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In healthy individuals, energy intake is in balance with energy expenditure, which helps to maintain a normal body weight. The 
brain’s inability to control energy homeostasis underlies the pathology of hyperphagia and obesity. The brain detects body energy 
excess and deficit by sensing the levels of circulating metabolic hormones and nutrients and by receiving metabolic information 
from the periphery via the autonomic nervous system. A specialized neuronal network coordinates energy intake behavior and the 
metabolic processes affecting energy expenditure. Here, we briefly review neuronal mechanisms by which our body maintains ener-
gy balance. 
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INTRODUCTION 

Over the past decades, our knowledge of the neuronal regula-
tion of energy homeostasis has dramatically expanded. Substan-
tial evidence indicates that the brain plays a central role in the 
homeostatic regulation of energy metabolism. The brain inte-
grates multiple peripheral metabolic inputs, such as nutrients, 
gut-derived hormones, and adiposity-related signals. This infor-
mation on energy intake and body energy stores is transferred to 
specialized neurons in the hypothalamus and brainstem. In or-
der to maintain energy homeostasis, the brain regulates diverse 
aspects of body metabolism, such as food-seeking behavior; 
gastric emptying; nutrient uptake in the gut; thermogenesis; 
pancreatic insulin secretion; and the effects of insulin in the liv-
er, adipose tissue, and skeletal muscle. In this review, we de-
scribe the brain’s regulatory mechanisms of food intake and en-
ergy expenditure (Fig. 1).

BRAIN REGULATION OF FOOD INTAKE

The hypothalamus is the region of the brain that controls food 
intake and body weight. The hypothalamic arcuate nucleus 
(ARC) is ideally situated near the third ventricle and the median 
eminence, which is an area with a relatively porous blood-brain 
barrier. This provides the ARC free access to circulating nutri-
ents and hormones, making it the primary nutrient-sensing cen-
ter of the hypothalamus. There are two distinct neuronal popula-
tions in the ARC, orexigenic neurons that express both neuro-
peptide Y (NPY) and agouti-related peptide (AgRP) and an-
orexigenic neurons that express proopiomelanocortin (POMC). 
These neurons are first-order neurons that respond to peripheral 
metabolic signals and project to second-order neurons of the 
paraventricular nucleus (PVN), the perifornical area adjacent to 
the fornix and the lateral hypothalamus (LH), and to autonomic 
preganglionic neurons in the brain stem and spinal cord. 
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POMC neurons produce the anorectic peptide α-melanocyte 
stimulating hormone (α-MSH) by posttranscriptional process-
ing of POMC. α-MSH binds to the melanocortin receptors 3 
and 4 (MC3R and MC4R) on second-order neurons and acti-
vates catabolic pathways, leading to reduced food intake and in-
creased energy expenditure [1]. On the other hand, central ad-
ministration of NPY increases food intake via Y1 or Y5 recep-
tors, which are highly expressed in the ARC, PVN, and ventro-
medial hypothalamus (VMH) [2]. Likewise, central administra-
tion of AgRP induces hyperphagia and weight gain by inhibiting 
the binding of α-MSH to MC3R/MC4R [3]. Selective ablation 
of NPY/AgRP neurons in adult mice results in anorexia and 
weight loss [4], demonstrating a critical role of these neurons in 
the regulation of energy homeostasis. 

Both POMC and NPY/AgRP neurons in the ARC alter their 

activity in response to blood glucose level [5]. Elevated extra-
cellular glucose level activates POMC neurons, whereas NPY/
AgRP neurons are activated in glucose-deprived conditions. 
Hypothalamic neuronal glucose deprivation induced by admin-
istration of 2-deoxy-D-glucose potentially increases food intake 
[6]. Circulating long-chain fatty acids (LCFAs) also act as nutri-
ent abundance signals in the hypothalamus. Intracerebroventric-
ular administration of LCFAs, specifically oleic acid, inhibits 
food intake by decreasing hypothalamic AgRP and NPY expres-
sion [7]. Increased levels of lipid metabolites such as malonyl 
CoA and LCFA-CoA in hypothalamic neurons are indicative of 
nutrient excess and lead to signals for food intake reduction 
[7,8]. The hypothalamic ARC is critical for sensing adiposity 
signals such as leptin and insulin. Leptin and insulin signal the 
status of body energy stores to the hypothalamus. Both leptin 

Fig. 1. Model of brain regulation of energy metabolism. The brain integrates multiple, peripheral metabolic inputs, such as nutrients, gut-de-
rived hormones (glucagon-like peptide-1 [GLP-1], cholecystokinin [CCK], and peptide YY), and adiposity-related signals (leptin and insu-
lin) to regulate food intake and energy expenditure. Proopiomelanocortin (POMC)-producing and neuropeptide Y/agouti-related peptide 
(AgRP)-producing neurons in the hypothalamic arcuate nucleus (ARC) primarily sense the body’s energy state and project to other hypotha-
lamic nuclei, including the paraventricular nucleus (PVN) and lateral hypothalamus (not shown), which, in turn, project to the nucleus of the 
solitary tract (NTS) in the brainstem. The NTS responds to satiety signals via direct inputs to the NTS and indirect inputs to the hypothala-
mus and activates vagal afferents to reduce food intake. The preoptic area (POA) in the hypothalamus receives thermal sensory signals from 
cold exposure and activates the POA-dorsomedial hypothalamus (DMN)-rostral raphe pallidus (rRPa) pathway to promote brown adipose 
tissue (BAT) thermogenesis. The rRPa contains sympathetic premotor neurons that convey thermal signals from the POA and DMN to in-
fluence sympathetic outflow to the BAT in order to produce heat. The hypothalamic melanocortin system is also involved in thermoregula-
tion. WAT, white adipose tissue; GI, gastrointestinal.
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and insulin activate POMC neurons, while inhibiting NPY/
AgRP neurons [9,10]. Ghrelin is a gut hormone secreted from 
the stomach during fasting, signaling the need for increased 
food intake. The orexigenic action of ghrelin is mediated by 
NPY/AgRP neurons in the ARC [11]. 

The PVN is an important brain region that regulates neuroen-
docrine function by releasing critical neuropeptides, including 
oxytocin, thyrotropin-releasing hormone, and corticotrophin-re-
leasing hormone. The PVN is also important for regulating en-
ergy balance. The PVN neurons are densely innervated by 
POMC and NPY/AgRP neurons [12], and they serve as second-
order neurons in the melanocortinergic neuronal circuit. For ex-
ample, PVN oxytocin neurons mediate melanocortinergic con-
trol of food intake by innervating and regulating neurons in the 
nucleus of the solitary tract (NTS) [13]. Moreover, the PVN is a 
key brain region that mediates the actions of glucagon-like pep-
tide-1 (GLP-1), an important gut-derived satiety signal [14].

The VMH neurons mainly receive neuronal inputs from the 
ARC and then project their axons to the ARC, PVN, LH, dorso-
medial nucleus (DMN), and the NTS. Most VMH neurons ex-
press steroidogenic factor 1 (SF-1) [15], and those VMH neu-
rons that express SF-1 release brain-derived neurotrophic factor 
(BDNF). Selective deletion of BDNF in the VMH results in hy-
perphagia and obesity in mice [16]. Moreover, loss of function 
mutations in both BDNF and the BDNF receptor tropomyosin 
receptor kinase B cause hyperphagia and severe obesity in hu-
mans and in rodents, indicating that BDNF is an important sati-
ety factor [17,18].

The LH is in the hypothalamic region where metabolic and re-
ward-related information is integrated. This information is trans-
ferred to various brain areas such as the hindbrain, cortex, limbic 
system, thalamus, and spinal cord, allowing for a complex mod-
ulation of both behavioral and autonomic outflow. The LH con-
tains two distinct neuronal populations that produce melanin-
concentrating hormone (MCH) and orexin, respectively. Orexin 
demonstrates appetite-enhancing actions of directly activating 
NPY/AgRP neurons and indirectly inhibiting POMC neurons in 
the ARC [19,20]. MCH also exerts orexigenic effects by modu-
lating the ARC melanocortin system [21]. Genetic overexpres-
sion of MCH in mice leads to hyperphagia and obesity [22]. 

The brainstem is another major brain area involved in the con-
trol of food intake. Meal-elicited gastrointestinal signals induce 
neuronal activation in the caudal brainstem, where vagal affer-
ents terminate. Given that chemical and surgical vagal denerva-
tion is known to decrease meal size and duration, it is thought 
that meal-related signals are transferred to the brain via the va-

gal afferent [23]. The NTS is a major neuronal connection be-
tween the gut and brain. Like the ARC, the NTS is anatomically 
close to the area postrema. Thus, the NTS is specialized for re-
ceiving both humoral and neural signals from the periphery. Ex-
tensive reciprocal neuronal connections exist between the hypo-
thalamus and the brainstem, and the amount of food intake is 
determined based on metabolic information delivered to both 
brain regions [24]. Metabolic signals from gut hormones are 
transferred to the brainstem through the vagal nerve. Cholecys-
tokinin, GLP-1, and peptide YY are released from the enteroen-
docrine cells upon food intake, and they bind their receptors on 
the vagus nerve terminals. These food intake signals are deliv-
ered to the hypothalamus via the NTS; thereby, inducing satiety 
[25,26]. Like hypothalamic neurons, NTS neurons produce 
POMC, NPY, and GLP-1. POMC-producing NTS neurons are 
activated upon food intake. These neurons also exhibit signal 
transducer and activator of transcription 3 (STAT3) activation in 
response to exogenous leptin [27], suggesting a role of brain-
stem neurons in sensing peripheral metabolic signals.

BRAIN REGULATION OF ENERGY 
EXPENDITURE

Energy is consumed in the processes of physical activity, basal 
metabolism, and adaptive thermogenesis, all of which are mod-
ulated by the brain. The hypothalamic ARC is considered a key 
site for mediating leptin’s effect on locomotor activity, since se-
lective restoration of leptin signaling in the ARC, especially in 
POMC neurons, normalized locomotor activity in leptin recep-
tor-null mice [28]. Meanwhile, NPY, AgRP, and orexin promote 
food-seeking behavior [29,30]. 

Thermogenesis refers to heat that is generated in order to 
maintain body temperature or in order to dissipate excess energy 
upon food intake. Brown adipose tissue (BAT), located in the 
interscapular area of rodents, plays a major role in thermogene-
sis [31]. Thermogenesis is a critical component of energy expen-
diture, especially in rodents. Central regulation of BAT thermo-
genesis is dependent on sympathetic outflow to BAT. Norepi-
nephrine released from sympathetic nerve terminals binds to β3-
adrenergic receptors on adipocytes in BAT and inguinal fat pads. 
Activated adrenergic receptors trigger cyclic-adenosine mono-
phosphate signaling, which activates mitochondrial uncoupling 
protein-1 (UCP-1) and promotes enhanced thermogenesis.

The preoptic area (POA) has been identified as the neural cir-
cuit that regulates sympathetic outflow to BAT by directly pro-
jecting to sympathetic premotor neurons in the rostral raphe 
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pallidus [32]. Alternatively, POA neurons project to DMN neu-
rons, which mediate POA-evoked thermoregulatory responses 
[33]. In addition, many hormonal and nutrient signals, such as 
glucose, insulin, leptin, and GLP-1, can influence sympathetic 
outflow to BAT [34,35]. Central administration of an MC3R/
MC4R agonist stimulates BAT activity through sympathetic 
outflow, suggesting a regulatory role of the hypothalamic mela-
nocortin system in BAT thermogenesis [36].

Brown-like fat adipocytes, so-called “beige” or “brite” adipo-
cytes, are found in the inguinal subcutaneous area of rodents and 
in the supraclavicular, suprarenal, pericardial, and para-aortic ar-
eas and around the pancreas, kidney, and trachea in humans [37]. 
UCP-1 expression in beige adipocytes is low under basal condi-
tions, but its expression is induced under certain circumstances, 
such as exposure to cold temperatures. Induction of white adi-
pose tissue (WAT) browning in rodents increases energy expen-
diture and attenuates diet-induced obesity [38]. Conversely, 
blockade of WAT browning through deletion of Prdm16, a tran-
scriptional coregulator that controls the development of brown 
adipocytes, promotes obesity [39]. Interestingly, insulin and leptin 
act synergistically on POMC neurons to promote both WAT 
browning and energy expenditure. These mechanisms seem to 
be important for resistance against the development of diet-in-
duced obesity [40]. Therefore, it is thought that POMC neurons 
convey leptin and insulin signaling to drive WAT browning and 
to enhance energy expenditure. 

CONCLUSIONS

Obesity has reached epidemic levels worldwide, accompanied 
by the increased prevalence of multiple comorbidities. Consid-
erable attention is now being paid to understand how our body 
maintains energy balance under healthy conditions and why 
these mechanisms become defective in obesity and cachexia. 
Expanding our knowledge of the brain’s regulation of food in-
take and energy expenditure will lead us to effective therapeutic 
strategies for combating obesity and related metabolic disorders.
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