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Discoveries of somatic mutations permit the recognition of subtypes of aldosterone-producing adenomas (APAs) with distinct clini-
cal presentations and pathological features. Catenin β1 (CTNNB1) mutation in APAs has been recently described and discussed in 
the literature. However, significant knowledge gaps still remain regarding the prevalence, clinical characteristics, pathophysiology, 
and outcomes in APA patients harboring CTNNB1 mutations. Aberrant activation of the Wnt/β-catenin signaling pathway will fur-
ther modulate tumorigenesis. We also discuss the recent knowledge of CTNNB1 mutation in adrenal adenomas.
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INTRODUCTION

Primary aldosteronism is the most common cause of secondary 
hypertension with a prevalence of 5% to 10% in hypertensive 
patients and 20% in patients with treatment-resistant hyperten-
sion [1-4]. In aldosterone-producing adenoma (APA), the ma-
jority of somatic mutations were potassium voltage-gated chan-
nel subfamily J member 5 (KCNJ5) mutations (ranging from 
52.9% to 76.8% in Asia) [5-7]. Recently, the prevalence of a 
novel catenin β1 (CTNNB1) mutation in APAs was 3.7% to 
5.1% [5,8]. We integrate the studies of APAs and show the 
prevalence of reported somatic mutation in APAs (Fig. 1) [6-
22]. CTNNB1 mutations were associated with stabilized 
β-catenin and increased AXIN2 (axis inhibition protein 2) ex-
pression, suggesting the activation of Wnt signaling [23]. In 
APA, CTNNB1 mutations occurred mutually exclusively from 
KCNJ5, ATPase Na+/K+ transporting subunit α1 (ATP1A1), 
ATPase plasma membrane Ca2+ transporting 3 (ATP2B3), and 

calcium voltage-gated channel subunit α1 D (CACNA1D) mu-
tated tumors, implying that aberrant Wnt activation plays a piv-
otal role in APA formation [24]. Accordingly, tumors with CTN-
NB1 mutations were associated with relatively large adenomas 
and predominantly expressed in females [8]. 

PATHOGENIC MECHANISM OF CTNNB1 
MUTATION IN THE ADRENAL GLAND

The Wnt signaling pathway, through β-catenin signaling, is im-
portant for the normal development and maintenance of the ad-
renal cortex, and more specifically, the zona glomerulosa (ZG) 
within the cortex [25,26]. Somatic mutations of CTNNB1 have 
been found in 27% of adrenocortical adenomas and 31% of ad-
renocortical carcinomas [27]. Exon 3 of the CTNNB1 gene (en-
coding β-catenin) contains specific serine and threonine resi-
dues, where phosphorylation marks β-catenin for degradation 
[28]. Mutations or deletions of exon 3, leading to the aberrant 
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activation of Wnt signaling, subsequently inhibits the phosphor-
ylation of β-catenin [29]. Due to alterations in exon 3 of the 
CTNNB1 gene, mice with activating Wnt signaling develop hy-
peraldosteronism and adrenocortical tumors [24]. Mutations in 
CTNNB1 also cause increased and abnormal Wnt activation in 
human adrenocortical tumors [27,30], and augment the Wnt 
signaling pathway, leading to tumor formation [31]. In one re-
cent series, cases of APAs harboring activating mutations of 
β-catenin were described in three women (two during pregnan-
cy and one postmenopausal), who had a heterozygous somatic 
mutation (C→G, p.Ser33Cys in case 1, C→T, p.Ser45Phe in 
case 2, and G→A, p.Gly34Arg in case 3) in exon 3 of CTNNB1. 
All three mutations are predicted to affect a GSK-3β (glycogen 
synthase kinase 3β) phosphorylation consensus motif and could 
thus impair β-catenin degradation and up-regulate Wnt activity, 
resulting in elevated levels of active β-catenin [32].

CTNNB1 AND THE TWO HIT THEORY 
DEPICT TUMOR FORMATON IN 
ALDOSTERONISM

In the peritumoral tissue of APA, important remodeling of the 
adrenal cortex has also been observed with reduced vasculariza-
tion, ZG hyperplasia, and increased nodulation that were not 
correlated with cytochrome P450 family 11 subfamily B mem-
ber 2 (CYP11B2) expression [33]. A recent study showed that 
somatic mutations in the KCNJ5, ATP1A1, or CACNA1D genes 

are not limited to APAs, but are also found in the more frequent 
multinodular adrenals [34]. However, in a multinodular gland, 
the mutation was found in only one nodule, showing that muta-
tion and nodule formation are independent processes [35]. 
These data demonstrate that the processes of nodule formation 
and aldosterone hypersecretion can be dissociated in pathologi-
cal adrenals, suggesting a two-hit model for APA formation. 
The primary hit, consisting of somatic mutation of one of the 
known genes in about 60% of cases and of other unknown ge-
netic mutation in the remaining patients, can cause aldosterone 
hypersecretion. The secondary hit would lead to alterations in 
the normal balance between adrenocortical cell proliferation 
and apoptosis, triggering nodule formation (Fig. 2) [36,37]. Of 
note, activation of the Wnt/β-catenin pathway further modulates 
the two hits required for both adrenal nodule formation and in-
creased aldosterone secretion [23,38]. APAs harboring CTNNB1 
mutation could display CYP11B1 or CYP11B2 heterogeneous 
expression [8], or in both CYP11B2-positive and CYP11B2-
negative regions [39]. It is also consistent with our result that 
the Wnt/β-catenin pathway activates downstream cyclin D1 
transcription, which is a gene involved in cell growth [40] in ad-
enomas with CTNNB1 mutations compared with wild-type APA 
adenomas. All of these findings, together with the reported 
higher prevalence of CTNNB1 mutations among other adrenal 
adenomas [41] and adrenal cancers [23], suggest that CTNNB1 
mutations may be more related to tumor cell growth (tumori-
genesis), rather than to actual aldosterone production.

Fig. 1. The prevalence of the most known mutation of aldosterone producing adenoma. This box plot displays the full range of variation 
(from maximum, mean, medium to minimum, accordingly) in each index somatic mutation. CACNA1D, calcium voltage-gated channel 
subunit α1 D; KCNJ5, potassium voltage-gated channel subfamily J member 5; ATP2B3, ATPase plasma membrane Ca2+ transporting 3; 
ATP1A1, ATPase Na+/K+ transporting subunit α1; GNAS, guanine nucleotide binding protein, α stimulating; CTNNB1, catenin β1.
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CYP11B1, CYP11B2, LHCGR, AND GNRHR 
EXPRESSION IN APAs HARBORING 
CTNNB1 MUTATIONS

Two subgroups of APAs were observed: one with diffuse CY-
P11B2 expression with concomitantly low CYP11B1 expression, 
and one with low CYP11B2 and high CYP11B1 expressions [8]. 
APAs harboring CTNNB1 mutations have shown variable ex-
pression of CYP11B1 and CYP11B2 [5,8,32]. Of note, APAs 
harboring CTNNB1 mutations could express luteinizing hor-
mone/choriogonadotropin receptor (LHCGR) and gonadotropin 
releasing hormone receptor (GNRHR), encoding gonadal recep-
tors, at levels that were more than 100 times higher than the lev-
els in other APAs in one report [32]. Constitutive activation of 
the Wnt signaling pathway in ZG-like adenomatous cells could 
lead to de-differentiation toward the common adrenal-gonadal 
precursor cell type, and to the aberrant expression of gonadal re-

ceptors LHCGR and/or GNRHR [5]. However, GNRHR could 
present diffuse cytoplasmic, membranous, and nuclear expres-
sion in adenomas, and was especially enhanced in adenomas 
harboring CTNNB1 mutations from female patients. GNRHR 
was attenuated in KCNJ5 mutated adenomas. LHCGR was dif-
fusely expressed in adrenal tissues and was prominent in adeno-
mas harboring CTNNB1 mutations [5]. Compared with KCNJ5 
mutated APAs, no difference in CYP11B1 expression levels 
were observed, but significantly higher CYP11B2 expression 
was observed in CTNNB1 mutated tumors in a single report [8]. 

CLINICAL CHARACTERISTICS OF 
PATIENTS WITH TUMORS HARBORING 
CTNNB1 MUTATIONS

CTNNB1 mutated APAs were more often observed in female 
patients (60% to 75%) [5,8] and older patients, with a shorter 

Fig. 2. A two-hit model for the pathogenesis of aldosterone-producing adenoma (APA). (A, B) Primary hit: Somatic mutations in CAC-
NA1D, KCNJ5, ATP2B3, ATP1A1, and possibly other genetic alterations produce cell depolarization, increased cytoplasmic calcium level 
and increased CYP11B2 expression, causing aldosterone hypersecretion. Secondary hit: Aberrant activation of signaling pathways (such as 
Wnt/β-catenin, Shh, PKA, etc.) causes imbalances between cell proliferation and death in the adrenal, leading to adenoma formation. (A) 
Adapted from Lalli et al., with permission from Elsevier [36]. (B) Adapted from Seidel et al. [37]. CACNA1D, calcium voltage-gated chan-
nel subunit α1 D; KCNJ5, potassium voltage-gated channel subfamily J member 5; ATP2B3, ATPase plasma membrane Ca2+ transporting 3; 
ATP1A1, ATPase Na+/K+ transporting subunit α1; APCC, aldosterone-producing cell clusters; HSD3b, hydroxy-δ-5-steroid dehydrogenase, 
3β- and steroid δ-isomerase cluster; CTNNB1, catenin β1; DACH1, dachshund family transcription factor 1; Shh, sonic hedgehog; PKA, 
protein kinase A; Ang II, angiotensin II; AT1, Ang II type 1; CAMK, Ca2+/calmodulin-dependent protein kinase; CYP11B2, cytochrome 
P450 family 11 subfamily B member 2. 
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duration of hypertension [5]. There were no significant differ-
ences in preoperative aldosterone levels, tumor size at surgery, 
and the ratio of parental hypertension in patients with tumors 
harboring CTNNB1 mutations compared to those with tumors 
harboring KCNJ5 mutations [5,8]. However, CTNNB1 muta-
tions led to higher serum potassium and creatinine levels com-
pared to KCNJ5 mutations in one study [5]. 

Patients with tumors harboring CTNNB1 mutation have a 
small but increased risk of malignant transformation [27]. Ex-
periments using β-catenin mutated mice which develop benign 
tumors can transition to malignancy, indicating the requirement 
of additional epigenetic changes [24,42]. This is consistent with 
the multistep progression model seen in patients with familial 
adenomatous polyposis [43]. However, most APAs rarely in-
crease in size and the transition to aldosterone-producing carci-
nomas is extremely rare [44]. Adrenal carcinomas harboring 
CTNNB1 mutation are also extremely rare.

CLINICAL OUTCOMES AFTER 
ADRENALECTOMY IN APA PATIENTS 
HARBORING CTNNB1 MUTATIONS

According to our study, CTNNB1 mutation carriers had a higher 
possibility (87.5%) of residual hypertension than other APA pa-
tients after adrenalectomy [5]. Compared with KCNJ5 mutation 
carriers (12.5% vs. 79.3%, P<0.001), CTNNB1 mutation carri-
ers had a much lower chance of recovery from hypertension, 
even after 1-year follow-up. One of the possible explanations of 
the higher postadrenalectomy residual hypertension among pa-
tients harboring CTNNB1 mutations could be that age-related 
essential hypertension plays an important role in the hyperten-
sion observed in these patients. 

CTNNB1 MUTATION OCCUR IN CUSHING’S 
SYNDROME AND CORTISOL PRODUCING 
ADENOMAS

CTNNB1 mutations and activation of the Wnt/β-catenin path-
way are also found in other benign and malignant adrenocorti-
cal neoplasms that do not produce aldosterone, including corti-
sol producing adenomas (CPA) [45-47]. As previously stated, 
activated Wnt/β-catenin signaling contributes to adrenal tumori-
genesis [48]. CTNNB1 mutation has been described in a 
4-month-old Thai infant with Cushing’s syndrome secondary to 
bilateral adrenal tumors with hepatic metastasis [49]. Following 
molecular investigations, a deletion mutation of β-catenin in-

volving codons 44 to 45 was detected in the right adrenal tumor 
and peripheral blood of this patient, which indicates systemic 
mutation. Immunohistochemistry showed nuclear accumulation 
of β-catenin on the right adrenal tumor together with the meta-
static nodule in the liver and the left adrenal tumor harbored 
wild-type β-catenin. 

For CPAs, mutations in the catalytic subunit of protein kinase 
A (PKA) were identified and shown to occur mutually exclu-
sively to CTNNB1 mutations [50,51]. The PKA pathway has 
paramount importance in the regulation of adrenocortical 
growth and hormone secretion. Activating mutations in PKA 
led to constitutively activated cyclic adenosine monophosphate 
(cAMP) signaling, causing increased cortisol production and 
tumor formation. Expression analysis revealed the increased 
expression of genes involved in the biosynthesis and metabo-
lism of steroids in tumors with protein kinase cAMP-activated 
catalytic subunit α (PRKACA) mutation [50]. Somatic gain-of-
function mutations in the PRKACA have been found in corti-
sol-producing adrenocortical adenomas [50-53], but the pres-
ence of genetic alterations in genes involved in the PKA path-
way in APA is currently unknown. ARMC5 (armadillo repeat 
containing 5) is a gene found to be mutated in macronodular 
adrenal hyperplasia and has a connection with the PKA path-
way [54].

CONCLUSIONS

CTNNB1 mutations in a subset of APAs are predominant with 
aberrant β-catenin accumulation. Tumors harboring these muta-
tions have a variable histological and CYP11B2/B1 expression 
pattern, and show different clinical characteristics, such as fe-
male gender dominance and a higher risk of postadrenalectomy 
residual hypertension. CTNNB1 mutations in APAs could relate 
to tumorigenesis rather than aldosterone production by activat-
ing Wnt/β-catenin signaling.
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