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Wnt/β-catenin signaling plays a critical role in the achievement of peak bone mass, affecting the commitment of mesenchymal pro-
genitors to the osteoblast lineage and the anabolic capacity of osteoblasts depositing bone matrix. Recent studies suggest that this 
evolutionarily-conserved, developmental pathway exerts its anabolic effects in part by coordinating osteoblast activity with interme-
diary metabolism. These findings are compatible with the cloning of the gene encoding the low-density lipoprotein related receptor-5 
(LRP5) Wnt co-receptor from a diabetes-susceptibility locus and the now well-established linkage between Wnt signaling and me-
tabolism. In this article, we provide an overview of the role of Wnt signaling in whole-body metabolism and review the literature re-
garding the impact of Wnt signaling on the osteoblast’s utilization of three different energy sources: fatty acids, glucose, and gluta-
mine. Special attention is devoted to the net effect of nutrient utilization and the mode of regulation by Wnt signaling. Mechanistic 
studies indicate that the utilization of each substrate is governed by a unique mechanism of control with β-catenin-dependent signal-
ing regulating fatty acid β-oxidation, while glucose and glutamine utilization are β-catenin-independent and downstream of mamma-
lian target of rapamycin complex 2 (mTORC2) and mammalian target of rapamycin complex 1 (mTORC1) activation, respectively. 
The emergence of these data has provided a new context for the mechanisms by which Wnt signaling influences bone development.
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INTRODUCTION

The dynamic nature of bone tissue requires a homeostatic bal-
ance between new bone formation and the resorption of old or 
damaged matrix to maintain skeletal architecture and strength. 
The skeleton must balance the need to provide a rigid structure 
that can protect vital organs and facilitate locomotion against its 
function as a mineral reserve for the entire body. Osteoclastic 
cells, which degrade bone matrix and liberate the calcium and 
phosphate stored as hydroxyapatite, are derived from the hema-
topoietic lineage, while bone-forming osteoblasts responsible 
for the deposition and mineralization of new bone matrix are of 

mesenchymal origin. Understanding the local, hormonal, and 
genetic effectors that influence the activity of these two cell 
types is critical to our understanding of human disease and the 
development of new therapeutics that increase bone mass and 
strength [1,2].

In our aging population, the close association and often co-
existing conditions of osteopenia, obesity, diabetes, and cancer 
have peaked an interest in the effects of intermediary metabo-
lism on bone cell function. The initial analyses of fuel selection 
by bone cells were performed more than 50 years ago, were fo-
cused on the osteoblast and the role that metabolites might play 
in the liberation of mineral ions, but were forgotten by the field. 
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Glucose was proposed as the primary energy source for the os-
teoblast and a carbon source for amino acid and collagen syn-
thesis, while the metabolites citrate and lactate were expected to 
provide an acidic environment sufficient for the release of calci-
um from the bone matrix [3-7]. The oxidation of palmitate, the 
most abundant fatty acid in animals, by osteoblasts was sug-
gested to contribute between 40% and 80% of the energy pro-
duced by glucose oxidation [8]. More recently, observations 
made in genetic mouse models or in cell culture using more so-
phisticated bioenergetic analyses have provided confirmation of 
these classic studies and elaborated on the changes in metabolic 
flux that accompany each stage of osteoblast differentiation 
[9,10]. Glucose uptake via glucose transporter 1 (Glut1) is now 
recognized as a key regulator of the molecular events that initi-
ate early osteoblast commitment by regulating the stability of 
Runt-related transcription factor 2 (Runx2) [11]. Likewise, stud-
ies using radiolabeled lipoproteins and fatty acids indicate that 
the skeleton plays a role in lipid homeostasis [12,13].

Emerging evidence suggests that the utilization of specific 
fuel substrates by the osteoblast is governed by key develop-
mental and hormonal signals [14-18]. Key among these is the 
Wnt signaling pathway that is critical for normal bone mass ac-
crual and exerts control of over nearly all facets of osteoblast 
maturation and function. In the sections below, we provide 
overviews of the Wnt signaling pathway and its role in whole 
body metabolism before describing the effect of Wnt signaling 
on fatty acid, glucose and glutamine catabolism by the osteo-
blast. 

Wnt SIGNALING

Wnt signaling plays a central role in the coordination of a num-
ber of cellular and organismal processes including proliferation, 
tissue development and repair, and metabolism [19-21]. The 
most thoroughly studied pathway, referred to as Wnt/β-catenin 
signaling or the “canonical” pathway, regulates the proteasomal 
degradation of the transcription factor, β-catenin [20]. In the ab-
sence of Wnt ligands, glycogen synthase kinase-3β (Gsk3β) and 
casein kinase-1 (Ck-1), in collaboration with a destruction com-
plex that contains the adenomatous polyposis coli (Apc) protein 
[22], the Wilms tumor suppressor protein (WTX) [23], and Axin 
[24,25], sequentially phosphorylate cytosolic β-catenin [26]. 
These modifications facilitate the recognition of β-catenin by 
β-transducing repeat-containing protein (β-TrCP), a component 
of an E3 ubiquitin ligase complex, and its targeting for degrada-
tion [27,28]. Wnt ligands inhibit the proteolysis of newly syn-

thesized β-catenin [29] by stimulating the formation of a multi-
protein receptor complex composed of a seven transmembrane 
Frizzled receptor [30,31] and a low-density lipoprotein related 
receptor-5 (Lrp5) or Lrp6 co-receptor [32,33]. Ligand engage-
ment leads to the phosphorylation of the intracellular domain of 
Lrp5 and Lrp6 [34], the recruitment of disheveled (Dvl) [35-37] 
and Axin [38], and ultimately the cytoplasmic accumulation and 
then nuclear translocation of β-catenin. Within the nucleus, 
β-catenin regulates target gene expression by interacting with 
DNA-bound T-cell factor (TCF) [39,40] and disrupting its asso-
ciation with the transcriptional repressor, Groucho [41,42]. 
Transcriptional activity is further enhanced by the phosphoryla-
tion of β-catenin and TCF [43,44] and the recruitment of co-ac-
tivators and histone modifying enzymes that interact with the C- 
and N-terminal tails of β-catenin [45-47]. 

The binding of Wnt ligands to Frizzled and Lrp5/6 can also 
initiate signaling downstream of the mammalian target of ra-
pamycin complex 1 (mTORC1) and mammalian target of ra-
pamycin complex 2 (mTORC2) complexes. Gsk3β, the kinase 
that phosphorylates β-catenin and targets it for degradation, 
phosphorylates the tuberous sclerosis 2 (Tsc2) protein at two 
serine residues to enhance its inhibition of mTORC1. Therefore, 
by inhibiting Gsk3β activation, Wnt ligands increase protein 
synthesis and cell growth [48,49]. Activation of the mTORC2 
complex by Wnts has not been as well studied, though Wnt3a, 
Wnt7b, and Wnt10b are able to stimulate its activity in osteo-
blastic cells [50] and the complex is required for the osteoana-
bolic effect of sclerostin neutralization [51]. In vitro gene 
knockdown studies indicated that the signaling mechanism in-
volves the small GTPase, Rac family small GTPase 1 (Rac1) 
[50]. 

Other “non-canonical” pathways that do not activate β-catenin 
or require a Lrp5/Lrp6 co-receptor are also activated by the in-
teraction of Wnt ligands with Frizzled receptors. These path-
ways predominately affect processes like cellular migration and 
polarity [52-54] and their activation may antagonize the activa-
tion of Wnt/β-catenin signaling [55-58]. In the Wnt-Ca2+ path-
way, Wnt stimulation induces calcium transients [58-60] that 
activate calcium/calmodulin-dependent kinase II, calcineurin, 
and protein kinase C [61,62]. In another pathway, known as 
Wnt-Frizzled planar cell polarity, Frizzled and the four trans-
membrane protein, Vangl, together with four other core proteins 
interact across cell membranes to regulate cellular directionality 
[54,63]. The role of Wnt ligands in this pathway is less clear, 
but both Wnt-5a and Wnt-11 [64-66] have been implicated in 
the process. 
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CONTRIBUTIONS OF Wnt SIGNALING TO 
SKELETAL HOMEOSTASIS

The concept that Wnt signaling regulates skeletal development 
and homeostasis was first evident in mouse mutants deficient or 
hypomorphic for Wnt3a [67,68]. In these models, global disrup-
tion results in an axial truncation caudal to the forelimbs with a 
lack of somites and extensive death of mesodermal cells, while 
hypomorphic alleles lead to deficiencies in ossification with 
malformations and fusions of caudal vertebrae. However, the 
notion that Wnts are required for normal bone acquisition 
gained significant momentum when three publications linked 
mutations in the human LRP5 gene that encodes the Wnt co-re-
ceptor to conditions with high and low bone mass in humans. In 
2001, Gong and colleagues [69] from the Osteoporosis Pseudo-
glioma (OPPG) Syndrome Collaborative Group reported that 
loss-of-function mutations in LRP5 were causal for the develop-
ment of OPPG, a condition characterized by severe, early-onset 
osteoporosis as well as disruptions in ocular structure or the per-
sistence of vitreal vascularization. Less than a year later, Little 
et al. [70] and Boyden et al. [71] independently identified muta-
tions leading to a glycine-to-valine amino acid change (G171V) 
in LRP5 in kindreds with a high bone mass (HBM) phenotype. 
This missense mutation was revealed to inhibit the binding of 
dickkopf and sclerostin, two secreted Wnt signaling antagonists, 
to LRP5 thereby enhancing signaling capacity [71-75]. Subse-
quent studies have identified additional mutations in LRP5 as 
well as LRP6 and other Wnt signaling components that influ-
ence bone mass and strength [76-80]. 

Numerous transgenic mouse models have also now been cre-
ated to examine the cellular and molecular basis by which Wnt 
signaling governs skeletal modeling/remodeling. Most of these 
models and especially mice globally deficient for Lrp5 and 
those expressing HBM alleles recapitulate the OPPG and HBM 
phenotypes, respectively [81-83]. Wnt/β-catenin signaling is re-
quired for the initial fate specification of cells committing to the 
osteoblast lineage [84,85], regulates the performance of matur-
ing osteoblasts [82,86,87], controls osteoclastogenesis [88,89], 
and also influences responsivity of osteoblasts to anabolic hor-
mones [90-93]. Dramatic examples of the central role of Wnt/
β-catenin signaling in skeletal homeostasis are evident in the 
work of Holmen et al. [89] who generated mice in which the 
gene encoding β-catenin or the Apc protein were ablated specif-
ically in the osteoblast. The β-catenin deficient mice developed 
severe osteopenia due to a reduction in osteoblast numbers and 
a dramatic increase in the prevalence of osteoclasts, while Apc 

mutants exhibited increased β-catenin activation and bone over-
growth. Strikingly, neither model was compatible with pro-
longed postnatal life. Osteocyte-specific β-catenin knockout 
mice (via expression of the dentin matrix protein 1 [DMP1]-Cre 
transgene) also have a severe skeletal phenotype that resembles 
the osteoblast-specific mutant models, with an expanded mar-
row cavity and thin cortical bone due to increased resorption by 
osteoclasts and changes in the osteoprotegerin (OPG)/receptor 
activator of nuclear factor kappa-Β ligand (RANKL) ratio, but 
without a change in numbers or activity of osteoblasts [94]. 
Thus, it is possible that β-catenin actions in the osteocyte regu-
late the activity of osteoclasts, while osteoblastic β-catenin reg-
ulates cell maturation. 

IMPACT OF Wnt SIGNALING ON WHOLE 
BODY METABOLISM

The notion that Wnt signaling contributes to the regulation of 
whole body metabolism was evident from the initial cloning of 
the gene encoding the LRP5 co-receptor in humans. Located on 
the q-arm of chromosome 11, LRP5 was identified as one of 
four genes in a 400 kb region surrounding the insulin dependent 
diabetes mellitus 4 (IDDM4) locus that exhibited strong genetic 
linkage with the development of type 1 diabetes [95,96]. Subse-
quent studies would reveal that LRP5 was not the causative 
gene at this locus [97], but polymorphisms in LRP5 (A1330V, 
N740N, Q89R) have been linked to increased total and low-
density lipoprotein cholesterol levels, hypertension, increased 
body mass index, and obesity [98-102]. Indeed, recent work 
from Loh et al. [103] reported that HBM mutations in LRP5 in 
humans are associated with a metabolically favorable body fat 
distribution and increased insulin sensitivity, while low bone 
mass, loss of function mutations are associated with increased 
abdominal fat accumulation.

The extracellular domain of LRP5 contains 3 low-density li-
poprotein receptor (Ldlr) domains that retain the capacity to 
bind apolipoprotein E (ApoE) [104] and mouse studies per-
formed by Fujino and colleagues [105] suggest a direct role for 
the protein in glucose and lipoprotein metabolism. On a stan-
dard chow diet, Lrp5–/– mice exhibit age-related impairments in 
glucose-stimulated insulin secretion which is likely due to alter-
ations in glucose-stimulated ATP production and Ca2-transients. 
With high fat diet feeding, the mutants develop hypercholester-
olemia secondary to a reduction in hepatic chylomicron clear-
ance [105]. Crossing the Lrp5–/– mice onto an ApoE–/– back-
ground, to generate double mutants, results in hypercholesterol-
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emia even on a chow diet and to a greater extent than ApoE-de-
ficiency alone, as well as impaired fat tolerance, and advanced 
atherosclerosis [106]. Lrp5 appears, therefore, to contribute to 
lipoprotein metabolism in a pathway that works in parallel with 
the Ldlr. 

Genome wide association studies have implicated other Wnt 
signaling components in the development of metabolic disease, 
with polymorphisms in WNT5B [107] and WNT10B [108] 
linked to the development of type 2 diabetes and obesity, re-
spectively. More strikingly, Grant and colleagues [109] identi-
fied a strong association between variants in the gene encoding 
the Wnt effector transcription factor 7-like 2 (TCF7L2, also re-
ferred to as TCF4) with susceptibility for type 2 diabetes in an 
Icelandic cohort and then replicated the finding in Danish and 
American cohorts. Additional studies have now replicated this 
association in a number of other ethnic populations [110-112]. 
The expression of Tcf7l2 appears to be regulated by alterations 
in the metabolism of a number of tissues, including the pancre-
as, adipose tissue, and the liver [113-115]. Direct examination 
of the transcriptional regulator’s mechanism of action were ini-
tially hampered by the perinatal death of Tcf7l2–/– mice [116], 
but heterozygous mice were shown to be protected from the de-
velopment of a diabetic phenotype, while those that overex-
pressed the human gene exhibited an increased susceptibility 
when fed a high fat diet [117]. TCF7L2 was expected to exert 
its effect on metabolism via the β-cell and two groups demon-
strated that loss of Tcf7l2 function in the pancreas of transgenic 
mouse models resulted in impaired glucose tolerance [118,119]. 
However, tissue-specific knockouts generated by Boj and col-
leagues [120], in which Tcf7l2 expression was ablated in either 
the pancreatic β-cell or the hepatocyte, suggested a different 
mechanism of action. Their β-cell-specific Tcf7L2 knockouts 
exhibited normal islet development and function, but hepato-
cyte-specific ablation reduced glucose production and improved 
glucose homeostasis. These results remain controversial and the 
mechanisms of TCF7L2 actions in metabolism continue to be 
an area of intense interest [121]. It is likely that the actions of 
TCF7L2 in metabolic control represent combinatorial effects 
across a number of tissues.

Wnt-STIMULATED β-OXIDATION IN THE 
OSTEOBLAST

Our group’s interest in the metabolic actions of Wnt signaling in 
the skeleton stems from a serendipitous observation made dur-
ing an evaluation of the unique and overlapping functions of the 

Wnt co-receptors, Lrp5 and Lrp6, in the osteoblast. Consistent 
with the contributions of Lrp5 and Lrp6 to the activation of 
β-catenin-dependent signaling and the roles of Wnt signaling in 
regulating osteoblast function noted above, genetic ablation of 
either Wnt co-receptor in the mature osteoblast (Lrp5flox; Oc-
Cre or Lrp6flox; Oc-Cre) impaired skeletal homeostasis and re-
sulted in the development of an osteopenic phenotype [82]. Sur-
prisingly, Frey et al. [122] demonstrated that the Lrp5 mutants 
also developed alterations in body composition that were not 
evident in the Lrp6 mutants. Loss of Lrp5 function increased 
the size of white adipose tissue depots, reduced whole body en-
ergy expenditure indexed by indirect calorimetry, and resulted 
in the development of dyslipidemia marked by increased levels 
of serum triglycerides and free fatty acids. Subsequent gene ex-
pression profiling of Lrp5-deficient osteoblasts cultured in vitro 
suggested that the phenotype was a result of altered fatty acid 
catabolism, as the expression of a number of genes involved in 
mitochondrial long-chain fatty acid oxidation were down-regu-
lated in the mutant osteoblasts (Fig. 1). Indeed, Lrp5-deficient 
osteoblasts exhibited an impaired ability to fully oxidize oleate 
to CO2. 

In a follow-up study, Frey et al. [123] investigated whether 
the regulation of long-chain fatty acid oxidation by Lrp5 re-
quired the activation of β-catenin. Initially, cultures of primary 
osteoblasts were treated with Wnt ligands expressed in the 
bone microenvironment [124-126] and their ability to influence 
β-oxidation was assessed. Only ligands like Wnt3a, Wnt10b 
and Wnt16 that are able to induce β-catenin activation en-
hanced oleate oxidation, which suggested that Wnt-induced al-
terations in metabolism proceeded via the canonical mecha-
nism. As a more direct test of this hypothesis, Frey et al. [123] 
generated mice in which the genetic ablation of the catenin beta 
1 (Ctnnb1) gene in the osteoblast could be controlled by the 
administration of tamoxifen (Ctnnb1flox; Oc-CreERT2) to avoid 
the early lethality associated with constitutive disruption of 
β-catenin expression in this cell population [89]. In vitro, the 
loss of β-catenin function in cultures of maturing osteoblasts re-
sulted in the expected inhibition of osteoblast maturation as well 
as a nearly 50% reduction in the capacity for oleate oxidation 
and a significant reduction in cellular ATP content, despite an 
increase in glucose uptake and glycolytic metabolism. In vivo, 
manipulation of β-catenin expression mirrored the effect of 
Lrp5 loss of function as the mutants developed an increase in 
adipose tissue mass and an increase in serum fatty acids. Sur-
prisingly, the β-catenin mutants also developed impairments in 
glucose tolerance and insulin sensitivity that were not evident in 
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Lrp5 mutants and are likely secondary to ectopic lipid accumu-
lation. The more severe metabolic phenotype that develops in 
the β-catenin mutants is likely a result of an impairment in all 
effects of canonical Wnt signaling with the deletion of the path-
way’s target transcription factor, while the presence of Lrp6 
may be able to partially compensate and maintain a level of Wnt 
signaling in Lrp5 mutants. 

To explore the absolute requirement for fatty acid catabolism 
during bone development and to determine if bone contributes 
to whole body lipid homeostasis, Kim et al. [13] examined the 
skeletal and metabolic phenotypes of a mouse model in which 
the expression of carnitine palmitoyltransferase 2 (Cpt2), an ob-

ligate enzyme for mitochondrial fatty-acid β-oxidation, was dis-
rupted in osteoblasts and osteocytes. Consistent with the obser-
vation that bone takes up a significant quantity of circulating 
fatty acids, skeletal homeostasis was impaired by Cpt2 deficien-
cy, but the severity was dependent on the sex of the mutant. 
Male Cpt2 mutants exhibited only a transient decrease in tra-
becular bone volume that was most evident at 6 weeks of age, 
but female mutants failed to reach peak trabecular bone volume 
and exhibited a decrease in trabecular bone volume in both the 
distal femur and L5 vertebrae at all timepoints examined after 1 
month of age. Cortical tissue area in the femur of female mice 
was increased although cortical thickness did not change, im-

Fig. 1. Wnt signaling regulates the utilization of three fuel substrates by cells of the osteoblast lineage. Activation of Wnt signaling via the 
interaction of a Wnt ligand with a frizzled receptor (Fzd) and the low-density lipoprotein related receptor-5 (Lrp5) co-receptor inactivates 
the destruction complex consisting of disheveled (Dvl), Axin, glycogen synthase kinase-3β (Gsk3β), adenomatous polyposis coli (Apc), and 
casein kinase-1 (Ck-1). In mature osteoblasts, this allows the accumulation of β-catenin and its translocation to the nucleus, where the tran-
scription factor activates the expression of genes involved in mitochondrial long-chain fatty acid oxidation. In osteoprogenitors, Wnt signal-
ing activates mammalian target of rapamycin complex 1 (mTORC1) and mammalian target of rapamycin complex 2 (mTORC2) signaling 
to increase glutaminolysis and glycolysis, respectively. Wnt ligand binding inhibits Gsk3β activity and its ability to activate the tuberous 
sclerosis 1/2 (Tsc1/Tsc2) complex that inhibits mTORC1 activity. Activation of mTORC1 increases the abundance of glutaminase, the first 
enzyme in glutaminolysis. Activation of the mTORC2 complex, which regulates the abundance of proteins involved in glycolysis, is down-
stream of Rac family small GTPase 1 (Rac1). By inhibiting the entry of glucose into the tricarboxylic acid (TCA) cycle, Wnt regulates the 
availability of substrates for histone acetyltransferases. Red lines represent interactions that are suppressed by the activation of Wnt signal-
ing, while green lines indicate interactions that are enhanced. mLST8, mammalian lethal with SEC13 protein 8; Sin1, stress activated pro-
tein kinase interacting protein 1.



Wnt and Osteoblast Metabolism

Copyright © 2018 Korean Endocrine Society www.e-enm.org  323

plying that the skeleton adapted to reduced bone quality by 
changing geometrical properties of the femur to maintain bone 
strength. Histomorphometric analyses revealed that the skeletal 
phenotype in the mutant mice was secondary to a mineralization 
defect, as the female mutants accumulated unmineralized ma-
trix and exhibited a reduction in the mineral apposition rate and 
increase in the mineralization lag time. A combination of in vivo 
and in vitro studies suggested that the sexually dimorphic phe-
notype is related to the ability of estrogen to influence adjust-
ments in fuel selection. Glucose uptake was increased in Cpt2 
deficient osteoblasts cultured in vitro and the skeletal tissue of 
male Cpt2 deficient mice, but not in the bone of female mutants 
or in mutant osteoblast cultures treated with exogenous estro-
gen. Estrogen treatment of primary cultures of mutant osteo-
blasts also exacerbated the downregulation of genes associated 
with osteoblast differentiation and resulted in a more severe im-
pairment in matrix mineralization. A similar influence of estro-
gen on cellular metabolism has been noted in a number of other 
tissues [127-129].

Like genetic ablation of Lrp5 or β-catenin, inhibition of long-
chain fatty acid metabolism in the osteoblast resulted in an in-
crease in serum fatty acids, but on a normal chow diet the male 
Cpt2 mutants exhibited a reduction in body fat fraction and in 
the weight of the gonadal fat pad. This body composition phe-
notype is likely due to a shift in glucose utilization and storage 
because glucose uptake by adipose was repressed while skeletal 
glucose uptake was increased. Intriguingly, when the male Cpt2 
mutants were fed a high fat diet that increased the levels of es-
trogen, bone loss ensued, the weights of all major fat pads in-
creased, and the mutant mice performed poorly in glucose toler-
ance and insulin tolerance tests. Overall, these data demonstrat-
ed that fatty acid catabolism is required for normal osteoblast 
function and bone mass acquisition and is strongly influenced 
by both sex and diet.

Wnt-STIMULATED GLYCOLYSIS IN THE 
OSTEOBLAST

As indicated above, glucose is required for normal osteoblast 
function and likely represents an important energy source. Since 
components of the Wnt signaling cascade have been linked to 
the regulation of whole-body glucose metabolism, Esen and 
colleagues [50] explored the effect of Wnt signaling on glucose 
utilization by osteoblasts. Relying primarily on the ST2 cell 
line, which models mouse bone marrow stromal cells, Wnt3a 
and Wnt10b were demonstrated to increase glucose acquisition 

by stimulating the expression of Glut1, hexokinase-2, lactate 
dehydrogenase, and pyruvate dehydrogenase kinase 1 and were 
more effective than high dose insulin stimulation. Intriguingly, 
the increase in glucose uptake was not accompanied by an in-
crease in the oxygen consumption rate, which suggests that it 
was not processed via oxidative phosphorylation. Rather, Wnt3a 
stimulated lactate production and increased the extracellular 
acidification rate, suggesting that Wnt signaling activated aero-
bic glycolysis, a metabolic process most closely associate with 
cancer cell metabolism [130].

Using pharmacological antagonists and gene knockdown 
studies to elaborate on the mechanism by which Wnts stimulate 
glycolysis, Esen et al. [50] demonstrated that the response re-
quired the Wnt co-receptor Lrp5. Indeed, Lrp5–/– mice as well as 
those in which Lrp5 expression was abolished via osterix-Cre 
expression exhibited a reduction in glycolytic enzyme expres-
sion in bone. However, it did not proceed via alterations in the 
activity of either Gsk3β or β-catenin activity, as inhibiting the 
activity of these effectors did not impact glucose consumption. 
Instead, Wnt3a activated mTORC2 via Rac1, which in turn co-
ordinated the increase in glucose consumption and the increase 
in glycolytic gene expression.

Why Wnt signaling, which has profound anabolic effects on 
osteoblast differentiation and function, should lead early osteo-
blasts to rely on a less efficient mode of ATP generation from 
glucose remains an open question. One possibility is that like 
cancer cells, the products of aerobic glycolysis are used by im-
mature cells as the starting material for biosynthetic pathways 
that produce amino acids and nucleotides [130]. A second pos-
sibility suggested by the Long Laboratory is that this metabolic 
paradigm contributes to the epigenetic regulation of osteoblast 
differentiation [131]. Using RNA sequencing, Karner et al. 
[131] demonstrated that the number of genes exhibiting an in-
crease in expression after Wnt3a stimulation of ST2 cells was 
surpassed by the number of genes exhibiting a decrease in ex-
pression and that many of the downregulated genes were associ-
ated with differentiation toward the chondrocyte or adipocyte 
lineages (including peroxisome proliferator-activated receptor 
gamma [Pparg] and CCAAT enhancer binding protein alpha 
[Cebpa]). Since gene activation is expected to be β-catenin’s 
major mode of action, the group postulated that Wnts contribut-
ed to gene suppression via the regulation of histone modifica-
tion. Consistent with this idea, bulk histone acetylation was re-
duced in ST2 cells after Wnt3a treatment, but the activity levels 
of histone deacetylases and histone acetyltransferases were not 
affected. Instead, Wnt signaling reduced the availability of the 
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histone acetyltransferase substrate, acetyl coenzyme A (acetyl-
CoA), as well as its precursor, citrate. Therefore, by inhibiting 
the entry of glucose into the tricarboxylic acid (TCA) cycle and 
thereby reducing citrate and acetyl-CoA production, Wnt signal-
ing regulates the genomic landscape and fate-specification of 
osteoprogenitors. 

Wnt-STIMULATED GLUTAMINOLYSIS IN 
THE OSTEOBLAST

The amino acid, glutamine, represents a third energy source 
whose catabolism is under the control of Wnt signaling in the 
osteoblast. Glutamine is abundant in the circulation (approxi-
mately 20% of the free amino acid pool) and in the neoplastic 
cells and normal cells (i.e., lymphocytes, fibroblasts, etc.) that 
utilize Warburg-type metabolism it can be utilized in a process 
referred to as anaplerosis. This process maintains TCA function 
when intermediates like citrate are removed from the cycle for 
anabolic reactions. In this reaction, glutaminase, a mitochondri-
al enzyme, deaminates glutamine to form glutamate which is 
then converted to α-ketoglutarate, a TCA intermediate, by gluta-
mate dehydrogenase or via transamination with pyruvate by ala-
nine aminotransferase. Biltz and colleagues [132] demonstrated 
more than 30 years ago that rat calvarial cells oxidize glutamine 
while more recent in vitro studies have suggested a requirement 
for glutamine supplementation for mineralization of bone ma-
trix by osteoblasts [133].

Karner and colleagues [134] examined glutamine metabolism 
in the context of Wnt-stimulated osteoblast differentiation and 
the coordinate increases in protein synthesis necessary to pre-
pare bone matrix. Wnt stimulation of the ST2 cell line increased 
glutamine uptake, but it was quickly metabolized, as the cells 
exhibited a nearly 40% decrease in cellular glutamine levels 24 
hours after treatment due to an increase in glutaminase activity 
and the entry of glutamine-derived carbons into the TCA cycle 
via anaplerosis. Using pharmacological inhibition of glutamin-
ase activity, the group demonstrated that glutamine catabolism 
was required for Wnt-stimulated osteoblast differentiation in vi-
tro as well as the increase in bone mass resulting from the ex-
pression of a HBM variant of the Lrp5 co-receptor in vivo. In 
parallel, glutaminolysis initiated the activation of the integrated 
stress response and the associated increase in the expression of 
genes necessary for amino acid uptake and protein folding, 
which were also required for Wnt-stimulated bone acquisition. 
Consistent with this close association with protein synthesis, 
mechanistic studies indicated that the regulation of glutamine 

utilization is dependent on the activation of mTORC1. Thus, 
glutamine acquisition and utilization in response to Wnt signal-
ing appear to represent a molecular rheostat that acts to maintain 
cellular energetics, endoplasmic reticulum status [134] and re-
dox balance [17]. 

CONCLUSIONS

Taken together the studies reviewed above highlight an exciting 
and newly appreciated effect of Wnt signaling on the biology of 
the osteoblast. This evolutionarily-conserved pathway that is 
critical for the attainment of normal bone mass and structure co-
ordinates one of the most essential cellular functions: the gener-
ation of energy necessary to fuel other cell processes. The exist-
ing data suggest that the governance of osteoblast fuel selection 
by Wnt is highly dependent on the state of osteoblast differenti-
ation, with immature osteoblasts exhibiting an increase in glu-
cose and glutamine utilization and mature cells switching to and 
increasing the utilization of fatty acids. These findings accord 
with well-established concepts in developmental biology and 
the changing metabolic demands of osteoblast differentiation 
[9]. Differentiated osteoblasts that prepare and mineralize the 
bone matrix maintain abundant mitochondria likely as a result 
of the tremendous energetic demands of protein synthesis 
[135,136]. It follows that this stage of cellular differentiation is 
associated with fatty acid β-oxidation, which has the capacity to 
produce approximately 131 ATP per molecule of palmitate, in 
response to anabolic Wnt stimulation. Immature bone cells in-
stead seek to maintain the redox balance, checks on endoplas-
mic reticulum status, and substrates for epigenetic regulation 
and increasing cellular biomass offered by glycolysis and gluta-
minolysis as Wnt signaling stimulates their commitment to the 
osteoblast lineage. 

Additional basic and translational studies are necessary to fur-
ther probe the contributions of Wnt signaling to osteoblast me-
tabolism and how this contributes to global energy balance. The 
sheer size of the skeleton and its cellular biomass suggests that 
anabolic signals like Wnt should lead to the reallocation of en-
ergy sources. Indeed, models of Lrp5 deficiency in bone exhib-
ited changes in serum lactate and lipids. It is also likely that Wnt 
contributes to the regulation of mitochondrial biogenesis. This 
interaction has been examined in other tissues [137,138], but 
not yet in the osteoblast. Finally, while compelling evidence for 
the role of Wnt signaling in whole body metabolism and the 
regulation of skeletal dynamics exists in humans, data on the ef-
fects of Wnt on the intermediary metabolism of human osteo-
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blasts is still lacking. Such data should be an essential part of 
our understanding of Wnts actions in the skeleton as therapeu-
tics that target the Wnt pathway enter the clinic.
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