
www.e-enm.org  195

Endocrinol Metab 2022;37:195-207
https://doi.org/10.3803/EnM.2022.1404
pISSN 2093-596X  ·  eISSN 2093-5978

Review
Article

A Study on Methodologies of Drug Repositioning Using 
Biomedical Big Data: A Focus on Diabetes Mellitus
Suehyun Lee1,2,*, Seongwoo Jeon2,*, Hun-Sung Kim3,4

1Department of Biomedical Informatics, Konyang University College of Medicine; 2Health Care Data Science Center, Konyang 
University Hospital, Daejeon; 3Department of Medical Informatics, College of Medicine, The Catholic University of Korea; 
4Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, 
The Catholic University of Korea, Seoul, Korea

Drug repositioning is a strategy for identifying new applications of an existing drug that has been previously proven to be safe. 
Based on several examples of drug repositioning, we aimed to determine the methodologies and relevant steps associated with drug 
repositioning that should be pursued in the future. Reports on drug repositioning, retrieved from PubMed from January 2011 to De-
cember 2020, were classified based on an analysis of the methodology and reviewed by experts. Among various drug repositioning 
methods, the network-based approach was the most common (38.0%, 186/490 cases), followed by machine learning/deep learning-
based (34.3%, 168/490 cases), text mining-based (7.1%, 35/490 cases), semantic-based (5.3%, 26/490 cases), and others (15.3%, 
75/490 cases). Although drug repositioning offers several advantages, its implementation is curtailed by the need for prior, conclu-
sive clinical proof. This approach requires the construction of various databases, and a deep understanding of the process underlying 
repositioning is quintessential. An in-depth understanding of drug repositioning could reduce the time, cost, and risks inherent to ear-
ly drug development, providing reliable scientific evidence. Furthermore, regarding patient safety, drug repurposing might allow the 
discovery of new relationships between drugs and diseases.

Keywords: Drug repositioning; Semantics; Machine learning; Real-world data; Data science

INTRODUCTION

The coronavirus disease 19 (COVID-19) pandemic is bringing 
about socio-economic changes, inevitably affecting the overall 
healthcare system [1]. Effective strategies to curtail the spread of 
the virus and prevent virus-related increases in morbidity and 
mortality are urgently needed [2]. In an urgent scenario, drug 
and vaccine development processes are rapidly evolving and be-
ing updated [3], enabling the development of effective treatment 

methods that are urgently needed. Although developing power-
ful therapeutic agents for virus control is paramount, in reality, 
the extended time, high cost, and low success rates associated 
with new drug development represent major obstacles [4,5]. Re-
cently, several studies have reported that specific drugs previ-
ously approved for other purposes might be repurposed to treat 
COVID-19 [6]. Therefore, the importance of developing a treat-
ment for COVID-19 through drug repositioning (or repurposing) 
is emphasized, and interest in drug repositioning is increasing.
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Drug repositioning is the process of identifying new therapeu-
tic applications for existing drugs and novel treatment methods 
for untreatable diseases [7]. It is a new drug development meth-
od allowing the use of drugs that have already been marketed or 
proven safe in clinical trials but have not been approved for effi-
cacy reasons [7]. For instance, although sildenafil has been de-
veloped to treat angina pectoris through its vasodilator effect, it 
gained popularity as an erectile dysfunction drug [8]. Finaste-
ride, initially used to treat benign prostatic hyperplasia, is cur-
rently used as a hair loss remedy after a dose adjustment [9]. 
Furthermore, for diabetes mellitus (DM) patients, sodium glu-
cose cotransporter-2 inhibitor (SGLT2i) has been shown to de-
crease serum triglyceride levels and increase high-density lipo-
protein cholesterol levels [10]; however, it cannot be used in hy-
percholesterolemia patients as it is only prescribed for diabetic 
patients. Although SGLT2i lowers blood pressure and has a di-
uretic effect [11], it cannot be used as an antihypertensive medi-
cation nor a first-line treatment for heart failure (HF). Glucagon-
like peptide-1 receptor agonists (GLP1-RA) have been ap-
proved for diabetic patients while also being used in obese pa-
tients [12]. In the case of liraglutide, marketed under the name 
Victoza, it is used and approved for diabetic patients, whereas 
Saxenda is used and approved for obese individuals (Novo Nor-
disk, Bagsvaerd, Denmark). Pregabalin, a treatment for diabetic 
neuropathy, was originally used to treat epilepsy [13]. Overall, 
drug repositioning can reduce the risk of failures inherent to the 
early stages of drug development as it relies on drugs that have 
already been tested.

Early drug repositioning revealed the possibility of redirect-
ing drugs based on serendipity; however, it recently opened up 
the opportunity to rationally reuse existing drugs [14]. Consid-
ering the COVID-19 outbreak as an opportunity, it is necessary 
to understand drug repositioning and its potential to rapidly un-
ravel new drug uses. However, studies providing detailed expla-
nations of the concept, methodology, and application of drug re-
positioning are lacking. In this study, we attempted to analyze 
various drug repositioning methods by retrieving related re-
search reports, discussing the developmental potential of these 
methods. We also analyzed recent drug repositioning cases that 
have been implemented, with a particular focus on DM.

LITERATURE SEARCH OF DRUG 
REPOSITIONING-RELATED REPORTS

We retrieved articles on drug repositioning and analytical meth-
odologies in the National Library of Medicine (NLM) PubMed 

database using the “Drug repositioning” [MeSH] OR “Drug 
Repurposing” [All Fields] OR “Drug Repurposing” [All Fields] 
keywords (Fig. 1). Studies published from January 1, 2011, to 
December 31, 2020, were extracted. Of the 4,892 studies, 3,109 
were available for download, of which 2,421 were included in 
MEDLINE. Following review, 494 studies classified as review 
or systemic review papers were excluded, and the authors con-
ducted a manual review of the remaining 1,927 studies. The ex-
clusion of studies unrelated to the topic yielded a collection of 
490 studies. In this process, papers including terms such as ‘ma-
chine-learning,’ ‘deep-learning,’ ‘network-based’ were included, 
encompassing a significant number of methodological papers 
based on computational approaches. The following papers were 
excluded: (1) papers containing inappropriate keywords such as 
“Chinese” and “Herbal” in the title and abstract; (2) reports im-
plementing methodologies such as “active learning” or “case 
study,” of which a few appeared among computational ap-
proaches. Two researchers reviewed abstracts and relevant top-
ics of each report to evaluate the appropriateness of the subject. 
Of 139 papers for which the two experts had diverging opin-
ions, 91 papers were maintained after discussion, and the re-
maining 48 were deleted due to a lack of agreement.

After classifying the studies based on the analysis of the drug 
repositioning methodology, 186 papers were categorized as net-
work-based approaches, 35 were based on text mining, 26 on 
semantics, and 168 on machine learning/deep learning. In addi-
tion to the network-based, machine learning, and deep learning-
based approaches, a few studies combined text mining and se-
mantic approaches. Furthermore, it was confirmed that high-
throughput screening, virtual screening, and clinical trials are 
being used in drug repositioning research.

APPROACHES TO DRUG REPOSITIONING 
ANALYSIS

The main purpose of drug repositioning is to detect new rela-
tionships between drugs and diseases [15]. General studies 
screen for pharmacological actions against new targets and in-
vestigate the general properties of drug compounds, such as 
chemical structure and side effects. In addition, drug reposition-
ing focuses on revealing the similarity between drug effects and 
modes of action by discovering the relationship between drugs 
and diseases [3,16,17]. Various approaches have been devel-
oped to analyze drug repositioning. Although text-mining and 
semantic-based approaches are both categorized as data-mining 
strategies [3], we divided these categories as both fields have 
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recently gained independent importance. Besides, deep learning 
is a machine learning-based approach that recently grew along 
with the increased availability of datasets [15]. Therefore, in this 
study, we classified network-based, text-mining-based, seman-
tic-based, and machine learning/deep learning-based approach-
es with reference to previous cases [3,15] and presented the cor-
responding methodologies (Table 1).

Network-based approaches
In the past, the focus has been on exploring the shared proper-
ties of drug compounds, such as their chemical structures and 
side effects. However, recently, to explore the relationship be-
tween drugs and diseases, pharmacological, genetic, and clinical 
data are first considered to explore the relationship between 
drug compounds [18]. This is based on the hypothesis that simi-
lar drugs are usually associated with similar diseases and vice 
versa. Algorithms are typically implemented to detect structural 
or network similarities between distinct networks, such as 
drugs, diseases, proteins, and genes (Supplemental Fig. S1A) 
[19]. Wu et al. [20] constructed a heterogeneous network of dis-

ease-gene and drug-target relationships and weighted diseases 
and drugs using the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) database [21,22]. Furthermore, all possible 
drug-disease pairs (drug re-creation candidates) were assembled 
to validate predictions. For instance, hydroxychloroquine has 
been proposed to exert potentially beneficial effects in coronary 
artery disease due to evidence from a protein-protein interaction 
network and large-scale patient data [23].

Looking at the research on DM using these network-based 
approaches, cyclooxygenase-2 (COX2) represents a potential 
repositioning candidate for type 1 DM treatment [24]. In studies 
based on electronic medical records (EMR), calcium channel 
blockers were safely prescribed during pregnancy to effectively 
treat and prevent gestational DM [25]. Lastly, metformin has 
shown promise as a therapeutic agent for neurodegenerative 
diseases [26].

Text mining-based approaches
Text mining is the process of acquiring meaningful knowledge 
from unstructured documents. Keywords for a specific drug and 

Fig. 1. Flowchart depicting the study selection process. aThe 1st manual review by article type: Excluding review and systemic review arti-
cles; bThe 2nd manual review by article topic in the abstract.
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its targets, pathways, associated disease, and function are used. 
Based on such keywords, it is possible to reveal the overall re-
search direction regarding the target keywords and obtain new 
knowledge regarding other keywords associated with the target 
keyword. The text-mining-based approach extracts and prepro-
cesses text data of interest from literature by recognizing entity 
terms. A knowledge graph was constructed by identifying the 
relationships between recognized entity terms [27]. In drug re-
positioning, the text mining approach recognizes the informa-
tion and properties of the linguistic context of each biological 
concept to predict associations and detect new indications (Sup-
plemental Fig. S1B) [27]. Such an approach is effective in pre-
dicting the association between drugs and diseases as well as 
enabling the detection of new indications and side effects of ex-
isting drugs [18]. With the development of natural language 
processing technology, an increasing number of text mining 
tools are being developed and used to aid drug development 
[28]. Kostoff et al. [29] derived potential treatments by prioritiz-
ing them according to the prevalence and clinical relevance of 
inflammatory bowel disease in the literature using a text mining 
approach.

Diflunisal, nabumetone, niflumic acid, and valdecoxib target-
ing COX2 have been repositioned as therapeutic agents for type 
1 DM. In addition, phenoxybenzamine and idazoxan, targeting 
alpha 2A adrenergic receptor (ADRA2A), have been reported to 
exhibit therapeutic effects in type 2 DM [30].

Semantics-based approaches
The semantic-based approach is widely used in information and 
image retrieval due to its effectiveness in predicting drug-dis-
ease associations when combined with text mining approaches 
[18]. A semantic network is built by adding prior information 
based on the existing ontology network to the information ex-
tracted from a large-scale medical database. In this network, 
mining algorithms are designed to predict new relationships. 
Although the semantic-based approach has improved the accu-
racy of predicting biological entity relationships by maximizing 
the semantic information contained in the vast literature, it is 
still difficult to integrate and construct various data sources [15]. 
Zhang et al. [31] discovered potential drugs for Parkinson’s dis-
ease by mining the semantic relationships between genes and 
molecular sequences, chemicals, and drugs. This method can 
improve the detection of potential relationships between drugs 
and disorders such as Alzheimer’s disease and cancer. For in-
stance, bromocriptine, with neurotransmitter action, is known to 
improve blood sugar control [32].

Machine learning/deep learning-based approaches
The literature search revealed that a drug repositioning study 
based on machine learning was grafted in various fields. A drug 
is expressed as a vector derived from characteristics such as 
drug fingerprints, chemical structures, and side effects. Diseases 
are trained according to various characteristics of drugs and dis-
orders using a machine learning model, and the relationship be-

Table 1. Computational Drug Repositioning Approaches

Network-based approaches [20,23]
    Assume that two drugs with structurally similar components perform similar roles
    Integrate information regarding drugs and diseases from large-scale biological datasets
    Use gene, protein, molecular, phenotypic, biological, or biomedical interactions
Text mining-based approaches [29]
    Estimate information and knowledge from the literature
    Identify drug functions, drug metabolic pathways, and diseases using specific keywords
    Effective in predicting associations between drugs and diseases
Semantics-based approaches [31]
    Add the existing ontology of network-based prior information to the existing semantic information extracted from a large-scale medical database
    Combine multiple sources for predictive indications and therapeutic potential of existing drugs
    Improve the accuracy of predicting biological entity relationships
Machine learning/deep learning-based approaches [34]
    Identify new indications using computational approaches for extracting features from biological data
    Train a model based of disease and drug characteristics obtained from various biological and biomedical datasets
    Predict new uses based on the trained model
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tween them can be predicted using the trained model [18]. In 
particular, Napolitano et al. [33] suggested three approaches to 
predict drug repositioning based on machine learning algo-
rithms and showed an accuracy of 78%. Distance of drugs ac-
cording to the degree of chemical structural similarity, integra-
tion of multiple layers of information regarding the proximity of 
a target within the protein-protein interaction network, and the 
correlation of gene expression patterns following treatment are 
some of the characteristics used by the algorithms. Menden et 
al. [34] developed a machine learning model to predict the re-
sponse of cancer cells to drug treatment using a combination of 
cell line genomics and drug chemical structure. This could be 
useful for personalized medicine by correlating cell line genom-
ics with drug hypersensitivity.

An alpha 1-adrenoceptor antagonist, known to treat benign 
prostate hyperplasia, was reportedly beneficial for blood sugar 
control [35]. Furthermore, dipeptidyl peptidase-4 inhibitor (DP-
P4i) showed promising results in the prognosis of colorectal 
cancer [36].

CONSIDERATIONS FOR THE 
INTRODUCTION OF DRUG 
REPOSITIONING

This study examined the concept and clinical application of ef-
ficient drug repositioning. However, various challenges need to 
be overcome before achieving clinical use. Aspects to be con-
sidered when introducing drug repositioning using these meth-
odologies and data are as follows.

Excluding optimism about clinical applicability
Various studies have reported the effects of drug repositioning; 
however, it remains difficult to be optimistic about the effect of 
this method in clinical settings. In one meta-analysis, chloro-
quine, usually used for systemic lupus erythematosus and rheu-
matoid arthritis, suppressed the maximum effective virus con-
centration in a laboratory study; however, high-quality evidence 
was not confirmed in patients infected with the severe acute re-
spiratory syndrome coronavirus 2 (SARS-CoV-2) [37]. Despite 
particular cases that benefited from the use of chloroquine, it is 
difficult to be confident regarding the efficacy of a drug before 
similar effects are observed in large-scale studies [38,39]. Tak-
ing DM as an example, it appears that various antihyperglyce-
mic therapies have other than hypoglycemic effects (Table 2) 
[10-12,26,36,40-51]. In addition, other types of drugs are likely 
to help lower blood sugar levels in diabetic patients (Table 3) 

[13,24,25,30,32,35,52]. In one study, caution was required, as 
there is no guarantee that the preclinical findings on the neuro-
protective effects of DPP4i in acute stroke are identical in clini-
cal practice [53].

Approach utilization based on diverse data sources
In recent years, an increasing number of researchers have at-
tempted to combine computational and experimental approach-
es to identify new drug uses. By combining various approaches, 
new indications for drugs have been explored, and the results 
have been verified through biological experiments and clinical 
trials. This is supported by the vast amount of data generated by 
advances in genomics and proteomics. In drug repositioning, it 
is difficult to evaluate the performance of this method using a 
one-dimensional approach due to low reliability. Therefore, it is 
necessary to increase the reliability of the repurposed drugs by 
approaching and verifying them from multiple perspectives. 
Furthermore, it is important to efficiently interpret and use large 
datasets [54]. By combining different types of data sources to 
discover the potential value of drugs, the discovery time can be 
shortened, and the efficiency, as well as reliability, can be im-
proved. In particular, large-scale clinical data stored in EMRs 
and personal health records represent a promising and inex-
haustible data source for discovering new drug indications [55].

Intellectual property issues
Intellectual property (IP) is an important problem associated with 
introducing repositioned drugs. Since IP protection is limited for 
non-patented drugs, the economic advantages associated with 
drug repositioning are counteracted by developing new indica-
tions for unprotected drugs. Regardless of the brand of the drug, 
if prescribed in clinical practice, the patient use can be expanded, 
and tangible benefits can be obtained. However, without a patent, 
drugs that prove novel indications are often protected by regula-
tory agencies, so their use might be limited. Furthermore, the re-
searcher or research institution does not hold the license for that 
specific drug repositioning. For example, new associations be-
tween drug and disease targets discovered by researchers have 
been identified in publications or online databases; however, 
these are not protected by IP rights. In addition, some drug repo-
sitioning projects may be forcibly stopped; thus, wasting time 
and resources [56]. Because the existing drug commercial model 
is not discontinued and investment problems can overlap, the de-
velopment of a new commercial model is sometimes necessary 
[57]. In such situations, academia, corporations, and regulatory 
agencies must cooperate to potentially benefit patients.
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DATASET FOR DRUG REPOSITIONING

The amount of publicly available biomedical, pharmaceutical, 
and genomic data is increasing exponentially (Table 4) [21,22, 
57-80]. Using data from various sources from specific fields 
(genes, compounds, proteins, drugs, diseases, etc.) reveals asso-
ciations between field-specific entities. Several computational 
drug repositioning approaches have been developed as multiple 

data sources are integrated and used to repurpose existing drugs. 
To implement each approach effectively, a reliable dataset must 
first be built [18]. For effective drug repositioning, a database 
must exist to connect information such as the interaction, simi-
larity, and relevance of various elements. Extensive research ef-
forts on building such databases for drug repositioning are cur-
rently in progress. Recently, data-based drug repositioning re-
search has been performed, and electronic health records 

Table 2. Candidate Diabetes Drugs for Diseases Other than Diabetes Mellitus

Drug Other candidate for indication Reference

Sulfonylurea Treatment of Alzheimer’s disease [40]

Metformin Cancer treatment as it reduces cancer incidence and mortality [41]

Therapeutic agent for neurodegenerative diseases [26]

Cerebroprotective potential for ischemic stroke [42]

Suitable candidate in aging-related CNS disorders

Improves depressive symptoms [43]

Sulfonylurea+Metformin Decrease affective disorder [44]

DPP4i Good prognosis of colorectal cancer [36]

Antiviral properties, suggesting the broad-spectrum antiviral agents [45]

Potential agents to treat SARS-CoV-2 infection [45]

SGLT2i Protective role in the occurrence of AF [46]

Decrease triglyceride and increase HDL-C [10]

Lowers blood pressure and exhibits a diuretic effect [11]

DPP4i+SGLT2i Neuroprotection in the obese-insulin resistance [47]

Thiazolidinedione Improves depressive symptoms [43]

GLP1-RA Neuroprotection, substance against neurodegeneration [48]

Prevent heart failure was obtained [49]

Treatment options in Parkinson’s disease [50]

Treatment of metabolic syndrome [51]

Weight loss [12]

CNS, central nervous system; DPP4i, dipeptidyl peptidase-4 inhibitor; SARS-CoV-2, severe acute respiratory syndrome coronavirus-2; SGLT2i, sodium 
glucose cotransporter-2 inhibitor; AF, atrial fibrillation; HDL-C, high-density lipoprotein cholesterol; GLP1-RA, glucagon-like peptide-1 receptor agonist.

Table 3. Potential Drugs Repositioned as Diabetes Medication

Drug Original indication Potential as an anti-diabetic drug Reference

Alpha 1 (α1)-adrenoceptor antagonist Benign prostate hyperplasia Increases the success rate of blood sugar control [30,35]

Bromocriptine Parkinson’s disease Treatment of type 2 diabetes mellitus [32]

Calcium channel blockers Anti-hypertensive drug Effective in treating or preventing GDM [25]

Colesevelam Hyperlipidemia Management of prediabetes and type 2 diabetes mellitus [52]

Cyclooxygenase-2 inhibitor Non-steroidal anti-inflammatory drug Can be used as a treatment for type 1 diabetes mellitus [24,30]

Pregabalin Epilepsy Treatment for diabetic neuropathy [13]

GDM, gestational diabetes mellitus.
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Table 4. Database for Drug Repositioning

Database Comment
Chembank [58,59] http://chembank.broad.harvard.edu/

A public web-based information technology environment
Freely available data and resources

ChEMBL [57] https://www.ebi.ac.uk/chembl/
Database of bioactive drug-like small molecules
Open database of EMBL-EBI with ADMET information
Additional data on clinical progress of compounds has been integrated.

ClinicalTrials.gov [60] https://clinicaltrials.gov/
Comprehensive clinical trial data representing the US, EU, and Japan

DailyMed [61] https://dailymed.nlm.nih.gov/dailymed/about-dailymed.cfm
Database containing labels for products submitted to FDA

DrugBank [62] https://go.drugbank.com/
Comprehensive, open access, online database containing information on drugs and drug targets

FAERS [63,64] https://fis.fda.gov/sense/app/95239e26-e0be-42d9-a960-9a5f7f1c25ee/sheet/7a47a261-d58b-4203-a8aa-6d3021737452/state/analysis
New user-friendly search tool that improves access to real-world adverse event data

Gene Ontology [65] http://www.geneontology.org
The world’s largest source of information on the functions of genes
A community-based bioinformatics resource
Uses ontology to represent biological knowledge

KEGG [21,22] http://www.kegg.jp/ or http://www.genome.jp/kegg/
Large-scale molecular datasets generated by genome sequencing and other high-throughput experimental technologies

MedHelp [66] https://www.medhelp.org/
Source of medical, health and wellness information created by users

MEDLINE [67] https://www.nlm.nih.gov/medline/medline_overview.html
Database of the NLM that contains more than 28 million documents in the life sciences

MedlinePlus [68] https://medlineplus.gov.
Health information website for the general public with NLM’s consumer-focused health information

MeSH [69] https://www.ncbi.nlm.nih.gov/mesh/
Comprehensive vocabulary for genes, diseases, and drugs that co-occur in the literature

OMIM [70] https://omim.org/
Comprehensive knowledge base of human genes and genetic phenotypes

PharmGKB [71,72] https://www.pharmgkb.org
Interactive tool for researchers investigating how genetic variation affects drug response

PreMedKB [73] http://www.fudan-pgx.org/premedkb/index.html#/home
A knowledge base that integrates the four basic components of precision medicine: disease, genes, variants and drugs

PubChem [74] https://pubchem.ncbi.nlm.nih.gov/
Open chemistry database at the NIH

PubMed [75] https://pubmed.ncbi.nlm.nih.gov/about/
MEDLINE’s database of biomedical literature, life science journals, online books

RepoDB [76] http://apps.chiragjpgroup.org/repoDB/
Standard set of drug repositioning successes and failures

SemMedDB [77,78] https://lhncbc.nlm.nih.gov/ii/tools/SemRep_SemMedDB_SKR/SemMed.html
Summarizes MEDLINE citations returned by a PubMed search
Extract semantic predications from titles and abstracts by natural language processing

SIDER [79,80] http://sideeffects.embl.de/
Computer-readable side effect resource linking drug and side effects terms

ChEMBL, Chemical database of the European Molecular Biology Laboratory; ADMET, Absorption, Distribution, Metabolism, Excretion, Toxicity; EMBL, Euro-
pean Molecular Biology Laboratory; EBI, European Bioinformatics Institute; US, United States; EU, European Union; FDA, US Food and Drug Administration; 
FAERS, FDA Adverse Event Reporting System; KEGG, Kyoto Encyclopedia of Genes and Genomes; MEDLINE, Medical Literature Analysis and Retrieval Sys-
tem Online; NLM, National Library of Medicine; MeSH, Medical Subject Headings; OMIM, Online Mendelian Inheritance in Man; PharmGKB, Pharmacogenom-
ics Knowledge Base; PreMedKB, Precision Medicine KnowledgeBase; NIH, National Institutes of Health; ReproDB, Drug Repositioning Database; SemMed DB, 
Semantic Medical Literature Analysis and Retrieval System Online (MEDLINE) database; SIDER, Side Effect Resource.
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(EHR), EMR, insurance claim data, genomic data, and drug da-
tabases represent good data source examples [81].

Electronic medical records/electronic health records, 
insurance claim data
EMR data contains disease- and phenotype-related information 
that can be used as raw data for drug discovery [25,81]. The 
ability to conduct large-scale follow-up studies related to patient 
outcomes collected from EMR is an important advantage [82-
84]. Medical databases such as EMR and claim data provide 
health records of millions of individuals, rendering them suit-
able for discovering new indications for available drugs [85].

Recently, an algorithm was developed to identify drug candi-
dates effective for DM and dyslipidemia by analyzing large 
amounts of EMR data and clinical trial results [86]. This algo-
rithm can be used to monitor the post-marketing safety of drugs 
and re-evaluate their effectiveness in clinical trials to ultimately 
discover new indications [86]. Metformin has been suggested as 
a repositioning candidate for cancer treatment because it reduc-
es cancer incidence and mortality [41]. GLP1-RA has shown 
neuroprotective effects, rendering it a candidate therapeutic sub-
stance against neurodegeneration [48]. Thus, drug repositioning 
based on EMR data is most suitable due to the advantage of ob-
taining large-scale, sophisticated, and structured medical data in 
a short time [87]. However, sample size reduction problems due 
to missing data or exclusion of data from multiple patients 
might still represent a problem for this approach [88]. Further-
more, data quality is often unreliable, and in most cases, prepro-
cessing is required [87,88], ultimately implying a critical priva-
cy issue. To compensate for this, all information that can identi-
fy individuals should be removed from the accumulated data, 
and the extracted information should be stored in an encrypted 
file and made accessible only to designated persons [83,89].

Genomic data
If the expression of a certain gene changes from baseline in as-
sociation with a specific disease, a drug that can alleviate this 
change in gene expression may have a therapeutic effect. Net-
work biology using genomic data is an efficient and high-poten-
tial next-generation approach for drug repositioning or drug-to-
drug combination of existing drugs. From this pharmacological 
perspective, drug repositioning for genetically rare diseases can 
be promoted by combining human genetics or genome-wide 
studies with network biology. In addition, such an approach has 
been proposed to solve the challenges of personalized medicine 
along with machine learning approaches [90]. Denny et al. [91] 

confirmed the association between single nucleotide polymor-
phism (SNP) and diseases using the diagnostic code of the EMR 
dataset. A method of confirming the association between a tar-
get SNP and disease is called a phenome-wide association study 
(PheWAS). The PheWAS framework enable taking advantage 
of the genetic diversity between populations, ultimately making 
it possible to understand the functional role of specific genes. 
Therefore, PheWASs might be useful for prioritizing candidate 
drug targets [90].

For instance, PheWAS provided genetic evidence that GLP1-
RA can prevent HF [49]. Furthermore, DPP4i, such as gemi-
gliptin, linagliptin, and evogliptin, reportedly exert antiviral 
properties, suggesting their potential as broad-spectrum antiviral 
agents [45]. Another study indicated that SGLT2i play a protec-
tive role in the occurrence of AF [46]. Thus, by analyzing the 
change in gene expression according to the drug, a new point of 
action or indication of the drug can be identified. Such gene ex-
pression information can be obtained for almost any compound 
or disease regardless of whether the drug is approved or not. 
Additionally, it is a popular method because even small changes 
in each drug and disease can be obtained in an objective and de-
tailed manner.

Drug database
Adverse drug reaction (ADR) information can be utilized in a 
network-based approach using pharmaceutical databases such 
as the Pharmacogenomics Knowledge Base (PharmGKB) [92], 
Side Effect Resource (SIDER) [79], and MedHelp [66]. It is 
possible to research health-related networks, including drugs 
and diseases, or use drug and disease names as well as ADRs as 
keywords to reach the relevant social network service. Numer-
ous studies on drug repositioning, including studies investigat-
ing biological relationships, have been published. It is some-
times presented as a supporting basis in the method of acquiring 
new knowledge, such as a text-mining approach and/or seman-
tic approach, ultimately exploring and predicting the relation-
ship between biological concepts or entities. Researchers built a 
disease-adverse event relationship database using drug-adverse 
event data extracted from SIDER and drug-disease relationship 
data extracted from PharmGKB, and identified drug reposition-
ing candidates by measuring the strength of the disease-adverse 
event relationship [93].

CONCLUSIONS

Drug repositioning is a method of identifying new drug indica-
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tions by detecting new relationships between diseases and clini-
cally proven drugs in an economical and efficient manner. In 
addition, repositioned drugs can be released to the market rela-
tively quickly by applying an appropriate approach and analyz-
ing a large amount of diverse data. With respect to drug safety 
and pharmacokinetics, it has a higher success rate than the tradi-
tional drug development method [94], and the resulting indica-
tions can be used to treat infectious diseases or cancers. Chen et 
al. [95]. demonstrated the effectiveness of pyrvinium in liver 
cancer patients by modeling the inverse correlation coefficient 
in gene expression and response in cancer patients. According 
to Paik et al. [96], clinical signatures extracted from EHR show 
that terbutaline sulfate, a known bronchodilator, can be repur-
posed to treat amyotrophic lateral sclerosis. Furthermore, an ac-
tive movement encourages the development of therapeutic 
drugs for leukemia, Alzheimer’s disease, Parkinson’s disease, 
and diabetes via drug repositioning. As such, the potential de-
mand and necessity for drug repositioning are expected to in-
crease, and new indications for drugs in various fields, includ-
ing intractable diseases, are expected to be identified.

Despite various limitations, drug repositioning is a field that 
will inevitably receive a spotlight in the drug development are-
na. The process of identifying new therapeutic drugs and treat-
ments for untreated diseases will continue to accelerate. Learn-
ing the concept, pros, and cons of various methods used in drug 
repositioning will pose the basis for implementing new innova-
tive technologies based on scientific evidence, taking into con-
sideration patient safety.
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