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The prevalence of chronic diseases including osteoporosis and sarcopenia increases as the population ages. Osteoporosis and sarco-
penia are commonly associated with genetics, mechanical factors, and hormonal factors and primarily associated with aging. Many 
older populations, particularly those with frailty, are likely to have concurrent osteoporosis and sarcopenia, further increasing their 
risk of disease-related complications. Because bones and muscles are closely interconnected by anatomy, metabolic profile, and 
chemical components, a diagnosis should be considered for both sarcopenia and osteoporosis, which may be treated with optimal 
therapeutic interventions eliciting pleiotropic effects on both bones and muscles. Exercise training has been recommended as a 
promising therapeutic strategy to encounter the loss of bone and muscle mass due to osteosarcopenia. To stimulate the osteogenic ef-
fects for bone mass accretion, bone tissues must be exposed to mechanical load exceeding those experienced during daily living ac-
tivities. Of the several exercise training programs, resistance exercise (RE) is known to be highly beneficial for the preservation of 
bone and muscle mass. This review summarizes the mechanisms of RE for the preservation of bone and muscle mass and supports 
the clinical evidences for the use of RE as a therapeutic option in osteosarcopenia. 
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INTRODUCTION

In an aging society, the prevalence of osteoporosis and osteope-
nia continues to increase progressively, particularly in older pa-
tients [1]. Osteoporosis is characterized by a decreased bone 
mass and an increased risk of fragility fractures [2]. According 
to the World Health Organization (WHO) criteria, osteoporosis 
and osteopenia are defined as the lowest bone mineral density 
(BMD) T-score of ≤–2.5 and –2.5 to 1.0 measured at the lum-
bar spine or hip, respectively [3]. Sarcopenia is defined as the 
age-related decrease in skeletal muscle mass, function, and 
strength [4]. There are several proposed diagnostic criteria of 

sarcopenia, in which sarcopenia is diagnosed using the criteria 
of low muscle mass and low muscle function (either low 
strength and/or low physical performance) [5], or based on a 
low whole-body or appendicular fat-free mass in combination 
of poor physical performance [6]. Similar to osteoporosis and 
osteopenia, sarcopenia is also frequently diagnosed in frail, old-
er patients, thus resulting in a significant burden on the patients 
and is widely considered as a public health problem [7,8]. Sar-
copenia and osteoporosis are associated with physical disability 
and have common risk factors and biological pathways [9]. The 
combination of these two diseases leads to exacerbation of neg-
ative health effects. Sarcopenia further increases fracture risk 
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through increasing risk of fall in patients who already have vul-
nerability of bones due to osteoporosis [10]. On this basis, re-
cently the term ‘osteosarcopenia’ has been proposed for patients 
with both sarcopenia and osteoporosis. Osteosarcopenia is a po-
tentially preventable and treatable disease; therefore, there have 
been many efforts to search for optimal therapeutic interven-
tions exerting pleiotropic effects on bones and muscles.

Exercise training has been recommended as a low-cost and 
safe non-pharmacological intervention strategy for the conser-
vation of musculoskeletal health [11]. Although specific mecha-
nisms via which exercise improves bone health are not fully 
elucidated yet, it is widely accepted that mechanical load in-
duced by exercise training increases the muscle mass, produces 
mechanical stress in the skeleton, and enhances the osteoblast 
activity [12,13]. However, not all exercise modalities are equal-
ly osteogenic. For exercise training to elicit an osteogenic effect, 
the mechanical load applied to bones should exceed that en-
countered during daily activities [14]. Weight-bearing impact 
exercise such as hopping and jumping, and/or progressive resis-
tance exercise (RE), alone or in combination can improve the 
bone health in adults [11]. Among them, RE has been highlight-
ed as the most promising intervention to maintain or increase 
bone mass and density [15]. This is because a variety of muscu-
lar loads are applied on the bone during RE, which generate 
stimuli and promote an osteogenic response of the bone [16]. 

However, bone strength is determined by not only BMD but 
also bone quality factors including bone microarchitecture, ge-
ometry, and turnover. Although dual-energy X-ray absorptiome-
try (DXA) has been the most widely used clinical tool to assess 
bone strength by measuring BMD, it does not capture the bone 
quality. To date, previous review articles regarding the skeletal 
effects of RE mainly focused on the BMD alone and there were 
limited interest in bone quality and strength. Therefore, in this 
article, we review the previously published studies, including 
both in vitro and animal studies and those with clinical data, on 
the effects of RE on musculoskeletal health, in particular, on 
bone strength.

EXERCISE PROGRAMS AND PREVENTION 
OF BONE LOSS

Exercise programs are classified as static weight-bearing exer-
cises (e.g., single-leg standing), high-impact weight-bearing ex-
ercises (e.g., jogging, running, dancing, jumping, and vibration 
platform), low-impact weight-bearing exercises (e.g., walking 
and Tai Chi), high-impact non-weight-bearing exercises (e.g., 

progressive RE), low-impact non-weight-bearing exercises 
(e.g., swimming) and combination exercises [17]. 

Prolonged aerobic training (e.g., swimming, cycling, and 
walking) is widely beneficial to all body systems, but there are 
clinical evidences suggesting that none of these activities pro-
vide an adequate stimulus to bones [18-20]. Since high-impact 
weight-bearing exercise is not always suitable for older adults 
due to the risk of musculoskeletal impairment in this population 
[21]; thus, low-impact non-weight-bearing exercise such as 
swimming has been recommended in this population. However, 
non-weight-bearing aerobic exercise applies no or very low im-
pact on bones, and shows lesser osteogenic responses than 
weight-bearing aerobic exercise in older adults [22].

Regular walking, which is frequently prescribed to prevent 
osteoporosis, also has little or no effect on prevention of bone 
loss [23]. This could be attributed that low-impact loading force 
applied during walking does not elicit loads of a sufficient mag-
nitude, rate, or distribution to stimulate bone cells to lead to an 
adaptive skeletal response. In addition, there is evidence that 
frequent walking can expose the previously sedentary or frail 
older adults to an increased risk of falling, thereby increasing 
the risk of fracture [24-26]. Thus, despite the benefits of regular 
walking on aerobic fitness, adiposity, and other cardiometabolic 
factors, walking alone is insufficient to optimize the musculo-
skeletal health [18]. 

Other physical exercise programs including moderate- to 
high-impact or multi-directional weight-bearing activities have 
been shown to maintain or improve the hip and spine areal 
BMD (aBMD) in older patients [27-29]. However, these types 
of exercise may be contraindicated in individuals with severe 
osteoporosis or a recent history of fracture, although no clinical 
trials have evaluated the feasibility and efficacy of such exercis-
es in high-risk patients.

WHAT IS RESISTANCE EXERCISE?

RE is defined as a physical conditioning program that enhances 
fitness, health, and sports performance, using a variety of train-
ing modalities such as free weights, weight machines, medicine 
balls, elastic bands, and different movement velocities (Table 1). 
The RE interventions including weighted lunges, hip abduction/
adduction, knee extension/flexion, plantar-/dorsi-flexion, back 
extension, reverse chest fly, and abdominal exercises or a small-
er number of compound movements of squats and deadlifts, tar-
get the major muscle groups attached to the hip and spine. The 
magnitude of mechanical load is important for bone formation, 
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and RE elicits a magnitude of strain that exceeds the threshold 
required for increased bone modeling [30]. RE has been fre-
quently prescribed because it has been consistently shown to be 
safe and effective for improving muscle mass, size, and strength 
in middle-aged and older adults, including the frail elderly and 
even those with a history of fracture [31,32]. The intensity and 
type of RE should be individualized according to tolerance and 
ability of adults, particularly in the presence of pain. At least 
two sets of one exercise for each major muscle group should be 
performed at a target intensity of eight to 12 repetition maxi-
mum (RM); however, for some individuals who are previously 
sedentary or unfamiliar with RE, it should be started at a lower 
intensity. In terms of frequency of RE, the WHO global recom-
mendation for older patients of the 65 years and above age 
group suggests that muscle-strengthening activities, involving 
major muscle groups, should be done on 2 or more days a week 
[33].

The greatest skeletal benefits from RE have been achieved 
when the resistance was progressively increased over time, the 
magnitude of mechanical load was high (around 80% to 85% 
one RM) [34], exercise was performed at least twice a week, 
and large muscles crossing the hip and spine were targeted 
[35,36]. The spine may be more responsive to RE than the hip 
[37]. Power training (high-intensity RE) may be indirectly ben-
eficial to bone because of a slightly greater effect on muscle 
strength and functional performance than regular training [38]. 
Power training maintained BMD in postmenopausal women 
without increasing risk of injury or pain [39,40]. Multicompo-
nent interventions that include muscle power training improved 
the physical status of frail older adults, and prevented disability 
and other adverse outcomes [41]. However, current exercise 

guidelines for osteoporosis recommend only moderate-intensity 
exercises (70% to 80% one RM, eight to 15 repetitions) for in-
dividual muscle groups which are insufficient to generate me-
chanical strain to stimulate an osteogenic response [42]. 

PROPOSED MECHANISMS INVOLVED IN 
THE MUSCULOSKELETAL EFFECT OF 
RESISTANCE EXERCISE

Preservation of the skeletal muscle
Skeletal muscle contractility can be reduced by prolonged inac-
tivity, and/or muscle wasting state, which result in profound dete-
riorations in muscle myofibrillar mass, muscle strength, and mo-
bility [43]. Tensile and/or compressive stress that is generated 
during RE preferentially stimulates muscle protein synthesis 
(MPS) involved in muscle contraction [44]. Previous studies sug-
gest that mechanistic target of rapamycin complex 1 (mTORC1) 
is considered as the critical factor to integrate various stimula-
tors, including mechanical strains, nutrients, and growth factors, 
for the activation of signaling pathway to initiate muscle protein 
translation [45]. Clear evidence exists demonstrating an associa-
tion between RE and muscle hypertrophy by promoting an in-
crease in systemic growth factors such as insulin-like growth 
factor 1, thereby activating a PI3K-Akt-mTORC1 signaling 
pathway to stimulate MPS [46-51]. However, there have been 
recent studies showing growth factor-independent mTORC1 
activation, which suggest that intrinsic mechanosensitive mole-
cules exert more important role as drivers of muscle protein ac-
cretion [52-55]. Based on the findings from in vitro or animal 
studies, there are yet unidentified mechanosensing proteins act-
ing on the zeta isoform of diacylglycerol kinase, resulting in the 

Table 1. The Type of Resistance Exercise Training Program 

Type Description Examples

Isometric RE A static contraction of muscle against external resistance without 
change in its length or joint motion

Yoga poses such as Plank or the Warrior variations, side 
bridge, hundred breaths exercise, pushing against a fence

Isotonic RE A dynamic exercise against resistance as a muscle lengthens or 
shortens through the available range of motion

- �Concentric contraction: an active muscle undergoes shortening 
while overcoming external resistance

Contraction of biceps curl with fixed weight

- �Eccentric contraction: an active muscle undergoes lengthening 
while being overcome by an external resistance

Extension of quadriceps during knee bend

Isokinetic RE An active exercise in which a muscle or group of muscles contracts 
against a controlled accommodating resistance that is moving at 
a constant angular velocity 

Fitness machines (e.g., stationary bike, bench press machine, 
bent-over row), dynamometer

RE, resistance exercise.
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conversion of diacylglycerol to phosphatidic acid which then 
directly activates the mTORC1 [56,57]. There are also yet un-
identified kinases phosphorylating the tuberous sclerosis com-
plex-2, which allow the Ras homolog enriched in brain to be in 
its guanosine triphosphate bound state that can directly activate 
mTORC1 [58]. However, the knowledge on RE-induced mech-
anotransduction for MPS in humans is still highly limited. 

RE significantly increases the cross-sectional area of trained 
muscles and consequently their force and power [59,60]. Based 
on results obtained from the Advanced Resistance Exercise De-
vice, RE can prevent significant loss of muscle and bone with 
prolonged exposure to microgravity during spaceflight [61]. RE 
interventions are also effective in augmenting skeletal muscle 
mass, increasing muscle strength, and/or improving functional 
performance in the older population [62-64]. However, in older 
adults, the responsiveness to RE is blunted compared with 
younger adults [65-68]. This may be attributed to the blunted 
MPS rate in response to a single bout of RE in older adults [69]. 
Furthermore, this anabolic resistance may be due to some 
changes in gene expression and anabolic signaling; an attenuat-
ed anabolic hormone response to RE is observed in older adults 
compared with younger adults [70]. For determining the effect 
of RE on the reduction of fall and fracture risk, further large-
scale studies are needed to be investigated [71,72].

Increased bone strength through mechanical loading
Mechanical loading is a fundamental factor for bone mass ac-
cretion. The principle of the loading phenomenon was first de-
veloped by Frost [73] and is also known as the Mechanostat 
theory. This theory suggests that the bone possesses an inherent 
biological system to elicit bone formation in response to high 
mechanical strains, thereby strengthening the bone. This system 
involves the bone cells, mainly osteocytes, that can detect and 
respond to mechanical loading. Osteocytes play a key role in 
the remodeling process by sensing the mechanical loads, and 
transmitting the information to the osteoblasts and osteoclasts, 
which then maintain the skeletal homeostasis [74]. Sclerostin is 
a protein produced in osteocytes, which plays a central role in 
regulating the formation of bone. It functions as a Wnt antago-
nist, blocking the canonical Wnt/β-catenin signaling pathway. 
Wnt-signaling pathway leads to increased osteoprogenitor cell 
populations and decreased apoptosis of mature osteoblasts. Me-
chanical loading downregulates sclerostin expression in bones, 
thereby increasing osteoblastic bone formation and decreasing 
bone resorption by the inhibition of osteoclast activity [75]. 
Bone formation is increased in regions of high strain, in particu-

lar, the periosteal bone surface, whereas bone turnover and po-
rosity are reduced. Consequently, mechanical loading can lead 
to increase in the cross-sectional area and tissue density of 
bones. In addition, this theory indicates that the skeletal effect 
of mechanical loading is site-specific, with greater response at 
skeletal sites where loading impacts are greater. The majority of 
weight-bearing exercise elicit physical loading to the lower 
limbs; as expected, positive skeletal effects on hip regions have 
been reported in previous studies and literature reviews [76,77]. 
Further to this, it has been suggested that bone adaptation to 
mechanical loading affects not only the BMD but also geomet-
ric markers of bone strength [78,79]. This would bear relevance 
for fracture prevention because bone fragility is a consequence 
of both material and structural abnormalities of the skeleton 
[80-82].

To generate the adaptive response of bone (osteogenesis) to 
mechanical loading, sufficient magnitude, rate, and frequency 
of loading are necessary. Many animal studies showed that 
loading must be dynamic not static [83], induce high frequency 
strains [84,85], and be applied rapidly [86]. If adequate intensity 
of loading is achieved, relatively few loading repetitions are suf-
ficient to generate an adaptive skeletal response [87]. Because 
osteocytes are desensitized due to repetitive loading, short bouts 
with interval for rest are more beneficial than the same number 
of loads performed all at once [88]. Furthermore, because bone 
adapts to customary patterns of loading such as one-directional 
movement, diversification of loading such as multi-directional 
training is required to stimulate an adaptive skeletal response 
[89]. 

While there is no clear evidence from life-long studies, it is 
suggested that adaptations to mechanical loading in the youth 
are translated to greater bone strength over a lifetime [90]. 
Bones become less sensitive to mechanical loading after skele-
tal maturity is reached at 18 to 25 years of age. Consequently, 
the skeleton is more responsive to exercise in childhood than in 
adulthood and old age [91]. Although theoretically the effect of 
exercise training seems to be less in adulthood than in child-
hood, considering the previous clinical evidences indicating the 
capability of weight-bearing activities on reducing bone loss in 
adult osteoporosis, these activities are also meaningful in adults.

CLINICAL EVIDENCE OF THE EFFECTS OF 
RESISTANCE EXERCISE FOR BONE 
STRENGTH

A previous systematic review reported that performing RE two 
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to three times a week for 1 year demonstrated the maintenance 
or increase of aBMD at the lumbar spine and hip in postmeno-
pausal women [15]. In a subgroup analysis of the Cochrane re-
view and previous meta-analyses, RE has resulted in a signifi-
cant improvement of BMD in the lumbar spine and femur neck 
in postmenopausal women [17,92,93]. A combination of RE and 
weight-bearing aerobic exercise (e.g., running, skipping, jump-
ing, or high-impact aerobics) is recommended as RE training 
provides muscular loading while weight-bearing aerobic exer-
cise provides additional mechanical loading to the bone above 
gravity. Concretely, this combination has improved multiple 
musculoskeletal outcomes including aBMD, muscle mass, and 
strength, in older women as well as men [76,94,95]. A systemat-
ic review and meta-analysis has summarized that the majority of 
previous studies with combined RE training with high-impact or 
weight-bearing exercises have shown an improved aBMD in the 
lumbar spine and femur neck in postmenopausal women [35,96]. 
In a systemic review investigating the effects of exercise on 
aBMD in middle-aged and older men, RE alone or in combina-
tion with high-impact loading activities maintained or increased 
aBMD in accordance with postmenopausal women [77]. These 
findings were consistent with the results from a meta-analysis of 
randomized controlled trials in older adults [29]. Taken together, 
RE alone or in combination with other interventions may be ide-
al to preserve bone loss or even increase BMD in both lumbar 
spine and femoral neck, not only in postmenopausal women or 
middle-aged men but also in the older population. 

Exercise training could enhance bone strength, independent 
of changes in BMD, through alterations in bone structure and/or 
localized adaptation in bone distribution at the sites subjected to 
the greatest strain [27,97]. During exercise, an increase in corti-
cal thickness due to load-induced periosteal apposition and, to a 
lesser extent, due to reduced endocortical resorption, will in-
crease the resistance of a bone to bending [90]. However, most 
of the adult trials have used DXA to examine bone changes after 
exercise. It should be noted that using aBMD as measured by 
DXA leads to concerns regarding the inherent inaccuracies of 
this method for measurement. Further to this, bone strength is 
determined by not only bone mass but also bone size, shape, 
structure, and the material properties of collagen [98]. Because 
DXA captures only the bone mass, which accounts for a portion 
of bone strength, it has been argued that DXA-based exercise 
studies could underestimate the actual effects of mechanical 
loading on bone [99]. Considering that most of the beneficial 
effects of exercise in adult bones are characterized by changes 
in geometry, DXA is inadequate to provide information regard-

ing important determinants of bone strength [100]. Hip geome-
try, which evaluates the bone macroarchitecture, can be assessed 
using a software program based on DXA images [101]. In a re-
cent study using 3D hip software for femur geometry analysis, 
high-intensity RE combined with impact training showed sig-
nificant improvements in the cortical thickness and bone miner-
al contents in the femur neck [102]. However, because hip 
structure analysis is also based on DXA hip images, inherent 
limitations of DXA still remain with this technique.

Consequently, there is a growing interest in using other bone 
imaging modalities such as quantitative computed tomography 
(QCT) to assess bone strength. QCT can help differentiate be-
tween cortical and trabecular compartments of bone, and their 
relative contribution to bone strength in vivo. In middle-aged 
and older men, an 18-month RE with weight-bearing impact ac-
tivity showed significant increases in section modulus using 
QCT, which is regarded as an indicator of bone strength, cross-
sectional area and aBMD at the femur neck [78]. Similarly, in a 
study conducted by Liu-Ambrose et al. [79], a significant in-
crease was observed in the cortical bone density at the shaft re-
gion of both the tibia and radius in the peripheral QCT (pQCT) 
despite of no significant changes in the DXA measurements, in 
older women following a 6-month RE intervention. These re-
sults suggest the beneficial effect of RE on the cortical porosity 
with aging. 

Unlike the cortical compartment, little is known regarding the 
impact of RE on trabecular bone compartment. The recently ad-
opted lumbar spine trabecular bone score is a novel texture pa-
rameter for the assessment of trabecular bone microarchitecture 
based on the spinal DXA images through the measurement of 
pixel gray-level variations [103]. Furthermore, whether RE 
could increase volumetric BMD (vBMD) is still lack of evi-
dence. A systemic review and meta-analysis of the effects of ex-
ercise on bone geometry and vBMD in postmenopausal women 
suggested exercise may decrease bone loss by maintaining cor-
tical and trabecular vBMD [104]. However, all of six random-
ized controlled trials identified in the study had small sample 
sizes and were quite heterogeneous in terms of duration, type 
and intensity of exercise. Moreover, only two studies examined 
the effects of RE on vBMD, and there was no significant differ-
ences of pQCT parameters between RE group and control group 
in those studies [79,105]. To better understand the effect of RE 
on vBMD, further studies of longer duration and larger sample 
sizes will be required. 
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CONCLUSIONS

Exercise training, especially RE, is important for the mainte-
nance of musculoskeletal health in an aging society. RE stimu-
lates MPS by activating a PI3K-Akt-mTORC1 signaling path-
way. It also exerts a mechanical load on bones consequently 
leading to increase in the bone strength. Based on the available 
information, RE, either alone or in combination with other in-
terventions, may be the most optimal strategy to improve the 
muscle and bone mass in postmenopausal women, middle-aged 
men, or even the older population. Particularly, RE seems to be 
beneficial for the cortical bone. However, several concerns re-
garding the effects of RE on the musculoskeletal system remain 
to be addressed. RE is seldom prescribed with evidence-based 
criteria as there are no data on the anti-fracture effect of RE. 
Furthermore, the quantitative and qualitative adaptations of the 
nutrition therapy to exercise are largely ignored by the health-
care professionals. Therefore, further studies are needed to 
make rational, evidence-based choices and to make RE inter-
ventions feasible and effective, in particular, in older popula-
tions with compromised bone health due to sarcopenia and in 
those with a history of fragility fractures. To understand the dif-
ferential effects of RE on the younger and older adults, the un-
derlying mechanism of the anabolic resistance should be eluci-
dated. In addition, if a sophisticated molecular mechanism relat-
ed to the increasing muscle and bone mass due to RE can be 
identified in the future, it would be helpful to discover the novel 
therapeutic targets for osteosarcopenia.
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