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Skeletal muscle possesses plasticity and adaptability to external and internal physiological changes. Due to these characteristics, 
skeletal muscle shows dramatic changes depending on its response to stimuli such as physical activity, nutritional changes, dis-
ease status, and environmental changes. Modulation of the rate of protein synthesis/degradation plays an important role in atro-
phic responses. The purpose of this review is to describe different features of skeletal muscle adaptation with various models of 
deceased use. In this review, four models were addressed: immobilization, spinal cord transection, hindlimb unloading, and ag-
ing. Immobilization is a form of decreased use in which skeletal muscle shows electrical activity, tension development, and mo-
tion. These results differ by muscle group. Spinal cord transection was selected to simulate spinal cord injury. Similar to the im-
mobilization model, dramatic atrophy occurs in addition to fiber type conversion in this model. Despite the fact that electromyog-
raphy shows unremarkable changes in muscle after hindlimb unloading, decreased muscle mass and contractile force are ob-
served. Lastly, aging significantly decreases the numbers of muscle fibers and motor units. Skeletal muscle responses to de-
creased use include decreased strength, decreased fiber numbers, and fiber type transformation. These four models demonstrated 
different changes in the skeletal muscle. This review elucidates the different skeletal muscle adaptations in these four decreased 
use animal models and encourages further studies.
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INTRODUCTION

Skeletal muscle is a functional unit composed of protein struc-
tures. Through contraction and relaxation, it helps to support 
the body structure and creates movement. Due to skeletal mus-
cle’s innate characteristics of plasticity and adaptability, it can 
change its size to adapt to external and internal physiological 
stimuli. During growth, skeletal muscle increases in size until 
the organism reaches the peak of its growth period and then 

starts to decline. The mass and function of skeletal muscle vary 
depending on the organism’s activity or lack thereof. For ex-
ample, physical activity such as exercise influences the internal 
conditions of skeletal muscle and results in its increased size. 
In contrast, decreased use of skeletal muscle is considered to be 
one of the main reasons for atrophy. Environmental changes 
such as space flight can impact an individual’s physiological 
conditioning and accelerate the degradation of skeletal muscle 
[1]. Furthermore, aging also inevitably results in decreases in 
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skeletal muscle mass [2]. 
  Protein turnover is an important mechanism for maintaining 
the balance of protein structures in the body. Modulation of the 
synthesis/degradation rate can result in hypertrophy or atrophy 
[3]. During periods of prolonged bed rest or immobilization, 
there is a disturbance in protein turnover, which leads to atro-
phic responses [3]. In addition to alterations in protein balance 
due to decreased use, other characteristics of skeletal muscle 
are changed, including specific tension and fiber type, number, 
and size [4-8].
  The purpose of this review is to describe the different fea-
tures of skeletal muscle adaptation using various models of de-
creased use. In this review, four models that simulate condi-
tions of decreased use condition were assessed: (1) immobili-
zation, (2) spinal cord transection, (3) hindlimb unloading, and 
(4) aging. 

ANIMAL MODELS OF SKELETAL MUSCLE 
IN CONDITIONS OF DECREASED USE 

Immobilization 
During traumatic injury such as fracture, the injured area 
should be immobilized to prevent secondary damage caused by 
movement of that area. This model is used to mimic situations 
necessitating casts and elucidates the changes that occur in 
skeletal muscle during prolonged immobilization. To prepare 
this animal model, the animal’s leg of interest is wrapped with 
a plaster bandage in the preferred joint position. One recent 
study tried to reproduce prior results using a surgical skin sta-
pler [9]. Different methods acting on different immobilized 
joint positions can directly affect the degree of skeletal muscle 
atrophy [10]. During immobilization, the length of the muscle 
at specific fixed positions is very important. Depending on the 
angle of joint fixation, the agonist and antagonist muscles can 
be stretched or contracted [10]. Contracted muscle shows 
greater atrophy than stretched muscle, while skeletal muscle in 
the stretched position is less likely to be affected by immobili-
zation [11]. In ankle-joint immobilization, the loss of skeletal 
muscle was shown to be generally greater in the extensor mus-
cles than in the flexor muscles [7,12,13]. 
  The vulnerability of skeletal muscle to atrophy in a fixed po-
sition of immobilization seems to depend on fiber type [14]. 
Different fibers in the same skeletal muscle group show differ-
ences in size reduction between type I and type II fibers after 
atrophy [8,15]. Booth and Kelso [15] studied male rats that un-
derwent hindlimb immobilization for a 4-week period and 

showed a greater reduction of type I fibers than type II fibers in 
the soleus muscle. In contrast to type I fibers, fast type IIx and 
IIb fibers were less affected by ankle-joint immobilization [7,8]. 
  The effects of joint immobilization depend on how the joint 
and skeletal muscle are restricted with regard to maximization 
or minimization of the length of the fiber [16]. Two general 
principles of muscle activation are that atrophy in slow-twitch 
muscle fibers occurs before that in fast-twitch muscle fibers, 
and that skeletal muscles in shortened positions have greater 
reductions in function than lengthened position [16-18].

Spinal cord transection
The spinal cord transection model simulates spinal cord injury. 
It is easier to determine the effectiveness of muscle regenera-
tion and functional recovery in models with complete resection.
  Six months after spinal cord transection, significant reduc-
tion in the cross-sectional area (CSA) of fast- and slow-twitch 
fiber sizes is evident, with some atrophy in both fiber types [4]. 
Similar to in immobilization, conversion of fiber type from 
type I to type II was generally observed during spinal transec-
tion [4,19,20]. During transection, dark-staining ATPase fiber 
composition increased from <1% to 45% in the soleus of a cat 
transection model, suggesting an increased proportion of type 
II fibers in the muscle [4]. Furthermore, most of the fibers in 
the soleus muscle reacted with fast myosin heavy chain anti-
body [4]. Fiber transformation has been suggested to be com-
plete 4 months after injury [4,12,21].
  The soleus muscle in spinal cord transection models has 
shown dramatic increases in fusion frequency and decreases in 
time to peak tension [22]. This represents a slow to fast trans-
formation, suggesting that its contractile speed and specific 
tension are increased after transection. 

Hindlimb unloading
The hindlimb unloading rodent model has been widely used to 
simulate microgravity conditions. Since the National Aeronau-
tics and Space Administration Ames research center adopted 
this model to investigate changes to skeletal muscle during 
space flight, it has been accepted by many researchers as a 
method to examine the adaptation of skeletal muscle to “de-
creased use” [23,24]. In this model, the microgravity condi-
tions result in similar trends in skeletal muscle atrophy as seen 
in the unloading model [24]. Wronski and Morey-Horton de-
scribed use of a cage to remove the weight-bearing function of 
rats by attaching their legs to their tails with a connector and 
mounting this to the top of the cage [25]. The rats are then only 
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able to use their forelimbs to move around the cage.
  During 3 to 28 days of unloading, electromyography of the 
soleus and gastrocnemius muscles showed initial decreases and 
then gradually returned to control level [26]. Soon after unload-
ing, the total amount of protein per soleus muscle was an esti-
mated 50% that of the control [27]. The decrease in protein was 
more dramatic in slow-twitch fibers than in fast-twitch fibers 
[8,27]. Myofibrillar protein constituted a large portion of the 
total protein loss [28,29], and the losses were relatively greater 
in slow-twitch fibers. After 4 weeks of unloading, there was a 
50% loss of myofibrillar protein in the soleus muscle, while no 
change in myofibrillar protein concentration was observed in 
the plantaris muscle [29]. The contractile tension and mass of 
both the soleus and plantaris muscles decreased by approxi-
mately 50%, and the soleus muscle showed changes in muscle 
contraction speed [29]. 
  With regard to metabolic activity, there have been many re-
ported changes in glycolytic and oxidative enzymes in the 
hindlimb unloading rodent model [30-33]. Lactate dehydroge-
nase activity was increased by 50% to 70% in single isolated 
fibers [32,33], while dehydrogenase and phosphofructokinase 
activities were increased by 113% and 71%, respectively [32]. 
These changes occurred in slow-twitch fibers but not in fast-
twitch fibers as little to no changes were observed in the fast-
twitch glycolytic fibers of the gastrocnemius muscle [30].
  Oxidative enzyme changes reflect the respiratory capacity of 
skeletal muscle. Previous studies have reported that the respira-
tory capacity of the entire soleus muscle was decreased during 
the unloading phase [34,35]. However, single fibers of the so-
leus muscle showed 27% to 40% increases in succinate dehy-
drogenase activity [36,37] and 69% increases in citrate syn-
thase activity [34] during 1 to 4 weeks of hindlimb suspension. 
These observations can be attributed to the atrophic loss of 
skeletal muscle resulting in decreased fiber mass and thus de-
creased respiratory capacity.

Aging
Senescence of muscle severely affects its strength and size. In 
aging mice models, lean mass starts to decline after 18 months 
of age [38]. A review of grip strength data in C57BL/6 mice 
suggested that a pronounced decline in strength does not occur 
until 15 months of age but then significantly decreases between 
15 and 28 months of age [39,40]. 
  Due to the fact that the specific tension of a muscle is closely 
related to the CSA of the fiber, muscle fiber size is regarded to 
be an important factor in strength. The contribution of the loss 

of muscle fiber and size to weakness in aged muscle has al-
ready been demonstrated by many studies with muscle biopsy 
of the vastus lateralis [5,40]. In these reports, aging resulted in 
an increase in the relative percentage of type I muscle fibers 
and the atrophic responses of the type II fibers [40,41]. 
  Throughout an organism’s life span, there are losses in the 
total number and diameter of axonal fibers [42]. Older rats (28 
and 30 months) showed a significant decrease in the number of 
medial gastrocnemius motor neurons compared to that in rela-
tively younger rats (17 months) [6]. These findings suggest that 
there is a loss of conduction speed in motor neurons during ag-
ing [6].
  However, there is conclusive evidence that even very old 
muscle can be strengthened through exercise therapy; thus, high-
lighting the importance of exercise in promoting healthy aging.

MECHANISM OF MUSCLE FIBER ATROPHY

Protein turnover regulates skeletal muscle atrophy
Protein turnover is the balance between protein synthesis and 
protein degradation. As myofibrils constitute 70% of the total 
protein within the muscle cell, protein turnover balance is very 
important in understanding atrophic responses. During de-
creased muscle use, there are alterations in protein turnover. A 
decreased rate of protein synthesis is a distinctive feature of 
various models of decreased use [43-45]. After 15 days of im-
mobilization, the rate of protein synthesis is stimulated by ami-
no acid intake [46]. As a result, reduction in the basal synthesis 
rate of muscle protein is decreased, as is muscle mass. 
  Most protein degradation involves the ATP-dependent ubiq-
uitin proteasome pathway [47-49]. During studies of prolonged 
bed rest, the ubiquitin proteasome pathway was upregulated, 
resulting in an increase in ubiquitinated proteins [50]. 

Common transcription factors regulating skeletal muscle 
atrophy
Insulin-like growth factor 1-Akt-forkhead box O (IGF1-Akt-
FoxO) is a major component of the signaling pathways that reg-
ulate the atrophic response [51]. Local injection of IGF-1 suc-
cessfully inhibited atrophy caused by decreased use [52], and 
studies have shown that IGF-1 transgenic mice were protected 
from skeletal muscle atrophy during pathological conditions 
[53,54]. The transgenic overexpression of Akt in a denervation 
mouse model showed resistance to skeletal muscle atrophy 
[55,56]. Akt has a crucial role in the control of protein synthesis 
and degradation via the mammalian target of rapamycin and 
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FoxO family, and the levels of Akt protein and its phosphoryla-
tion are remarkably decreased during hindlimb unloading [57].
  Upregulation of the proteasome and autophagy-lysosome 
systems is common in atrophy conditions, with increased tran-
scription of ubiquitin ligases such as atrogin-1 and cbl-b during 
bed rest [51]. This upregulation involves an increase in the 
transcription of atrogin-1, which promotes the degradation of 
MyoD, a key factor in activation of protein synthesis pathways 
[51]. During bed rest, there are small decreases in the mRNA 
transcription of α-actin and the β-myosin-heavy chain, and 
there is evidence that unloading downregulates both transcrip-
tion and translation [45]. As a result, the synthesis rate dramati-
cally decreased.
  Aged muscle exhibits increased apoptosis in skeletal muscle 
cells [58]. Apoptosis is initiated via extrinsic stimuli and the 
downstream signaling pathways of tumor necrosis factor-α [59]. 
Apoptosis in aging skeletal muscle may involve mitochondrial-
mediated signaling. Recent studies have shown a significant in-
crease in the protein levels of procaspase-3 and caspase-3, the 
inactivated and activated forms of the enzyme, respectively 
[59]. The pro-apoptotic proteins apoptosis-inducing factor and 
Apaf-1 were also increased in the gastrocnemius muscle, sug-
gesting that apoptotic potential increases with age [59]. Bax and 
caspase-9 activity also increased in the aged plantaris muscle, 
suggesting that there is a close link between aging-related apop-
tosis and the mitochondrial-meditated pathway. 
 
DISCUSSION

The decreased use of skeletal muscle can result in decreased 
strength, decreased fiber size, and fiber type transformation 
(Table 1). In the aging model, there are distinctive atrophic re-
sponses that distinguish it from the other three models dis-
cussed. While the loss of skeletal muscle mass and function is 

a general outcome of decreased use, the main difference is the 
vulnerability of fiber types. In the aging model, the decrease in 
the function and size of skeletal muscle was mostly derived 
from the loss of type II muscle [8]. Thus, the muscles most af-
fected by age-related atrophy were the type II fiber-dominant 
muscles such as the plantaris [8]. In the other three models dis-
cussed above, atrophy significantly affected muscles with type 
I fibers [4,8,30]. These findings suggest that, during aging, the 
reduced muscle function is due to the loss of strength, while the 
muscle function loss in the other decreased use models might 
be due to changes in oxidative capacity caused by lack of 
movement [33-35].
  The animals in the immobilization, spinal cord transection, 
and hindlimb unloading models also showed skeletal muscle at-
rophy, but this was mostly observed in the soleus, a type I fiber-
based skeletal muscle. Decreased oxidative capacity is observed 
during bed rest or immobilization [34], and there is a fiber 
transformation from type II to type I fibers [4,8]. These trans-
formations and the loss of type I fibers are speculated to be due 
to the loss of weight-loading in the muscle of interest. Some 
studies have shown that gravity-sensitive genes drive certain 
types of myofiber heavy changes. The complete or partial loss 
of weight-loading might affect gene activation and result in 
changes in the composition and loss of specific muscle fibers. 

CONCLUSIONS

Two general principles of muscle atrophy are that the atrophy 
of slow-twitch muscle fibers occurs before that of fast-twitch 
fiber, and that skeletal muscles in shortened positions have 
greater reductions in function. However, the atrophic changes 
in skeletal muscle that occur in different decreased use models 
are diverse. In addition, these models affect target skeletal 
muscle differently, with variable vulnerabilities and functional 
changes.
  Due to the differences between the aging model and the oth-
er three models, the muscle of interest should be carefully con-
sidered. In early studies of skeletal muscle disuse, the immobi-
lization and hindlimb unloading models were adopted to study 
the functional loss of skeletal muscle in aging [27-29]. Howev-
er, it is important to keep in mind that these two models have 
distinctive effects on the skeletal muscle system.
  In conclusion, decreased use animal models are widely used 
to simulate different limitations in physical conditioning. The 
loss of physical activity always results in loss of skeletal mass 
and function. Given that different models have different physi-

Table 1. Comparison of Changes in the Soleus Muscle with 
Decreased Use Model				  

Condition Fiber 
transformation

Type I 
CSA

Type II 
CSA

% Type I 
change

Immobilization Type I to type II ↓↓ ↓↓ ↓

Spinal cord transection Type I to type II ↓↓ ↓↓ ↓

Hindlimb unloading Type I to type II ↓↓ ↓↓ ↓↓

Aging Type II to type I ↔ or ↓ ↓↓ ↔ or ↑

Summary of the study results discussed in this review. ↔, no change; 
↑, small increase; ↓, small decrease; ↓↓, large decrease.		
CSA, cross-sectional area. 				  
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ological effects on skeletal muscle, care should be taken in the 
selection of an appropriate model for the research objectives 
and the muscle of interest.
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