
Introduction 

Mucus has an essential function in the innate immune sys-

tem against pathogens such as bacteria, virus, air pollutants, 

or fungus in the human respiratory track. Mucus hyperpro-

duction and hypersecretion in airway track are frequently 

observed in a number of respiratory diseases, including 

asthma, chronic bronchitis, chronic obstructive pulmonary 
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Background: Contact between the human pulmonary system and bacteria, viruses, or other pathogens can induce airway diseases. 
Although pathogen-induced mucus oversecretion and hyperproduction are frequently observed in the human respiratory tract, the 
molecular mechanisms of pathogen-induced mucus hypersecretion and overproduction remain unclear. The objective of this study 
was to investigate the physiological signaling mechanism of adenosine triphosphate (ATP)-induced MUC8 gene expression in human 
airway epithelial cells. 
Methods: Real-time reverse transcription polymerase chain reaction, a cytokine array, and a Ca2+ concentration assay were per-
formed to investigate the ATP/P2Y2-induced MUC8 gene expression levels in human airway epithelial cells. 
Results: The ATP/P2Y2 complex robustly secreted interleukin (IL)-6 in a time-dependent manner, whereas siRNA-P2Y2 did not. More-
over, ATP/P2Y2 induced MUC8 gene expression. IL-6 secreted by ATP strongly elevated ATP/P2Y2-induced MUC8 gene expression 
compared to ATP/P2Y2. Interestingly, a specific signal transducer and activator of transcription 3 (STAT3) inhibitor, 5,15-DPP, dramat-
ically inhibited ATP/P2Y2/IL-6-induced STAT3 phosphorylation and resulted in an approximately 5-fold decrease in MUC8 gene ex-
pression. 
Conclusions: We showed that IL-6-activated STAT6 is essential for ATP/P2Y2-induced MUC8 gene expression as part of inflammatory 
signaling by cytokines during airway inflammation. Our results provide a new molecular understanding of the signaling mechanism of 
MUC8 gene expression during airway inflammation. 
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disease, and cystic fibrosis [1]. Various mucins have been 

named, but their exact physiological functions have yet to 

be identified. MUC8 has also been known to be expressed in 

the sinuses of chronic rhinosinusitis patients [2]. The partial 

cDNA sequence of MUC8 has been identified by Shankar 

et al. [3]. For this reason, the mechanisms by which MUC8 

affect inflammation in the respiratory track are unknown. 

Recently, we reported that MUC8 acts as anti-inflammatory 
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mucin in reverse using the siRNA-MUC8 system [4]. In this 

study, we examined the signal mechanism of adenosine tri-

phosphate (ATP)/P2Y2-induced MUC8 gene expression in 

human airway epithelial cells. 

Purinergic receptors are ubiquitously expressed in many 

tissues and contribute to innate and adaptive immunity 

[5,6]. Of purinergic receptors, P2Y2 is expressed in the api-

cal membrane of airway track cells [7] and is an important 

physiological receptor for airway inflammation [8]. P2Y2 is 

a Gαq-coupled receptor involved in intracellular signaling 

by heterotrimeric G proteins. This physiological mechanism 

has provided information on characterization of the recep-

tor for ATP-induced MUC8 gene expression, its Gαq-protein 

coupling, and secondary messengers of the downstream 

process after P2Y2 receptor activation. Thus, understanding 

of intracellular signaling cascades that trigger mucus over-

production/hypersecretion is required for inflammatory 

control in an affected microenvironment. 

Recently, a small molecule signal transducer and activa-

tor of transcription 3 (STAT3) inhibitor, C188-9, prevented 

house dust mite-induced airway remodeling, airway in-

flammation, and T helper type 2 and 17 (Th2/Th17) cells 

accumulation [9]. This was not surprising because local 

blockade of interleukin (IL)-6 decreased STAT3 activation, 

increased Th17 inflammation, and increased Th2 responses 

in mice [10,11]. However, the biochemical and physiologi-

cal mechanisms by which ATP/P2Y2-induced MUC8 gene 

expression is affected by IL-6 in respiratory diseases remain 

unclear. 

Methods 

1. Materials and cell culture 
ATP and 5,15-DPP were purchased from Merck (Darmstadt, 

Germany). The IL-6 ELISA kit was obtained from R&D Sys-

tems (Minneapolis, MN, USA). siRNA specifically targeting 

P2Y2 was synthesized by Bioneer (Daejeon, Korea). The siR-

NA sequences of P2Y2 were GAGGAAGGUGGCUUACCAA 

(dTdT). The human lung mucoepidermoid carcinoma cell 

line (NCI-H292) was obtained from the American Type Cul-

ture Collection (CRL-1848; Manassas, VA, USA). Cells were 

incubated in RPMI 1640 (Invitrogen, Carlsbad, CA, USA) 

added with 10% fetal bovine serum in the presence of pen-

icillin/streptomycin at 37°C in a humidified chamber with 

5% CO2. 

2. Real-time RT-PCR 
Real-time reverse transcription polymerase chain reaction 

(RT-PCR) was performed using a Bio-Rad iQ iCycler De-

tection System (Bio-Rad Laboratories, Hercules, CA, USA) 

with iQ SYBR Green SuperMix. The following primers were 

used: MUC8, forward (5’-GACCTGCCCCCATGGAC-3’) and 

reverse (5’-CAGGAGTTCGAGACCAGCCT-3’). β2M, forward 

(5’-CGCTCCGTGGCCTTAGC-3’) and reverse (5’-GAGTAC-

GCTGGATAGCCTCCA-3’). Reactions were performed in 

a total volume of 20 µL, which included 10 µL of 2× SYBR 

Green PCR Master Mix (Thermo Fisher, Waltham, MA, 

USA), 300 nM of each primer, and 1 µL of previously re-

verse-transcribed cDNA template. Real-time RT-PCR was 

performed on a MiniOption Real-time RT-PCR Detection 

System (Bio-Rad Laboratories). The parameters were 95°C 

for 10 minutes, followed by 40 cycles of 95°C for 15 seconds, 

60°C for 30 seconds, and 72°C for 30 seconds. All reactions 

were performed in triplicate. The relative quantity of mRNA 

was obtained using the comparative cycle threshold meth-

od and was normalized using β2-microglobulin as an en-

dogenous control [12]. 

3. Cytokine assay 
Cytokine levels were quantified using a Human Cytokine 

Array Panel A kit (R&D Systems, ARY005B) according to the 

manufacturer’s instructions. Briefly, cells were plated in six-

well plates 1 day before transfection with either a construct 

driving the expression of P2Y2 or P2Y2-specific siRNA using 

FuGENE 6 (Roche, Indianapolis, IN, USA). Twenty-four 

hours after transfection, serum-starved cells were treated 

with ATP for 4 hours. After treatment, supernatants were as-

sayed for cytokine production according to the kit’s instruc-

tions [13].  

4. Calcium colorimetric assay  
Ca2+ concentration level was quantified using a Calcium 

Colorimetric assay kit (ab102505; Abcam, Cambridge, UK) 

according to the manufacturer’s instructions. Briefly, cells 

were plated in six-well plates 1 day before transfection with 

a construct driving the expression of P2Y2 using FuGENE 

6 (Promega, Madison, WI, USA). Twenty-four hours after 

transfection, serum-starved cells were treated with ATP for 

1 hour. The cells were assayed for Ca2+ concentration ac-

cording to the kit’s instructions. 

Effect of STAT3 on ATP/P2Y2-induced MUC8 gene expression

135www.kosinmedj.org



5. Statistical analysis 
The data are presented as the mean±standard deviation of 

more than three independent experiments. When appro-

priate, statistical differences were measured using Wilcoxon 

Mann-Whitney tests. A p-value less than 0.05 was consid-

ered statistically significant. 

Results 

1. ATP activates P2Y2 purinergic receptor to induce MUC8 
gene expression in NCI-H292 cells 
We performed real-time RT-PCR to determine whether 

P2Y2 receptor is essential for ATP-induced MUC8 gene 

expression in human airway epithelial (NCI-H292) cells. 

After transfection with either wild-type P2Y2 or siRNA-P2Y2 

construct, ATP was applied for 24 hours (Fig. 1A). The ATP/

P2Y2 complex dramatically induced MUC8 gene expres-

sion compared to ATP but not to siRNA-P2Y2. This result 

suggests that P2Y2 is critical for ATP-induced physiological 

functioning. ATP is an inducer of inflammation in many tis-

sues in humans. We posit that ATP signaling can breakdown 

the secretagogues in cells to augment the inflammatory 

signal by secreting several cytokines/chemokines from the 

cells. To test that, cytokine array was performed with cell 

medium (Fig. 1B). Interestingly, IL-6 was secreted out of 

the cells by the ATP/P2Y2 complex but not by siRNA-P2Y2, 

suggesting that P2Y2 mediates ATP-induced IL-6 secretion. 

In addition, IL-6 secretion peaked at 6 hours after ATP treat-

ment and then decreased. These results suggest that ATP/

P2Y2 could result in extracellular secretion of IL-6 to induce 

an inflammatory condition in airway epithelial cells. 

Fig. 1. ATP induces IL-6 secretion in a P2Y2-dependent manner in NCI-H292 cells. (A) Cells were transfected with either wild-type 
P2Y2 or a siRNA-P2Y2 construct and were then incubated with ATP for 24 hours before the generation of total cell lysates; MUC8 tran-
scripts were assessed by real-time RT-PCR. (B) A construct expressing wild-type P2Y2 or siRNA-P2Y2 was transiently transfected into 
NCI-H292 cells. The cells were washed, serum-starved overnight, and treated with ATP for 4 hours for a cytokine assay. The positive 
control was used as a loading control. (C) After transfection with a construct expressing wild-type P2Y2, NCI-H292 cells were incubated 
in a time-dependent manner. The supernatants were obtained to perform specific IL-6 ELISA. All figures are representative of three in-
dependent experiments. ATP, adenosine triphosphate; IL, interleukin; RT-PCR, reverse transcription polymerase chain reaction; ELISA, en-
zyme-linked immunosorbent assay. a)p<0.05 compared to the control; b)p<0.05 compared to ATP only; c)p<0.05 compared to P2Y2-trans-
fected cells.
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2. Secreted IL-6 augments ATP/P2Y2-activated [Ca2+] to 
increase MUC8 gene expression 
To examine whether secreted IL-6 could affect ATP as an 

essential factor in P2Y2-induced MUC8 gene expression, 

extracellular ATP and purified IL-6 were applied to cells 

transfected with P2Y2 (Fig. 2A). Extracellular IL-6 treatment 

could strongly increase ATP/P2Y2-treated MUC8 gene ex-

pression compared to ATP/P2Y2 only. Because P2Y2 is a 

Gαq-coupled receptor, intracellular calcium was measured 

after treatment with IL-6. As expected, intracellular calcium 

concentration was increased by extracellular IL-6 treatment 

(Fig. 2B). These results suggest that either/both autocrine 

or/and paracrine IL-6 can activate intracellular calcium 

concentration to increase ATP/P2Y2-induced MUC8 gene 

expression in NCI-H292 cells. 

3. STAT3 is essential for ATP/P2Y2-induced MUC8 gene 
expression after cotreatment with IL-6 
To investigate the signaling mechanism of ATP/P2Y2-in-

duced MUC8 overproduction after cotreatment with IL-6, 

Fig. 2. Cotreatment with ATP and IL-6 dramatically induces MUC8 gene expression via the Gαq-Ca2+ pathway. (A) Cells were transfected 
with a wild-type P2Y2 construct and were then incubated with ATP (10 μM) and IL-6 (50 ng/mL) for 24 hours before the generation of 
total cell lysates; MUC8 transcripts were assessed by real-time RT-PCR. (B) Cells were plated in six-well plates 1 day before transfection 
with a construct driving the expression of P2Y2. Twenty-four hours after transfection, serum-starved cells were treated with either ATP 
or ATP/IL-6 for 1 hour. The cells were assayed for Ca2+ concentration according to the kit’s instructions. All figures are representative of 
three independent experiments. ATP, adenosine triphosphate; IL, interleukin; RT-PCR, reverse transcription polymerase chain reaction.  
a)p<0.05 compared to the control, b)p<0.05 compared to ATP only; c)p<0.05 compared to P2Y2-transfected cells.
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the specific STAT3 inhibitor 5,15-DPP was utilized (Fig. 3). 

Because STAT3 can be frequently activated by IL-6, it is a 

pivotal transcription factor for cell proliferation. Interest-

ingly, 5,15-DPP significantly decreased ATP/P2Y2-induced 

MUC8 in a dose-dependent manner after cotreatment 

with IL-6. This is why IL-6 secretion is critical for airway 

inflammation in NCI-H292 cells. Although ATP activated 

Gαq-coupled receptor and secondary messengers like in-

tracellular calcium, STAT3 might play a critical role in this 

signal complex.  

Discussion 

We identified how ATP signaling could induce MUC8 gene 

expression via the P2Y2 G-protein coupled receptor re-

ceptor in human airway epithelial cells. Though ATP is an 

inflammation inducer, the precise signaling mechanism 

of ATP/P2Y2-induced MUC8 gene expression remains un-

clear. Interestingly, IL-6 could be secreted extracellularly 

by the ATP/P2Y2 complex in a time-dependent manner 

Effect of STAT3 on ATP/P2Y2-induced MUC8 gene expression
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(Fig. 1C) but not by siRNA-P2Y2. IL-6 is a pro-inflammatory 

cytokine that induces a number of physiological functions. 

The IL-6 secreted by the ATP complex was uptaken into 

nearby cells to transfer inflammatory signals. Surprisingly, 

IL-6 robustly induced ATP/P2Y2-induced MUC8 gene ex-

pression compared to ATP/P2Y2 treatment (Fig. 2A). Thus, 

we posited that ATP could transmit inflammatory signals 

to boost or magnify inflammatory signaling to nearby cells. 

More interestingly, siRNA-P2Y2 did not induce this phe-

nomenon, because P2Y2 is an essential ATP purinergic 

receptor in airway epithelial cells. In fact, many cytokines/

chemokines were secreted in an ATP-time/dose-dependent 

manner, including regulated upon activation, normal T cell 

expressed, and secreted, IL-1α, and IL-1β; however, only 

IL-6 was affected by siRNA. Thus, we posit that IL-6 plays a 

critical role(s) in ATP signaling transduction in the airway. 

Our previous study tested MUC8 as an anti-inflammatory 

mucin using siRNA study [4]. After 24 hours of ATP treat-

ment, increased MUC8 significantly inhibited ATP/P2Y2-de-

pendent inflammatory cytokine production for more than 

72 hours. Additional information for full-length cDNA and 

promoter sequences of MUC8 is required to support the as-

sumption that MUC8 is an anti-inflammatory mucin. 

IL-6 is a small glycoprotein (21 KDa) produced by cells 

in the innate immune system [14]. Increased level of IL-6 

has been frequently observed in asthmatic patients [15]. 

More importantly, a study examining IL-6 in bronchoalve-

olar lavage fluid has shown increased level of IL-6 in active 

asthmatic patients compared with the levels in healthy non-

smoker, stable asthmatic, and non-asthmatic patients [16]. 

Thus, recently, scientists reported that inhibition of STAT3, 

a major downstream signal of IL-6, significantly decreased 

lung inflammation, airway remodeling, and inflammatory 

cell infiltration in asthma [9,17-19]. However, there is little 

information on the role of STAT3 in mucus hypersecretion 

and overproduction during airway inflammation. 

In summary, our results showed that IL-6 is essential 

for ATP/P2Y2-induced MUC8 gene expression in human 

airway epithelial cells. In addition, activation of STAT3 is 

mainly related to MUC8 gene expression through induction 

of ATP/P2Y2. We suggest that the mucus hypersecretion/

overproduction observed during airway inflammation is a 

consequence of ATP/ P2Y2-induced increase in MUC8 gene 

expression within the inflamed microenvironment. Further 

analysis of the mucus hypersecretion/overproduction in-

duced by various cytokines, bacterial products, or viruses 

might increase understanding of the pathogenesis of respi-

ratory diseases. 
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