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Introduction 

The gut microbiota in adults is known to comprise between 

10 and 100 trillion microorganisms, a quantity that is more 

than 10-fold the number of human cells [1]. Moreover, the 

collective genomes of the gut microbiota are 100 to 150 

times greater than that of the human genome [2]. Several 

metagenomic studies have suggested a correlation between 

the quantity or diversity of genes in the gut microbiota and 

the health of the host [3-5]. The gut microbiota has evolved 

alongside human evolution and has been found to signifi-

cantly influence various physiological responses of the host. 

Notably, recent studies have demonstrated that alterations 

in the gut microbial composition are associated with vari-

ous metabolic diseases, including obesity [6], nonalcoholic 

fatty liver disease (NAFLD) [7], type 2 diabetes [8], and car-

diovascular disease [9-11]. 
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The gut microbiota has been reported to exert a significant influence on various physiological responses of hosts. Extensive evi-
dence has recently emerged linking metabolic and cardiovascular disorders to the gut microbiota. Nonalcoholic fatty liver disease 
(NAFLD) is the most common underlying metabolic disorder, and its prevalence is increasing worldwide. In this study, we aim to re-
view the relationship between the gut microbiota and NAFLD, and explore the potential of the gut microbiota as a novel target for 
NAFLD treatment. 
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More than one-third of the global population is affected 

by NAFLD, and the prevalence of this condition has signifi-

cantly increased [12]. NAFLD induces insulin resistance 

and generates numerous inflammatory cytokines, bile acid, 

and cholesterol. Collectively, these factors can lead to type 

2 diabetes, and conversely, type 2 diabetes can exacerbate 

NAFLD [13-17]. Furthermore, NAFLD is a significant con-

tributor to the onset of cardiovascular diseases [18,19]. 

NAFLD can progress to liver inflammation and hepatocyte 

damage, resulting in nonalcoholic steatohepatitis (NASH). 

In some patients, NASH can cause slow, progressive, and 

severe liver damage, including fibrosis and ultimately, liver 

cirrhosis (LC). Therefore, NAFLD acts as a fundamental 

underlying condition contributing to various metabolic dis-

orders. 

In this article, we aim to review the relationship between 

the gut microbiota and NAFLD, as established by various 
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studies to date. We also explore the potential of the gut 

microbiota as a novel therapeutic target for NAFLD in the 

future.  

Gut microbiota and NAFLD: pathogenic 
mechanisms 

Dysbiosis of the gut microbiota is recognized as a cause of 

NAFLD and NASH. Various environmental factors influ-

ence this dysbiosis. Notably, a diet high in fat and fructose, 

extensive exposure to medications such as antibiotics and 

proton pump inhibitors, and various food preservatives are 

identified as significant environmental contributors to gut 

microbiota dysbiosis [20-24]. Fructose, which is a mono-

saccharide naturally found in fruits and honey, has been 

demonstrated to play a substantial role in the pathogenesis 

of NAFLD and NASH in both preclinical and clinical studies 

[25-28], and it is known to induce gut microbiota dysbiosis 

[29,30]. In addition to its impact on gut microbiota, fructose 

also has direct, detrimental effects on the liver. Its unique 

metabolic pathway leads to ATP depletion, uric acid gener-

ation, mitochondrial dysfunction, de novo lipogenesis, and 

the inhibition of beta-fatty oxidation [31-35]. 

Small internal bacterial overgrowth and gut leakiness 

play a key role in the occurrence and progression of NAFLD 

(Fig. 1). Small internal bacterial overgrowth is commonly 

triggered by an imbalance in gut microbiota [36]. This im-

balance leads to an increase in various microbial compo-

nents and metabolites, including ethanol, lipopolysaccha-

ride, trimethylamine, short-chain fatty acids, and microbial 

DNA. These elements, along with intestinal mucosal le-

sions, contribute to increased gut permeability [37,38]. Gut 

leakiness can also result from dysfunction in the structures 

of the intestinal barrier. Proteins in the tight junctions serve 

as crucial mucosal barriers that prevent bacterial transloca-

tion. When these proteins are damaged, the translocation of 

microbial metabolic products, such as lipopolysaccharide, 

into the bloodstream is increased. This process induces a 

state of endotoxemia, triggering inflammation in the liver 

[37,38]. The endotoxemia caused by increased intestinal 

permeability and the subsequent translocation to the liver 

are critical factors in the development of NAFLD (Fig. 1). 

The gut-liver axis refers to the communication between 

the gut and the liver. This communication is bidirectional 

and occurs through the biliary tract, portal vein, and sys-

temic circulation (Fig 1). Endotoxins that reach the liver 

via the portal vein interact with receptors such as Toll-like 

receptors 4 or 9 (TLR4 or TLR9). TLR4 is found on the cell 

membranes of hepatocytes and immune cells, specifically 

Kupffer cells. TLR4 facilitates the activation of molecules 

such as NF-κB, which in turn activate inflammatory cyto-

kines [39,40]. The biliary tract plays a pivotal role in en-

abling bidirectional communication between the liver and 

Fig. 1. Summary of the mechanisms through which gut microbi-
ota dysbiosis leads to NAFLD progression. LPS, lipopolysaccharide; 
TMA, trimethylamine; SCFA, short-chain fatty acid; NAFLD, nonal-
coholic fatty liver disease; NASH, nonalcoholic steatohepatitis; LC, 
liver cirrhosis.
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the intestine. Substances derived from the liver significantly 

influence both the composition of the gut microbiota and 

the integrity of the gut barrier [41]. These processes can 

aggravate liver damage. NAFLD, NASH, and LC are often 

viewed as a continuum, with shared pathways influenced by 

the gut microbiota. However, there is still a substantial gap 

in research concerning the specific mechanisms by which 

the gut microbiota uniquely contributes to the progression 

from NAFLD to NASH and LC. Future research should aim 

to uncover these unique mechanisms for each condition 

and gain a better understanding of how the gut microbiota 

may impact these processes. In conclusion, maintaining 

the integrity of tight junctions and inhibiting gut microbiota 

dysbiosis could be an effective strategy for preventing or 

treating NAFLD and other gut-related diseases. 

Keystone species of gut microbiota 

Patients with NAFLD have been found to exhibit alterations 

in their gut microbiota compared to healthy individuals. 

Notably, the gut microbiota signatures associated with NA-

FLD include an increase in the Proteobacteria phylum, the 

Enterobacteriaceae family, and the Escherichia, Bacteroides, 

Dorea, and Peptoniphilus genera. Conversely, there is a de-

crease in the Rikenellaceae and Ruminococcaceae families, 

and the Faecalibacterium, Coprococcus, Anaerosporobacter, 

and Eubacterium genera [42-46]. However, interventional 

clinical studies to determine whether these specific species 

cause NAFLD, in order to establish causality, are not feasi-

ble due to observations from several studies that these spe-

cies change following bariatric metabolic surgery [47-49].  

Certain specific species have been utilized in the treat-

ment of NAFLD, and the results have shown promise in 

improving the condition [50,51]. The most used probiotics 

belong to the Lactobacillus genus, as follows: Lactobacillus 

casei, Lactobacillus plantarum, Lactobacillus rhamnosus, 

Lactobacillus bulgaricus, and Lactobacillus acidophilus [52-

57]. Others include Bifidobacteria and Streptococcus ther-

mophiles [58]. Numerous studies have recently explored the 

combination of multiple species of probiotics [59-61]. 

Gut microbiota and NAFLD: therapeutic 
interventions 

Numerous studies have targeted the gut microbiota for 

therapeutic and preventative interventions. These interven-

tions encompass probiotics, prebiotics, synbiotic supple-

ments, and fecal microbiota transplantation (FMT). In the 

context of NAFLD treatment, research has been conducted 

to alter the gut microbiota composition and reestablish bal-

ance through the administration of probiotics, prebiotics, 

and synbiotic supplements. Probiotics are specific species 

that could offer beneficial effects. Prebiotics have recently 

been defined as indigestible dietary components that se-

lectively stimulate the growth and activity of beneficial gut 

bacteria. This definition has been broadened to include not 

only indigestible carbohydrates such as fructooligosaccha-

rides, galactooligosaccharides, and trans-galactooligosac-

charides, but also other substances like polyunsaturated 

fatty acids and polyphenols that can modulate the gut 

microbiota [62,63]. Synbiotics are defined as a mixture of 

probiotics and prebiotics. 

Animal studies have shown that probiotics can slow the 

progression of NAFLD [64,65]. Furthermore, a meta-anal-

ysis of clinical studies, in which patients with NAFLD were 

treated with probiotics, revealed significant reductions in 

alanine aminotransferase, aspartate aminotransferase, and 

total cholesterol within the probiotics group [66,67]. Al-

though the number of patients included in these studies is 

limited, making it challenging to evaluate any actual chang-

es in the composition of the intestinal microflora posttreat-

ment, probiotics, prebiotics, and synbiotic supplements are 

associated with minimal side effects. Therefore, the results 

of future research are eagerly anticipated. A randomized 

controlled study of FMT, where fecal bacteria from healthy 

individuals are transplanted into NAFLD patients, has also 

been recently published [68]. The group that underwent 

FMT showed improved intestinal permeability. However, 

there was no observed difference in insulin resistance or 

intrahepatic fat [68]. In the same study, while an increase 

in bacterial diversity was noted, there were no definitive 

changes in the composition of the microbiota. This lack of 

change in microbiota composition may be due to the ad-

ministration of FMT into the duodenum. Stool specimen 

analysis may not accurately reflect changes in the microbi-

ome of the small intestine or the proximal colon. Converse-

ly, another clinical trial where FMT was administered via 

colonoscopy demonstrated changes in both the composi-

tion of the microbiota and fatty liver post-FMT [69]. There-

fore, further research is needed to explore the therapeutic 
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effects of FMT in patients with NAFLD. 

Another promising area for therapeutic intervention lies 

in factors associated with bile acid metabolism. Bile ac-

ids serve to prevent intestinal bacterial overgrowth, both 

directly and indirectly. Obeticholic acid (OCA), a potent 

activator of the farnesoid X receptor, has been shown to 

improve hepatic steatosis and fibrosis in animal studies 

[70]. Furthermore, OCA has been found to reduce bacte-

rial translocation and improve gut microbiota dysbiosis in 

rats with LC [71]. A phase 3 clinical trial with OCA demon-

strated a protective effect against fibrosis, as confirmed by 

biopsy [72]. However, despite these promising results, nu-

merous patients have reported unusual observations, such 

as dermatological manifestations, during clinical trials. 

Consequently, the applicability of OCA to patients remains 

unconfirmed and is a subject of ongoing debate. Fibroblast 

growth factor 19 is a gut hormone that plays a major role 

in regulating bile acid metabolism [73,74]. The fibroblast 

growth factor 19 analog NGM282, which regulates bile acid 

synthesis and glucose homeostasis, has been shown to 

reduce hepatic steatosis in patients with NASH. A phase 2 

study of NAFLD with NGM282, published in 2018, revealed 

that the treatment group experienced significant reductions 

in intrahepatic fat, fibrosis-related markers, and intrahepat-

ic fat content within 12 weeks [75]. Regarding drug side ef-

fects, only mild symptoms such as digestive discomfort and 

pain at the injection site have been reported [75]. Further 

research results on the use of NGM282 to treat NAFLD and 

NASH are expected in the future. 

Conclusion 

Gut microbiota dysbiosis resulting from various environ-

mental factors causes NAFLD. There have been attempts to 

identify treatment targets for NAFLD through studies on the 

mechanisms through which gut dysbiosis causes NAFLD. 

Moreover, numerous studies have shown improvements in 

NAFLD by directly restoring the composition of intestinal 

microbiota through probiotics, prebiotics, synbiotics, and 

FMT. In the future, studies exploring how the gut microbi-

ome could be targeted for the treatment of NAFLD are ex-

pected. 
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