+</sup>                    |  |
|                                         |                        | . 가                                   | 가                                     | Ca <sup>2</sup>          |                                       |  |
|                                         |                        | . 71                                  | ~1                                    | Ou                       | 71                                    |  |
|                                         | Δ                      | ATP 가                                 |                                       | •                        | glibenclamide                         |  |
| K <sup>+</sup> <sub>ATP</sub> channel   | ,                      | 53)54)                                | ,                                     |                          | HCD                                   |  |
| HCD가 glycolys                           | ie                     |                                       | K <sup>+</sup> <sub>ATP</sub> channel |                          | 가                                     |  |
|                                         |                        | dinitrophenol                         | K AIP CHAINEI                         |                          | 71                                    |  |
| ose mitochondrial u                     | ricoupiei              | dirittoprierioi                       | glibencl                              | lomido                   | •                                     |  |
|                                         |                        | •                                     | gliberici                             |                          |                                       |  |
|                                         | -19                    | alamida a a a itira                   |                                       | K <sub>Ca</sub> ch       |                                       |  |
| 14+                                     |                        | clamide - sensitive                   |                                       | . ,                      | small large                           |  |
| K <sup>+</sup> current                  |                        | ette ATP                              |                                       |                          | apamin <sup>1)</sup>                  |  |
|                                         | whole ce<br>57)58)     | II recording                          | iberiotoxin <sup>65</sup>             | ) HCD                    |                                       |  |
| K <sup>+</sup> <sub>ATP</sub> current가  |                        |                                       | •                                     |                          |                                       |  |
| ,                                       | ATP                    | 가 K <sup>+</sup> <sub>ATP</sub> ch -  |                                       |                          | 가                                     |  |
| annel                                   |                        |                                       |                                       |                          |                                       |  |
| ATP                                     |                        | . ,                                   |                                       |                          |                                       |  |
|                                         | ATP                    |                                       |                                       |                          | K <sup>+</sup> <sub>ATP</sub> channel |  |
|                                         | 59)60)                 |                                       |                                       |                          |                                       |  |
| 가                                       |                        | ,                                     |                                       |                          |                                       |  |
| ATP                                     |                        | ATP                                   |                                       | 요 약                      |                                       |  |
| $K^{+}_{ATP}$ channel                   |                        | ATP                                   |                                       |                          |                                       |  |
| 가                                       |                        | $K^+_{ATP}$                           | 연구배경 :                                |                          |                                       |  |
| channel pH                              |                        |                                       |                                       |                          |                                       |  |
| 59                                      | 9)                     |                                       | hypox                                 | ic pulmonary vasod       | constriction(HPC)                     |  |
| K <sup>+</sup> <sub>ATP</sub> channel   |                        |                                       | hypoxic coronary vasocodilation(HCD)  |                          |                                       |  |
|                                         |                        |                                       |                                       | . In vit                 | tro                                   |  |
| K <sup>+</sup> <sub>ATP</sub> ch        | annel                  |                                       |                                       |                          |                                       |  |
|                                         |                        |                                       | oxygen sensoi                         | 가                        |                                       |  |
| voltage                                 | e - depende            | nt Ca <sup>2+</sup> channel           |                                       | HPC HCD                  | K <sup>+</sup>                        |  |
| open probability                        | ·                      |                                       | channel                               |                          | . HPC                                 |  |
| Ca <sup>2+</sup>                        |                        | 20)49)                                | HCD                                   | , K <sup>+</sup> channel |                                       |  |
| Voltage - dependent                     | Ca <sup>2+</sup> chann | el                                    |                                       |                          |                                       |  |
| K <sup>+</sup>                          |                        | -                                     | 방 법:                                  |                          |                                       |  |
| 가                                       |                        | K <sup>+</sup>                        | 0 0                                   |                          | nore -                                |  |
| (sarcoplasm                             | ,<br>nic reticulu      |                                       | pinephrine                            | main pulmona             |                                       |  |
| (cai copidon                            |                        | ,                                     | FPr10                                 | a pairioik               | ,, pio                                |  |
| 2026                                    |                        |                                       | Korean                                | Circulation J 1998;      | 28(12):2011-2029                      |  |

| staglandin F             | 2                                     | ,                                     |
|--------------------------|---------------------------------------|---------------------------------------|
| ę                        | 95%O <sub>2</sub> + 5%CO <sub>2</sub> | 95%N <sub>2</sub> + 5%CO <sub>2</sub> |
| 가                        | Krebs - Henseleit                     |                                       |
| 15                       | 5 25 가                                | 가                                     |
|                          |                                       |                                       |
| 결 과:                     |                                       |                                       |
| 1)                       | 가                                     | HPC                                   |
|                          | 가                                     |                                       |
|                          | 1105                                  | LIDO                                  |
| LIOD                     | HCD                                   | . HPC                                 |
| HCD                      |                                       | kic hyperoxic                         |
| gas                      | incubation                            |                                       |
| 0) N                     | 가 .                                   | NO                                    |
| 2) IN - r                | nitro - L - arginine                  | NO                                    |
| pathway                  | HPC indomethacin                      | cyclooxygenase<br>HPC HCD             |
| •                        | domethacin                            | HPC HCD                               |
| III                      | dometriacin<br>가 .                    |                                       |
| 3)                       | TEA                                   | non - spe -                           |
| cific K <sup>+</sup> cha |                                       | HPC HCD                               |
| CITIC IX CITE            |                                       | THE HOD                               |
| 4)                       | apamin iberiotox                      | kin sm -                              |
| •                        | conductance calcium                   |                                       |
| nnel                     |                                       | HCD                                   |
|                          |                                       |                                       |
| 5)                       | glibenclamide                         | ATP - sen -                           |
| sitive K <sup>+</sup> ch |                                       | HCD                                   |
|                          | . ATP                                 | - sensitive K <sup>+</sup> ch -       |
| annel opene              | r cromakalim                          |                                       |
|                          |                                       | ,                                     |
| glibenclamic             | de                                    |                                       |
| 6)                       | verapamil                             |                                       |
| Ca <sup>2+</sup>         | HPC                                   | verapamil                             |
|                          |                                       | . caf -                               |
| feine                    | Ca <sup>2+</sup>                      | Ca <sup>2+</sup><br>Ca <sup>2+</sup>  |
|                          | odine                                 | Ca <sup>2+</sup>                      |
| Ca <sup>2+</sup>         | HPC                                   | C                                     |
|                          |                                       |                                       |
|                          |                                       |                                       |
| 결 론:                     |                                       | •                                     |

**HPC** 

## REFERENCES

- Wadsworth JD, Doorty KB, Ganellin CR, Strong PN. Photolabile derivatives of 1251-apamin: Defining the structural criteria required for labeling high and low molecular mass polypeptides associated with small conductance Ca<sup>2+</sup>activated K<sup>+</sup> channels. Biochemistry 1996;35:7917-27.
- Rodman DM, Yamaguchi T, O'Brien RF, McMurtry IF. Hypoxic contraction of isolated rat pulmonary artery. J Pharmacol Exp Ther 1989;248:952-9.
- 3) Yuan XJ, Tod ML, Rubin LJ, Blaustein MP. Contrasting effects of hypoxia on tension in rat pulmonary and mesenteric arteries. Am J Physiol 1990;259:H281-9.
- Rodman DM, Yamaguchi T, Hasunuma K, O'Brien RF, Mc-Murtry IF. Effects of hypoxia on endothelium-dependent relaxation of rat pulmonary artery. Am J Physiol 1990;258: L207-14.
- 5) Bennie RE, Packer CS, Power DR, Jin N, Rhoades RA. Biphasic contractile response of the pulmonary artery to hypoxia. Am J Physiol 1991;261:L156-63.
- Bonnet P, Argibay JA, White E, Garnier D. Differences in the hypoxic contraction of small isolated pulmonary arteries of cat and rabbit. J Comp Physiol 1991;161:543-7.
- 7) Rubanyi GM, Vanhoutte PM. Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium. J Physiol 1985;364:45-56.
- 8) Toda N, Matsumoto T, Yoshida K. Comparision of hypoxiainduced contraction in human, monkey, and dog coronary arteries. Am J Physiol 1992;262:H678-83.
- 9) Graser T, Vanhoutte PM. Hypoxic contraction of canine coronary arteries: Role of the endothelium and cGMP. Am J Physiol 1991;261:H1769-77.
- 10) Auch-Schwelk W, Basseller C, Nega N, Buscher U, Flek E. Role of endothelium-derived vasoactive factors in the vasomotor response of isolated human coronary arteries to hypoxia (abstract). J Vasc Res 1992;29:79.
- 11) Rubanyi G, Paul R. Two distinct effects of oxygen on vascular tone in isolated porcine coronary arteries. Circ Res 1985;56:1-10.
- 12) Johns RA, Linden JM, Peach MJ. Endothelium-dependent relaxation and cyclic GMP accumulation in rabbit pulmonary artery are selectively impaired by moderate hypoxia. Circ Res 1989;65:1508-15.
- 13) Holden WE, McCall E. Hypoxia-induced contractions of

- porcine pulmonary artery strips depend on intact endothelium. Exp Lung Res 1984;7:101-12.
- 14) Muramatsu M, Iwama Y, Shimizu K, Asano H, Toki Y, Miyazaki Y, et al. Hypoxia elicited contraction of aorta and coronary artery via removal of endothelium-derived nitric oxide. Am J Physiol 1992;263:H1339-47.
- Madden MC, Vender RL, Friedman M. Effect of hypoxia on prostacyclin production in cultured pulmonary artery endothelium. Prostaglandins 1986;31:1049-62.
- Rabinovitch M, Boudreau N, Vella G, Coceani F, Olley PM. Oxygen-related prostaglandins synthesis in ductus arteriosus and other vascular cells. Pediatr Res 1989;26:330-35.
- 17) Post JM, Hume JR, Archer SL, Weir K. Direct role for potassium channel inhibition: A hypoxic pulmonary vasoconstriction. Am J Physiol 1992;262:C882-90.
- 18) Smirnov SV, Robertson TP, Ward JPT, Aaronson PI. Chronic hypoxia is associated with reduced delayed rectifier K<sup>+</sup> current in rat pulmonary artery muscle cells. Am J Physiol 1994;266:H365-70.
- Roberts AM, Messina EJ, Kaley G. Prostacyclin (PGI 2) mediates hypoxic relaxation of bovine coronary arterial strips. Prostaglandins 1981;21:555-69.
- Daut J, Willibald MR, Nikolas VB, Gerhard M, Kerstin G, Liselotte GM. Hypoxic dilation of coronary artery is mediated by ATP-sensitive potassium channels. Science 1990; 247:1341-4.
- Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980;288:373-6.
- 22) Palmer RMJ, Moncada S. A novel citrulline-forming enzyme implicated in the formation of nitric oxide by vascular endothelial cells. Biochem Biophys Res Commun 1989; 158:348-52.
- Miller VM, Vanhoutte PM. Endothelium-dependent contractions to arachidonic acid are mediated by products of cyclooxygenase. Am J Physiol 1985;248:H432-8.
- 24) Archer SL, Yankovich RD, Chesler E, Weir EK. Comparative studies of nisoldipine, nifedipine and bepridil on experimental pulmonary hypertension. J Pharmacol Exp Ther 1985;233:12-7.
- Leitzen PAA, Van Breemen C. The effects of caffeine on the noradrenaline-sensitive calcium store in rabbit aorta. J Physiol 1984;357:327-39.
- Demiryurek AT, Wadsworth RM, Kane KA. Effects of hypoxia on isolated intrapulmonary arteries from sheep. Pulm Pharmacol 1991;4:158-64.
- 27) Ogata M, Phe M, Katayose D, Takishima T. Modulatory role of EDRF in hypoxic contraction of isolated porcine pulmonary arteries. Am J Physiol 1992;262:H691-7.
- Jin N, Packer S, Rhoades RA. Pulmonary arterial hypoxic contraction: Signal transduction. Am J Physiol 1992;263: 1.73-8
- Leach RM, Robertson TP, Twort CHC, Ward JP. Hypoxic vasoconstriction in rat pulmonary and mesenteric arteries. Am J Physiol 1994;266:L223-31.
- 30) Robertson BE, Warren JB, Nye PCG. *Inhibition of nitric oxide synthesis potentiates hypoxic vasoconstriction in isolated rat lungs. Exp Physiol 1990;75:255-7.*
- 31) Ohe M, ogata M, Katayose D, Takishima T. *Hypoxic contraction of pre-stretched human pulmonary artery. Res Physiol* 1992;87:105-14.

- 32) Kovitz KL, Aleskowitch TD, Sylvester JT, Flavahan NA. Endothelium-derived contracting and relaxing factors contribute to hypoxic responses of pulmonary arteries. Am J Physiol 1993;266:L1139-48.
- 33) De Mey JG, Vanhoutte PM. Anoxia and endothelium-dependent reactivity of the canine femoral artery. J Physiol 1983;335:65-74.
- 34) North AJ, Brannon TS, Wells LB, Campbell WB, Shaul PW. Hypoxia stimulates prostacyclin synthesis in newborn pulmonary artery endothelium by increasing cyclooxygenase-1 protein. Circ Res 1994;75:33-40.
- 35) Vanhoutte PM. Endothelium-dependent contraction in arteries and veins. Blood Vessels 1987;24:141-4.
- 36) Ito T, Kato T, Iwama Y, Muramatsu M, Shimizu K, Asano H, et al. Prostaglandin H<sub>2</sub> as an endothelium-derived contracting factor and its interaction with endothelium derived nitric oxide. J Hypertens 1991;9:729-36.
- Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988; 332:411-5.
- 38) Green RS, Leffler CW. Hypoxia stimulates prostacyclin synthesis by neonatal lungs. Pediatr Res 1984;18:832-5.
- Yuan XJ, Goldman WF, Tod ML, Rubin LJ, Blaustein MP. Hypoxia reduces potassium currents in cultured rat pulmonary but not mesenteric arterial myocytes. Am J Physiol 1993;264:L116-23.
- 40) Post JM, Gelband CH, Hume JR. [Ca<sup>2+</sup>] i inhibition of Ca<sup>2+</sup> channels in canine pulmonary artery. Novel mechanism for hypoxia-induced membrane depolarization. Circ Res 1995;77:131-9.
- 41) Cornfield DN, Steven T, McMurtry IF, Abman SH, Rodman DM. Acute hypoxia causes membrane depolarization and calcium influx in fetal pulmonary artery smooth muscle cells. Am J Physiol 1994;266:L469-75.
- Kozlowski RZ. Ion channels, oxygen sensation and signal transduction in pulmonary arterial smooth muscle. Cardiovasc Res 1995;30:318-25.
- Harder DR, Madden JA, Dawson C. A membrane electrical mechanism for hypoxic vasoconstriction of small pulmonary arteries from the cat. Chest 1985;88:233-5.
- 44) Najibi S, Cohen RA. Enhanced role of K<sup>+</sup> channels in relaxations of hypercholesterolemic rabbit carotid artery to NO. Am J Physiol 1995;269:H805-11.
- Murphy ME, Brayden JE. Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP-sensitive potassium channels. J Physiol 1995;486:47-58.
- 46) Standen NB. Potassium channels, metabolism and muscle. Exp Physiol 1992;77:1-25.
- 47) Edwards G, Weston AH. The pharmacology of ATP-sensitive potassium channels. Annu Rev Pharmacol Toxicol 1993;33:597-637.
- 48) McPherson GA. Current trends in the study of potassium channel openers. Gen Pharmacol 1993;24:275-81.
- 49) Standen NB, Quayle JM, Davies NW, Brayden JE, Huang Y, Nelson MT. Hyperpolarizing vasodilators activate ATPsensitive K<sup>+</sup> channels in arterial smooth muscle. Science 1989;245:177-80.
- 50) Mellemkjaer S, Nielsen-Kudsk JE. Glibenclamide inhibits hypoxic relaxation of isolated porcine coronary arteries under conditions of impaired glycolysis. Eur J Pharmacol

- Environ Toxicol Pharmacol Section 1994;270:307-12.
- 51) Jiang C, Collins P. Inhibition of hypoxia-induced relaxation of rabbit isolated coronary arteries by N G-monomethyl-L-arginine but not glibenclamide. Br J Pharmacol 1994; 111:711-6.
- 52) Rodman DM, Hasunuma K, Peach JL, McMurtry IF. Inhibitor of ATP-sensitive K<sup>+</sup> channel alters neither hypoxic contraction nor relaxation of rat aorta. Blood Vessels 1990; 27:365-8.
- 53) Kajioka S, Kitamura K, Kuriyama H. Guanosine diphos-phate activates and adenosine-5'-triphosphate-sensitive K<sup>+</sup> channel in the rabbit portal vein. J Physiol 1991;444: 397-418
- 54) Beech DJ, Zhang H, Nakao K, Bolton TB. K channel activation by nucleotide diphosphates and its inhibition by glibenclamide in vascular smooth muscle cells. Br J Pharmacol 1993;110:573-82.
- 55) von Beckerath N, Cyrys S, Dischner A, Daut J. Hypoxic vasodilatation in isolated, perfused guineapig heart: An analysis of the underlying mechanisms. J Physiol 1991; 442:297-319.
- 56) Silberberg SD, van Breemen C. A potassium current activated by lemakalim and metabolic inhibition in rabbit mesenteric artery. Pflgers Arch 1992;420:118-20.
- 57) Clapp LH, Gurney AM. ATP-sensitive K<sup>+</sup> channels regulate resting membrane potential of pulmonary arterial smooth muscle cells. Am J Physiol 1992;262:H916-20.
- 58) Quayle JM, Boney AD, Brayden JE, Nelson MT. Calcium gene-related peptide activated ATP-sensitive K<sup>+</sup> currents in

- the rabbit arterial smooth muscle via protein kinase. Am J Physiol 1994;475:9-13.
- Namm DH, Zucker JL. Biochemical alterations caused by hypoxia in the isolated rabbit aorta. Can J Physiol Pharmacol 1976;55:882-7.
- 60) Post JM, Jones AW. Stimulation of arterial K efflux by ATP depletion and cromakalim is antagonized by glyburide. Am J Physiol 1991;260:H848-54.
- 61) Davies NW, Standen NB, Stanfield PR. The effect of intracellular pH on ATP-dependent potassium channels of frog skeletal muscle. J Physiol 1992;445:549-68.
- 62) Chopra LC, Twort CHC, Ward JPT. Direct action of BRL 38227 and glibenclamide on intracellular calcium stores in cultured airway smooth muscle of rabbit. Br J Pharmacol 1992;105:259-60.
- 63) Yamagishi T, Yanigasawa T, Taira N. K channel openers, cromakalim and Ki4032, inhibit agonist-induced Ca release in canine coronary artery. Naunyn-Schmiedeberg's Arch Pharmacol 1992;346:691-700.
- 64) Cook NS, Quast U. Potassium channel pharmacology. In Cook NS, ed. Potassium Channels: Structure, Classification, Function and Therapeutic Potential. Chichester, Ellis Horwood Limited 1990;8:181-255.
- 65) Giangiacomo KM, Garcia-Calvo M, Hans-Gunther K, Mullmann TJ, Garcia ML, McManus O. Functional reconstitution of the large-conductance, calcium- activated potassium channel purified from bovine aortic smooth muscle. Biochemistry 1995;34:15849-62.