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Background: Selenoprotein P (SEPP1) and fetuin-A, both circulating liver-derived glycoproteins, are novel biomarkers for insu-
lin resistance and nonalcoholic fatty liver disease. However, the effect of exendin-4 (Ex-4), a glucagon-like peptide-1 receptor 
agonist, on the expression of hepatokines, SEPP1, and fetuin-A, is unknown.
Methods: The human hepatoma cell line HepG2 was treated with palmitic acid (PA; 0.4 mM) and tunicamycin (tuni; 2ug/ml) 
with or without exendin-4 (100 nM) for 24 hours. The change in expression of PA-induced SEPP1, fetuin-A, and endoplasmic re-
ticulum (ER) stress markers by exendin-4 treatment were evaluated using quantitative real-time reverse transcription polymerase 
chain reaction and Western blotting. Transfection of cells with AMP-activated protein kinase (AMPK) small interfering RNA 
(siRNA) was performed to establish the effect of exendin-4-mediated AMPK in the regulation of SEPP1 and fetuin-A expression.
Results: Exendin-4 reduced the expression of SEPP1, fetuin-A, and ER stress markers including PKR-like ER kinase, inositol-
requiring kinase 1α, activating transcription factor 6, and C/EBP homologous protein in HepG2 cells. Exendin-4 also reduced the 
expression of SEPP1 and fetuin-A in cells treated with tunicamycin, an ER stress inducer. In cells treated with the AMPK activa-
tor 5-aminoidazole-4-carboxamide ribonucleotide (AICAR), the expression of hepatic SEPP1 and fetuin-A were negatively relat-
ed by AMPK, which is the target of exendin-4. In addition, exendin-4 treatment did not decrease SEPP1 and fetuin-A expression 
in cells transfected with AMPK siRNA.
Conclusion: These data suggest that exendin-4 can attenuate the expression of hepatic SEPP1 and fetuin-A via improvement of 
PA-induced ER stress by AMPK.

Keywords: Exendin-4; Palmitic acid; Endoplasmic reticulum stress; AMP-activated protein kinases; Selenoprotein P; Fetuin-A; 
Hepatokine

INTRODUCTION

Selenoprotein P (SeP, SEPP1) is a glycoprotein that is mainly 

expressed in the liver and detected in plasma. SEPP1 plays a 
role in the transfer of selenium from the liver to plasma and 
other tissues. SEPP1 transcription is stimulated by interactions 
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among the transcription factors forkhead box protein O1 
(FoxO1), hepatocyte nuclear factor 4 (HNF4) α, and peroxi-
some proliferator-activated receptor-γ coactivator (PGC)-1α, 
which stimulate hepatic gluconeogenic gene expression. On 
the other hand, SEPP1 is attenuated by insulin [1,2]. Serum 
and hepatic SEPP1 levels reportedly have a strong positive re-
lationship with the development of metabolic diseases [3-5]. 
In both animal and clinical studies, SEPP1 has been shown to 
induce insulin resistance due to dysregulation of insulin sig-
naling and glucose metabolism in the liver and skeletal muscle 
[3]. Moreover, serum SEPP1 levels are inversely related to 
blood adiponectin levels in patients with type 2 diabetes, 
whereas increased adiponectin levels have been observed in 
SEPP1-knockout mice [6].
  Fetuin-A (α2-Heremans-Schmid glycoprotein), a 64-kDA 
circulating liver-derived glycoprotein, serves as a biomarker for 
insulin resistance, nonalcoholic fatty liver disease (NAFLD), 
and cardiovascular disease [7-9]. Fetuin-A levels are high in hu-
man hepatocytes exposed to high levels of palmitic acid (PA), 
glucose, or endoplasmic reticulum (ER) stress activator thapsi-
gargin [10]. Fetuin-A inhibits insulin-induced IRS-1 tyrosine 
phosphorylation, thus aggravating insulin resistance [11]. More-
over, fetuin-A-knockout mice exhibit enhanced glucose clear-
ance, improved insulin sensitivity, and resistance to dietary fat-
induced weight gain [12].
  Exendin-4 (Ex-4), a potent glucagon-like peptide-1 (GLP-1) 
receptor agonist, is an incretin mimetic capable of relieving in-
sulin resistance. It can decrease plasma glucose and triglycer-
ide levels and increase high density lipoprotein cholesterol lev-
els. The insulin-sensitizing effect of exendin-4 has been report-
ed in human and animal models of insulin resistance [13,14]. 
Exendin-4 also improves metabolic syndrome via modulation 
of the production and release of various cytokines associated in 
insulin resistance, oxidative stress, apoptosis, and inflamma-
tion [15]. GLP-1 analogue reportedly increases the level of the 
hepatokine fibroblast growth factor 21, which is involved in 
insulin sensitivity and glucose and lipid homeostasis [16]. 
However, the effect of exendin-4 on the expression of the nov-
el hepatokines SEPP1 and fetuin-A remains unknown. There-
fore, we evaluated changes in the expression levels of SEPP1 
and fetuin-A after administration of exendin-4 under ER stress.

METHODS 

Chemical reagents
PA, tunicamycin (Tuni), exendin-4, tauroursodeoxycholic acid 

(TUDCA), and 5-aminoimidazole-4-carboxamide ribonucleo-
tide (AICAR) were obtained from Sigma-Aldrich (St. Louis, 
MO, USA). Antibodies to fetuin-A, inositol-requiring enzyme-
1α (IRE1α), CCAAT/enhancer binding homologous protein 
(CHOP), and β-actin were purchased from Cell Signaling Tech-
nology (Danvers, MA, USA). SEPP1 and phosphor-IRE1α 
(P-IRE1α) antibodies were purchased from Abcam (Cambridge, 
MA, USA). PKR-like endoplasmic reticulum kinase (PERK), 
phosphor-PERK (P-PERK), activating transcription factor 6 
(ATF6), X-box binding protein 1 (XBP-1) antibodies were pur-
chased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

Cell culture and transfection
The HepG2 human hepatoma cell line (ATCC, Manassas, VA, 
USA) was cultured in Dulbecco’s modified Eagle’s medium 
containing 10% fetal bovine serum and 1% penicillin/strepto-
mycin (Gibco, Grand Island, NY, USA). At approximately 
85% confluence in six-well plates, cells were exposed to the 
ER stress inducers PA and Tuni. After 24 hours, cultured cells 
were treated with 100 nM exendin-4, 200 μM TUDCA, and 1 
mM AICAR, after which they were incubated for 24 hours.
  For gene knockout, the cells were transfected with 10 nM 
small interfering RNA (siRNA) of AMP-activated protein ki-
nase (AMPK) and scrambled control siRNA (Santa Cruz) us-
ing the lipofectamine RNAiMAX reagent according to the 
manufacturer’s instructions (Invitrogen, Carlsbad, CA, USA). 
After incubation for 24 hours, the transfected cells were treat-
ed with exendin-4 (100 nM) for 24 hours.

Total RNA isolation and real-time reverse transcription 
polymerase chain reaction 
Total RNA was isolated from the cells using Trizol reagent 
(Invitrogen) to measure the messenger RNA (mRNA) levels 
of the SEPP1 and fetuin-A genes. Total RNA (2 μg) was re-
verse-transcribed to complementary DNA using the High Ca-
pacity RNA-to-cDNA Kit (Applied Biosystems, Foster City, 
CA, USA). After cDNA synthesis, quantitative real-time PCR 
was performed using SYBR green (Roche, Lewis, UK) and 
specific primers (Bioneer Co., Daejeon, Korea) according to 
the manufacturers’ instructions. To normalize the expression 
of the target genes, the expression of β-actin (Actb) was used 
as an endogenous control in the comparative Ct method 
(2-delta delta Ct).

Western blot analysis
Cells were lysed in ice-cold RIPA buffer (Cell Signaling Tech-
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nology) containing protease inhibitor cocktail (Roche) and 
phosphatase inhibitor cocktails (Sigma-Aldrich). The lysates 
were incubated on ice for 30 minutes, and then centrifuged at 
13,000 rpm for 20 minutes at 4°C. The protein concentration of 
the supernatant was quantified using the Bradford protein as-
say (Bio-Rad Protein Assay, BioRad, Hercules, CA, USA) 
with bovine serum albumin standard (Thermo Scientific, 
Rockford, IL, USA). Equal amounts of protein (20 μg) were 
electrophoresed on 4% to 12% Bis-Tris Nupage gels (Invitro-
gen) and transferred to polyvinylidene difluoride membranes 
using the iBlot Dry Blotting System (Invitrogen). After transfer, 
the membranes were blocked in 5% bovine serum albumin /Tris 
buffered saline with Tween-20 buffer for 1 hour, and then incu-
bated overnight at 4°C with antibodies to SEPP1, fetuin-A, 
IRE1α, P-IRE1α, PERK, P-PERK, ATF6, XBP-1, CHOP, and 
β-actin followed by incubation with horseradish peroxidase 
conjugated secondary antibodies. Immunoreactive bands were 
visualized with enhanced chemiluminescence Western blotting 
detection reagents (GE Healthcare, Chalfont St. Giles, UK).

Statistical analysis
All statistical analyses were performed using PASW Statistics 
version 17 (SPSS Inc., Chicago, IL, USA). The data are pre-
sented as the mean±standard error. A P value less than 0.05 
was considered statistically significant.
 
RESULTS

Exendin-4 reduced expression of PA-increased SEPP1 and 
fetuin-A in human hepatocytes
The expression of the SEPP1 and fetuin-A genes was higher in 
cells treated with PA alone than in the untreated controls, and 

significantly decreased with exendin-4 treatment in cells that 
did and did not undergo PA treatment (Fig. 1A). In addition, 
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Fig. 1. Exendin-4 (Ex-4) reduced the expression of selenoprotein P (SEPP1) and fetuin-A in HepG2 cells treated with palmitic acid (PA). 
HepG2 cells were incubated in the presence or absence of PA-containing medium, and treated with or without 100 nM Ex-4 for 24 hours. 
(A, B) The expression of SEPP1 and fetuin-A was analyzed using quantitative real-time reverse transcription polymerase chain reaction 
and Western blotting, and the data were normalized based on the β-actin. Con, control; mRNA, messenger RNA. aP<0.05; bP<0.01.
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Fig. 2. Exendin-4 (Ex-4) reduced the expression of palmitic acid 
(PA)-induced endoplasmic reticulum stress markers. HepG2 cells 
were incubated in the presence or absence of PA-containing medi-
um, and treated with or without 100 nM exendin-4 for 24 hours. 
Protein expression of inositol-requiring enzyme-1α (IRE1α), PKR-
like endoplasmic reticulum kinase (PERK), activating transcription 
factor 6 (ATF6), and CCAAT/enhancer binding homologous protein 
(CHOP) were analyzed by Western blotting. P-IRE1α, phosphor-
IRE1α; P-PERK, phosphor-PERK.
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the expression of proteins exhibited a trend similar to that of 
their respective protein transcripts (Fig. 1B). 
  PA, a saturated fatty acid, disrupts ER homeostasis [17], po-
tentially leading to diabetes and hepatic steatosis. To evaluate 
the effect of exendin-4 on PA-induced ER stress in hepatocyte 

cells, we examined the effect of exendin-4 on the expression 
of the ER stress markers IRE1α, PERK, ATF6, and CHOP. 
Cells exposed to PA displayed higher P-IRE1α, P-PERK, 
ATF6, and CHOP protein levels, whereas PA-induced increas-
es in the ER stress marker protein levels were reversed in cells 
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Fig. 3. Expression of selenoprotein P (SEPP1) and fetuin-A increased by endoplasmic reticulum (ER) stress was reversed by exendin-4 
(Ex-4). HepG2 cells were treated with tunicamycin (Tuni), an ER stress inducer, for 24 hours, after which tauroursodeoxycholic acid 
(TUDCA), an ER stress inhibitor, or Ex-4 was added for 24 hours. The gene expression levels of X-box binding protein 1 (XBP-1), 
SEPP1, and fetuin-A were analyzed using quantitative real-time reverse transcription polymerase chain reaction, and the data were nor-
malized based on the β-actin. Con, control; mRNA, messenger RNA. aP<0.05; bP<0.01.
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Fig. 4. Expression of selenoprotein P (SEPP1) and fetuin-A in cells treated with exendin-4 (Ex-4) was regulated by AMP-activated pro-
tein kinase (AMPK). (A) HepG2 cells were treated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMPK activa-
tor, for 24 hours. (B-D) Cells were transfected with the specific small interfering RNA (siRNA) for AMPK or scrambled siRNA (Scr) for 
24 hours, and then added to a container with or without 100 nM Ex-4 for 24 hours. The expression of AMPK, SEPP1, and fetuin-A mes-
senger RNA (mRNA) was measured using quantitative real-time reverse transcription polymerase chain reaction. Con, control. aP<0.05; 
bP<0.01.
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treated with exendin-4 (Fig. 2). These results suggest that ex-
endin-4 reduces the expression of PA-induced increases in 
SEPP1 and fetuin-A, and that exendin-4 improves PA-induced 
ER stress.

Exendin-4 reduces expression of Tuni-induced SEPP1 and 
fetuin-A in human hepatocytes
To examine whether increased expression of SEPP1 and fe-
tuin-A secondary to PA treatment is associated with ER stress, 
HepG2 cells were pretreated with Tuni, an ER stress inducer, 
followed by the addition of TUDCA, an ER stress inhibitor, or 
exendin-4. As shown in Fig. 3, the expression of SEPP1 and 
fetuin-A mRNA as well as XBP-1, a marker for ER stress, was 
significantly higher in cells treated with Tuni than in the un-
treated controls. In contrast, supplementation of TUDCA in 
cells exposed to Tuni completely abolished the effect of Tuni 
on the expression of these genes. Interestingly, the expression 
of XBP-1, SEPP1, and fetuin-A in cells treated with exendin-4 
exhibited levels similar to those in cells treated with TUDCA. 
These data suggest that exendin-4 has a protective effect 
against ER stress, and that exendin-4 attenuates the expression 
of the SEPP1 and fetuin-A genes by relieving ER stress.

Effect of exendin-4 on regulation of SEPP1 and fetuin-A is 
mediated via increased AMPK
The AMPK activator AICAR can inhibit fatty acid-induced 
ER stress [18]. SIRT1-AMPK signaling induces a potent pro-
tective effect of exendin-4 against fatty liver disease [19]. In 
this study, we have demonstrated that AICAR downregulates 
the expression of the SEPP1 and fetuin-A genes (Fig. 4A). We 
also examined whether the inhibitory effect of exendin-4 on 
the expression of ER stress-induced SEPP1 and fetuin-A is 
mediated by AMPK. The expression of AMPK increased in 
HepG2 cells treated with exendin-4 [19]. However, when the 
expression of AMPK was inhibited by AMPK siRNA, the ex-
pression of SEPP1 and fetuin-A in cells treated with exendin-4 
did not decrease (Fig. 4B-D). These results suggest that exen-
din-4 inhibits expression of ER stress-induced SEPP1 and fe-
tuin-A via stimulation of AMPK. Activation of AMPK may 
mediate an inhibitory effect of exendin-4 on ER stress-induced 
hepatokines, such as SEPP1 and fetuin-A.
 
DISCUSSION

We have demonstrated that the expression of SEPP1 and fe-
tuin-A is significantly higher in hepatocytes treated with PA, 

which induces upregulation of ER stress. On the other hand, 
exendin-4 treatment decreases the expression of these genes 
via improvement of ER stress by increasing AMPK.
  Recent studies have reported that the hepatokines SEPP1 
and fetuin-A can be therapeutic targets of type 2 diabetes melli-
tus and NAFLD [3,5,20,21]. Serum SEPP1 and fetuin-A levels 
are reportedly associated with metabolic syndrome, which is in 
turn associated with hypoadiponectinemia [6,21,22]. While pa-
tients with obesity and NAFLD show significantly increased 
SEPP1 and fetuin-A levels [4,23], SEPP1-knockout mice ex-
hibit improved insulin sensitivity in liver and muscle and atten-
uated adipocyte hypertrophy [3]. Mao and Teng [24] reported 
that an increased plasma SEPP1 level is the result, rather than 
the cause of glucose dysregulation, although further studies are 
needed. In the present study, we demonstrated that the expres-
sion of SEPP1 and fetuin-A increased in hepatocytes treated 
with PA, which can induce fatty liver disease and hepatic insu-
lin resistance [19,25], and decreased in hepatocytes treated 
with exendin-4, which exhibits antidiabetic actions through the 
GLP-1 receptor. These results are consistent with those of pre-
vious studies showing that SEPP1 and fetuin-A are novel bio-
markers for metabolic disorders, including obesity, diabetes, 
and hepatic steatosis [4,10,26].
  ER stress plays a crucial role in obesity, insulin resistance 
[27], and NAFLD [28]. The ER stress response is triggered by 
different stimuli such as oxidative stress, hypoxia, enhanced 
protein synthesis, high levels of glucose and saturated fatty 
acids, and high levels of ER stress inducers, such as thapsigar-
gin and Tuni [29,30]. The ER stress response also stimulates 
ER stress sensors such as ATF6, phosphorylation of PERK 
and IRE-1α [31], and ER stress-induced transcription factors, 
such as CHOP and XBP-1 [32,33]. In a previous study, we 
demonstrated that exendin-4 has a protective effect against 
PA-induced ER stress in hepatocytes [34]. In cells treated with 
PA, changes in the expression of the ER stress markers, 
SEPP1 and fetuin-A showed similar patterns, and exendin-4 
treatment in cells pretreated with PA or Tuni significantly re-
duced the expression of these genes. In addition, relieving ER 
stress by exendin-4 induced decreased expression of the 
SEPP1 and fetuin-A genes. Thus, these results suggest that de-
creased expression of SEPP1 and fetuin-A in cells treated with 
exendin-4 may be associated with improvement of ER stress 
by exendin-4.
  SEPP1 expression is reportedly stimulated by the interac-
tion between the transcription factors FoxO1 and HNF4α, and 
the coactivator PGC-1α, which stimulates hepatic gluconeo-
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genic gene expression. Jung et al. [35] reported that adiponec-
tin suppresses hepatic SEPP1 through AMPK-mediated phos-
phorylation of FoxO1a, and ameliorates hepatic fetuin-A 
through AMPK-mediated reduction of nuclear factor-κB activ-
ity [36]. Exendin-4 upregulated the expression of adiponectin 
and adiponectin receptor 2, and improved hepatic steatosis via 
SIRT1/AMPK signaling in mice models of diet-induced obe-
sity [19]. The current study suggests that SEPP1 and fetuin-A 
decreased upon treatment with exendin-4 and the AMPK acti-
vator AICAR, whereas when the AMPK gene was silenced 
with specific siRNA, the SEPP1 and fetuin-A expression did 
not decrease with exendin-4 treatment. These data suggest that 
the effect of exendin-4 on the regulation of hepatic SEPP1 and 
fetuin-A may be mediated by AMPK.
  However, the regulatory mechanism of AMPK action on the 
expression of the SEPP1 and fetuin-A genes remains unclear. 
Unlike the contention by Jung et al. [35] that salsalate- and ad-
iponectin-mediated AMPK suppresses FoxO1 activity, which 
is positively associated with SEPP1, Takayama et al. [37] re-
ported that a decrease in the SEPP1 level by treatment with 
the AMPK activator metformin is dependent on FoxO3a, but 
not on FoxO1. Moreover, the mechanism of AMPK action on 
the regulation of fetuin-A expression is poorly defined. Fur-
ther studies are needed to clarify the effect of exendin-4 on the 
regulation of hepatic SEPP1 and fetuin-A by treatment with 
AMPK.
  In conclusion, this study demonstrated that PA-induced ER 
stress stimulates the novel hepatokines SEPP1 and fetuin-A. 
This study also showed that exendin-4 can suppress the ex-
pression of hepatic SEPP1 and fetuin-A via improvement of 
ER stress by AMPK. Further studies are needed to clarify the 
details of the mechanism by which exendin-4-induced AMPK 
controls SEPP1 and fetuin-A.
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