
52  www.e-enm.org

Endocrinol Metab 2016;31:52-61
http://dx.doi.org/10.3803/EnM.2016.31.1.52
pISSN 2093-596X  ·  eISSN 2093-5978

Review
Article

Mechanisms of Vascular Calcification: The Pivotal Role of 
Pyruvate Dehydrogenase Kinase 4
Jaechan Leem1, In-Kyu Lee2,3

1Department of Immunology, Catholic University of Daegu School of Medicine, Daegu; 2Division of Endocrinology and 
Metabolism, Department of Internal Medicine, Kyungpook National University School of Medicine; 3BK21 PLUS KNU 
Biomedical Convergence Program, Kyungpook National University, Daegu, Korea

Vascular calcification, abnormal mineralization of the vessel wall, is frequently associated with aging, atherosclerosis, diabetes 
mellitus, and chronic kidney disease. Vascular calcification is a key risk factor for many adverse clinical outcomes, including 
ischemic cardiac events and subsequent cardiovascular mortality. Vascular calcification was long considered to be a passive de-
generative process, but it is now recognized as an active and highly regulated process similar to bone formation. However, de-
spite numerous studies on the pathogenesis of vascular calcification, the mechanisms driving this process remain poorly under-
stood. Pyruvate dehydrogenase kinases (PDKs) play an important role in the regulation of cellular metabolism and mitochondrial 
function. Recent studies show that PDK4 is an attractive therapeutic target for the treatment of various metabolic diseases. In this 
review, we summarize our current knowledge regarding the mechanisms of vascular calcification and describe the role of PDK4 
in the osteogenic differentiation of vascular smooth muscle cells and development of vascular calcification. Further studies aimed 
at understanding the molecular mechanisms of vascular calcification will be critical for the development of novel therapeutic 
strategies.

Keywords: Vascular calcification; Vascular smooth muscle cells; Pyruvate dehydrogenase kinase 4; Bone morphogenetic pro-
teins; Osteogenic differentiation; Mitochondria

INTRODUCTION

Vascular calcification is often observed in advanced vascular 
lesions and is a common consequence of aging, diabetes melli-
tus, and chronic kidney disease [1,2]. Patients with diabetes 
mellitus or chronic kidney disease often exhibit more severe 
atherosclerosis and a higher prevalence of vascular calcifica-
tion [3,4]. Vascular calcification is closely associated with arte-
rial stiffness and ultimately contributes to increased cardiovas-
cular mortality [5,6]. Therefore, developing therapeutic strate-

gies to prevent and treat vascular calcification has a great clini-
cal importance.
  Vascular calcification was long considered to be a passive 
degenerative process. However, accumulating evidence shows 
that bone-associated proteins, including osteocalcin, osteopon-
tin, and alkaline phosphatase, are preferentially expressed in 
calcified atherosclerotic plaques [1,2]. In addition, bone-asso-
ciated structures such as matrix vesicles, which are the initial 
sites of primary nucleation during the mineralization of bone, 
were found in calcified atherosclerotic plaques [1,2]. These 
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findings suggest that vascular calcification is an active and 
highly regulated process that is similar to bone formation. 
However, although a number of studies explored the mecha-
nism of vascular calcification, it remains poorly understood.
  Metabolic flexibility is the capacity of the body to adjust fuel 
oxidation on the basis of nutrient availability [7]. Competition 
between glucose and fatty acids for fuel oxidation is primarily 
controlled by the pyruvate dehydrogenase complex (PDC) [8]. 
PDC is a mitochondrial enzyme complex that regulates the en-
try of glycolytic products into the tricarboxylic acid (TCA) cy-
cle by converting pyruvate into acetyl coenzyme A (acetyl-
CoA) in mammalian cells [9]. PDC is relatively active in a fed 
state and stimulates glucose oxidation to produce energy from 
glucose or convert it to fat for energy storage in peripheral tis-
sues [10]. However, inhibition of PDC activity by pyruvate de-
hydrogenase kinase (PDK)-dependent phosphorylation reduces 
glucose oxidation and provides three-carbon substrates such as 
pyruvate, lactate, and alanine for gluconeogenesis in a fasted 
state. To date, four PDK isozymes (PDK1, 2, 3, and 4) have 
been identified in humans and rodents and are expressed in a 
tissue-specific manner [11]. Among them, PDK4 expression 
levels were found to be dramatically increased in several pe-
ripheral tissues, including skeletal muscle, heart, mammary 
glands, adipose tissue, kidneys, and liver in fasting or diabetic 
rodents [12-14]. In addition, PDK4 knockout mice had lower 
blood glucose levels in a fasted state than wild-type mice, con-
sistent with an important role for PDK4 in maintaining glucose 
levels during fasting [14], and, after feeding a high-fat diet, 
PDK4 knockout mice exhibited improved glucose tolerance 
and insulin sensitivity compared with wild-type mice [15]. In 
diabetic mice lacking hepatic insulin receptor substrates 1 and 
2, deletion of the PDK4 gene resulted in improvement in hy-
perglycemia and glucose tolerance [16]. Furthermore, PDK4 
deficiency attenuated fat accumulation in the livers of mice fed 
a high-fat diet [17]. These results suggest that PDK4 plays an 
important role in the development of metabolic diseases, in-
cluding hyperglycemia, insulin resistance, and hepatic steato-
sis. A more comprehensive overview of recent research find-
ings regarding the roles of PDKs in metabolic diseases is pro-
vided by other excellent reviews [8-10,18,19].
  In this review, we will summarize recent studies on the 
mechanism of vascular calcification and discuss our recent 
findings regarding the role of PDK4 in the development of vas-
cular calcification.
 

MECHANISM OF VASCULAR 
CALCIFICATION

Osteochondrogenic phenotype change in vascular smooth 
muscle cells
Accumulating evidence suggests that a phenotypic change in 
vascular smooth muscle cells (VSMCs) plays a critical role in 
the development of vascular calcification [20-22]. Before the 
initiation of vascular calcification, VSMCs undergo a pheno-
typic change from a contractile to a synthetic and osteochon-
drogenic phenotype. This phenotype change is accompanied by 
downregulated expression of VSMC contractile markers such 
as smooth muscle α-actin and smooth muscle 22α and upregu-
lated expression of osteochondrogenic markers such as osteo-
calcin, osteopontin, and alkaline phosphatase [20-22]. These 
osteochondrogenic cells lose their contractile properties and 
acquire synthetic functions.
  Bone morphogenetic proteins (BMPs) provide essential sig-
nals for determining cell fate, embryonic patterning, organo-
genesis, and the postnatal remodeling of diverse tissues [23]. 
BMPs form the largest group of proteins within the transform-
ing growth factor β superfamily, and more than 20 subtypes of 
BMPs have been identified [24]. Among them, BMP2 is well 
known to play a role in the development of vascular calcifica-
tion [25]. BMP2 was found to be expressed in human calcified 
atherosclerotic plaques [26], and smooth muscle-specific over-
expression of BMP2 in apolipoprotein E (apoE)-deficient mice 
accelerated vascular calcification [27]. In addition, pharmaco-
logical inhibition of BMP signaling ameliorated vascular calci-
fication in low density lipoprotein receptor (LDLR)-deficient 
mice, suggesting that BMP signaling plays an important role in 
the development of vascular calcification [28].
  Interestingly, a number of studies provide evidence that 
BMP2 signaling contributes significantly to the transdifferentia-
tion of VSMCs into osteochondrogenic cells [25,28]. Under ath-
erosclerotic calcifying conditions, BMP2 binds to type I and II 
receptors and triggers heteromeric complex formation [25,29]. 
After activation by the type II receptors, the type I receptors 
phosphorylate small mothers against decapentaplegic (SMAD) 
1/5/8 to propagate the signal into the cell. SMAD1/5/8 form het-
eromeric complexes with SMAD4 and move into the nucleus, 
where they assemble into transcriptional machinery that regu-
lates the expression of osteogenic genes. Recently, we found 
that expression of estrogen-related receptor γ (ERRγ), a member 
of the orphan nuclear receptor superfamily, is upregulated dur-
ing in vitro osteogenic differentiation of VSMCs [30]. Adenovi-
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rus-mediated overexpression of ERRγ in VSMCs induced 
BMP2 expression, leading to increased phosphorylation of 
SMAD1/5/8. In addition, inhibition of endogenous ERRγ ex-
pression or activity using specific siRNAs or the selective in-
verse agonist ameliorated vascular calcification both in vitro and 
in vivo [30]. Our findings suggest that ERRγ plays an important 
role in the development of vascular calcification by upregulating 
BMP2 signaling, and that inhibition of ERRγ may be a promis-
ing therapeutic strategy for preventing vascular calcification.
   The best-studied transcription factors regulated by BMP2 
signaling are runt-related transcription factor 2 (Runx2) and 
muscle segment homeobox 2 (Msx2) [20,25]. Runx2 is a mem-
ber of the runt-related transcription factor family and plays an 
essential role in osteoblast differentiation and bone formation 
[31,32]. Multiple signaling pathways, including the BMP2 
pathway, converge on Runx2 to induce osteoblast differentia-
tion [33]. Runx2 regulates the expression of osteochondrogenic 
markers, including osteocalcin, osteopontin, and alkaline phos-
phatase [34]. Although Runx2 is not expressed in normal ves-
sels, it is abundantly expressed in calcified human vessels and 
calcified VSMCs in mice [35-37]. Previous studies demon-
strated that functional inactivation of Runx2 by dominant-neg-
ative mutations or knockdown prevents calcification in 
VSMCs, while its overexpression stimulates calcification, sug-
gesting that Runx2 is essential for the osteochondrogenic phe-
notype change in VSMCs [38,39]. Furthermore, smooth mus-
cle-specific deficiency of Runx2 markedly inhibited vascular 
calcification in mice [40].
   Msx2 is also a key transcription factor involved in vascular 
calcification induced by BMP2 signaling [20,25]. Msx2 is a 
member of the homeodomain transcription factor family and 
plays an important role in osteoblast differentiation and bone 
formation [41,42]. Expression of Msx2 was also detected in 
calcified human vessels [36,43]. Previous studies show that 
BMP2-dependent activation of Msx2 promotes the osteogenic 
differentiation of VSMCs and vascular myofibroblasts [43,44]. 
In LDLR-deficient mice, a high-fat diet stimulated vascular 
calcification, and this was accompanied by upregulation of 
Msx2 expression in vessel walls [45]. In addition, transgenic 
overexpression of Msx2 in the vessel wall promoted vascular 
calcification via activation of canonical Wnt signaling [46]. 
Furthermore, smooth muscle-specific deficiency of Msx1 and 
Msx2 attenuated vascular calcification and aortic stiffness in 
LDLR-deficient mice fed high-fat diets [47].
   The main pathological stimuli that induce the osteochondro-
genic phenotype change in VSMCs are oxidative stress, oxylip-

ids, and phosphates [48]. Among them, oxidative stress plays a 
critical role in the pathogenesis of atherosclerosis and other 
cardiovascular diseases [49]. In addition, increased oxidative 
stress is closely associated with several medical conditions that 
are linked to an elevated prevalence of vascular calcification, 
including diabetes mellitus and chronic kidney disease [50,51]. 
Several in vitro studies show that oxidative stress can induce an 
osteochondrogenic phenotype change in VSMCs [39,52,53]. 
Expression of Runx2 was found to be involved in oxidative 
stress-induced osteogenic differentiation and calcification of 
VSMCs [39]. Furthermore, a recent study showed that antioxi-
dant treatment inhibited osteogenic differentiation of VSMCs 
and vascular calcification in uremic rats, supporting the idea 
that antioxidants may represent promising therapeutic agents 
for the treatment and prevention of vascular calcification [54].
   The transcription factor nuclear factor E2-related factor 2 
(Nrf2) plays a critical role in cellular antioxidant defenses by 
activating a wide range of antioxidant genes [55]. A recent in 
vitro study demonstrated that Nrf2 inhibits osteoblast differen-
tiation through the inhibition of Runx2-dependent transcrip-
tional activity [56]. Recently, we found that dimethyl fumarate, 
a potent synthetic Nrf2 activator, inhibits in vitro osteogenic 
differentiation and calcification of VSMCs, ex vivo calcifica-
tion of vessel rings, and vitamin D-induced in vivo vascular 
calcification, suggesting that Nrf2 is a potential therapeutic tar-
get for the treatment of vascular calcification [57].

Loss of anticalcific molecules
Several anticalcific molecules, including matrix Gla protein 
(MGP), fetuin-A, and osteoprotegerin (OPG), have been iden-
tified and these anticalcific molecules play an important role in 
suppressing vascular calcification under normal conditions 
[22]. In patients with chronic kidney disease, dysregulation of 
anticalcific molecules may contribute to the development and 
progression of vascular calcification [58].
  MGP is an extracellular matrix protein that binds to calcium 
ions with high affinity and acts as an inhibitor of vascular min-
eralization [22]. In addition, MGP can bind to BMP2 and inhib-
it its activity [59]. MGP-deficient mice exhibited vascular cal-
cification [60,61], while overexpression of MGP in apoE-defi-
cient mice reduced the amount of vascular calcification [62]. 
Vitamin K-dependent γ-carboxylation of glutamate residues is 
required to convert MGP into its active form [22,61]. Recent 
studies show that, in animal models, treatment with therapeutic 
doses of warfarin, a vitamin K antagonist, stimulates the devel-
opment of vascular calcification, while treatment with high di-
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etary vitamin K1 inhibits it. In addition, treatment with warfarin 
is associated with coronary artery plaque calcification in pa-
tients with suspected coronary artery disease [63,64]. 
  Fetuin-A is a glycoprotein that is secreted from the liver and 
adipose tissue and is present at high concentrations in human 
blood, where it binds calcium ions and hydroxyapatite [22]. 
Fetuin-A inhibited VSMC calcification in vitro [65], and fetuin-
A deficiency in apoE-deficient mice promoted vascular calcifi-
cation [66]. Low serum levels of fetuin-A are associated with 
increased vascular calcification and cardiovascular mortality in 
patients on dialysis [67,68].
  OPG is a phosphoprotein that regulates bone formation by 
inhibiting apatite crystal growth and osteoclast differentiation 
[22]. OPG was found to inhibit osteogenic differentiation and 
calcification in VSMCs [69], and OPG-deficient mice devel-
oped osteoporosis and vascular calcification [70]. In addition, 
treatment with OPG ameliorated warfarin or vitamin D-in-
duced vascular calcification in animal models [71].
  Clinical studies show that serum OPG levels are significant-
ly higher in patients with chronic kidney disease than in con-
trols, indicating that this increase might be a compensatory re-
sponse to the disease, rather than a risk factor [72,73].

Matrix vesicle formation, apoptosis, and mitochondrial 
dysfunction
Accumulating evidence suggests that matrix vesicles play an 
important role in the development of vascular calcification 
[74]. Apoptosis of VSMCs also contributes to the development 
of phosphate-induced VSMC calcification [75,76]. Vascular 
calcification is initiated both by matrix vesicles released from 
viable VSMCs and by apoptotic bodies from dying cells 
[75,77]. These extracellular vesicles provide nucleation sites 
for mineral deposition in the extracellular matrix. In addition, 
several studies show that the growth arrest-specific gene 6 
(Gas6)-mediated survival pathway plays a central role in pre-
venting phosphate-induced VSMC apoptosis and calcification 
[76,78]. We also found that α-lipoic acid, a naturally occurring 
antioxidant with anti-apoptotic properties [79], reduced phos-
phate-induced VSMC apoptosis and calcification through in-
hibiting phosphate-induced downregulation of cell survival 
signals via the binding of Gas6 to its cognate receptor Axl and 
subsequent Akt activation [80].
   There is increasing evidence suggesting that mitochondrial 
dysfunction can be an important contributor to the develop-
ment of atherosclerosis [81]. Mitochondrial DNA damage re-
sults in decreased mitochondrial function, including impaired 

respiratory chain function and reduced adenosine triphosphate 
(ATP) production, and eventually compromises cellular func-
tion. In animal studies, it was shown that mitochondrial DNA 
damage and mitochondrial dysfunction are early events in the 
development of atherosclerotic lesions and promote progres-
sion of atherosclerosis [82-84]. Furthermore, mitochondrial 
DNA damage was observed in blood cells and atherosclerotic 
lesions of patients with coronary artery disease [82,84,85]. 
These findings raise the prospect that mitochondrial dysfunc-
tion may induce vascular calcification, because atherosclerosis 
is a progressive disease that can lead to vascular calcification, 
which is often found in advanced atherosclerotic lesions [86]. 
Interestingly, we observed that functional and structural mito-
chondrial defects, as evidenced by reduced mitochondrial 
membrane potential, decreased intracellular ATP content, in-
creased production of mitochondrial reactive oxygen species, 
and disruption of mitochondrial structural integrity, in calcify-
ing VSMCs treated with inorganic phosphate [80]. These de-
fects were accompanied by mitochondria-dependent apoptotic 
events. These results suggest a potential role for mitochondrial 
dysfunction in VSMC apoptosis and calcification. Indeed, mi-
tochondria play an essential role in the regulation of intrinsic 
apoptotic pathways [87]. Mitochondria-dependent intrinsic 
apoptosis involves the release of cytochrome c from the inner 
membrane space to the cytosol, which in turn triggers the acti-
vation of caspase-9 and effector caspases, leading to nuclear 
DNA fragmentation and other changes that culminate in apop-
totic death. In line with this, we showed that the protective ef-
fect of α-lipoic acid against phosphate-induced VSMC apopto-
sis and calcification can be attributed to the restoration of mito-
chondrial function as well as to the activation of the Gas6/Axl/
Akt survival pathway [80]. Finally, administration of α-lipoic 
acid ameliorated vitamin D-induced vascular calcification and 
mitochondrial dysfunction in mice.

The role of PDK4 in the development of vascular 
calcification
Normal resting cells generate energy by converting glucose 
into pyruvate via the glycolysis pathway, which does not re-
quire oxygen, followed by oxidation reactions in the mitochon-
dria [88]. Under normoxic conditions, pyruvate produced by 
glycolysis is transported primarily into the mitochondria and 
then decarboxylated by PDC into acetyl-CoA, which enters the 
TCA cycle. However, under hypoxic conditions, inhibition of 
PDC prevents the conversion of pyruvate into acetyl-CoA, 
leading to decreased TCA cycle activity in the mitochondria 
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and increased conversion of pyruvate into lactate in the cytosol 
[10]. Interestingly, cancer cells depend largely on glycolysis for 
energy, even though sufficient oxygen is available. This phe-
nomenon is called aerobic glycolysis or the Warburg effect [88]. 
Cancer cells meet the requirement for energy and biosynthetic 
precursors for proliferation and metastasis through aerobic gly-
colysis. PDK-dependent phosphorylation is essential for inhibi-
tion of PDC activity [10]. Dichloroacetate, an inhibitor of PDK, 
blocks aerobic glycolysis and causes cancer cell apoptosis and 
tumor regression, suggesting that PDK is a novel therapeutic 
target for cancer treatment [89]. Recently, accumulating evi-
dence suggests that aerobic glycolysis also plays a critical role 
in meeting the demand for energy and biosynthetic precursors 
during proliferation and differentiation of other types of cells, 

including immune cells [90,91]. Given that osteogenic differen-
tiation of VSMCs is critical for the development of vascular 
calcification [20,22], and that this process may require glucose 
metabolism similar to the Warburg effect to produce energy and 
the necessary biosynthetic precursors [92,93], it is reasonable 
to hypothesize that PDK plays an important role in metabolic 
regulation of the osteogenic switch in VSMCs. Indeed, our un-
published observations indicate that glucose consumption and 
lactate production are increased in phosphate-induced VSMC 
calcification. Furthermore, because it is suggested that mito-
chondrial dysfunction is a metabolic feature that controls the 
VSMC phenotype [94], PDK may regulate the osteogenic 
switch in VSMCs by controlling mitochondrial function.
   Recently, we observed that expression of PDK4 and phos-

Fig. 1. The regulatory action of pyruvate dehydrogenase kinase 4 (PDK4) on the signaling pathway downstream of bone morphogenetic 
protein 2 (BMP2) during vascular calcification. Under calcifying conditions, BMP2 binds to type I and II receptors and triggers forma-
tion of a heteromeric complex. After activation by the type II receptors, the type I receptors phosphorylate small mothers against deca-
pentaplegic (SMAD) 1/5/8 to propagate the signal into the cell. SMAD1/5/8 form heteromeric complexes with SMAD4 and move into 
the nucleus, where they assemble into transcriptional machinery that regulates the expression of osteogenic genes. Under normal condi-
tions, PDK4 is located in the mitochondrial matrix. However, under calcifying conditions, PDK4 may be transported into the cytosol and 
activate SMAD1/5/8 by direct phosphorylation, leading to the translocation of phosphorylated SMADs into the nucleus for transcrip-
tional regulation of osteogenic genes, thus enhancing BMP2 signaling pathway activity.
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phorylation of PDC are increased in calcifying VSMCs and 
calcified vessels of patients with atherosclerosis [95]. Interest-
ingly, the mRNA and protein levels of PDK4 were markedly 
increased in a time- and dose-dependent manner, whereas ex-
pression of other PDK isozymes was not significantly changed 
in phosphate-treated human VSMCs, suggesting that PDK4 
plays a specific role in phosphate-induced osteogenic differen-
tiation and calcification of VSMCs. We also demonstrated that 
both genetic and pharmacological inhibition of PDK4 amelio-
rated in vitro calcification of VSMCs, ex vivo calcification of 
aortic rings, and vitamin D-induced in vivo calcification [95]. 
To gain mechanistic insight into how PDK4 modulates vascular 
calcification, we examined the role of PDK4 in regulation of 
the osteogenic switch in VSMCs. Adenovirus-mediated overex-
pression of PDK4 increased, while PDK4 deficiency decreased, 
the expression of osteogenic genes in human VSMCs. We pre-
viously reported that α-lipoic acid, which also inhibits PDK4 
activity [96], ameliorates vascular calcification by improving 
mitochondrial function [80]. Consistent with this, overexpres-
sion of PDK4 induced mitochondrial dysfunction in vitro, as 
evidenced by decreased ATP content, oxygen consumption rate, 
and maximal respiration capacity, and this was reversed by 
treatment with an inhibitor of PDK. These results suggest that 
PDK4 induces mitochondrial dysfunction, which may contrib-
ute to the development of vascular calcification [95].
   Since PDK4 increased the expression of several osteogenic 
genes that are induced by BMP2 with no change in BMP2 ex-
pression, we explored the possibility that PDK4 may regulate 
the signaling pathway downstream of BMP2 without affecting 
the expression of BMP2 itself. Interestingly, we found that, un-
der calcifying conditions, PDK4 phosphorylates and activates 
SMAD1/5/8, which leads to translocation of phosphorylated 
SMADs into the nucleus for the transcriptional regulation of 
osteogenic markers, thus enhancing BMP2 signaling pathway 
activity (Fig. 1) [95]. A direct interaction between PDK4 and 
SMAD seems unlikely, because PDK4 is located in the mito-
chondrial matrix [9,10]. However, using various methods, in-
cluding a binding prediction model, confocal imaging analysis, 
immunoblots of subcellular fractions, co-immunoprecipitation, 
glutathione S-transferase pull-down assay, and in vitro kinase 
assay, we demonstrated that, after being transported from mito-
chondria into cytosol in response to calcifying stimuli, PDK4 
can directly interact with and phosphorylate SMAD1/5/8, [95]. 
This finding is consistent with a previous report showing that 
the mammalian PDK4 ortholog in Caenorhabditis elegans is 
located in the cytosol as well as the mitochondria [97]. Finally, 

we evaluated whether the inhibitory effect of vascular calcifica-
tion adversely affects bone remodeling, since vascular calcifica-
tion shares many similarities with physiological bone formation 
[22]. Bone remodeling and osteoblastic differentiation in pre-
osteoblasts were found to not be adversely affected by PDK4 
deficiency, even though PDK4 promotes osteogenic differentia-
tion of VSMCs in response to calcifying stimuli [95]. These re-
sults indicate that deletion of PDK4 effectively attenuates vas-
cular calcification without adverse effects on bone remodeling.
 
CONCLUSIONS

The osteogenic phenotypic change in VSMCs plays a key role 
in the development of vascular calcification. Accumulating evi-
dence suggests that mitochondrial dysfunction is a characteris-
tic feature of osteogenic differentiation in VSMCs. In this re-
view, we summarized our knowledge of the main mechanisms 
underlying vascular calcification, and discussed the role of 
PDK4 in the molecular and metabolic processes that contribute 
to the osteogenic switch in VSMCs during the development of 
vascular calcification. Although further studies are required to 
ascertain the metabolic changes that occur in VSMCs during 
osteogenic differentiation and vascular calcification, and their 
relationship with PDK4, the current evidence indicates that 
PDK4 may be a promising therapeutic target for the treatment 
of vascular calcification. Understanding the mechanisms of 
vascular calcification will be crucial for the development of 
novel therapeutic strategies against vascular calcification.
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