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Skeletal muscle has attracted attention as endocrine organ, because exercise-dependent cytokines called myokines/exerkines are re-
leased from skeletal muscle and are involved in systemic functions. While, local mechanical loading to skeletal muscle by exercise 
or resistance training alters myofiber type and size and myonuclear number. Skeletal muscle-resident stem cells, known as muscle 
satellite cells (MuSCs), are responsible for the increased number of myonuclei. Under steady conditions, MuSCs are maintained in a 
mitotically quiescent state but exit from that state and start to proliferate in response to high physical activity. Alterations in MuSC 
behavior occur when myofibers are damaged, but the lethal damage to myofibers does not seem to evoke mechanical loading-depen-
dent MuSC activation and proliferation. Given that MuSCs proliferate without damage, it is unclear how the different behaviors of 
MuSCs are controlled by different physical activities. Recent studies demonstrated that myonuclear number reflects the size of myo-
fibers; hence, it is crucial to know the properties of MuSCs and the mechanism of myonuclear accretion by MuSCs. In addition, the 
elucidation of mechanical load-dependent changes in muscle resident cells, including MuSCs, will be necessary for the discovery of 
new myokines/exerkines and understating skeletal muscle diseases.
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INTRODUCTION

Physical activity is defined as any bodily movement produced 
by skeletal muscles that requires energy expenditure [1]. Exer-
cise is a subset of physical activity that is planned, structured, 
and repetitive [1] and exerts many beneficial effects on the body 
across species [2,3]. Exercise is a key factor in the prevention 
and treatment of metabolic diseases. It has also been demon-
strated that exercise provides protection from stress-induced de-
pression via induction of the expression of kynurenine amino-
transferases [4]. In addition, exercise exerts anti-tumor effects 
[5,6]. These beneficial effects are considered to be provided by 
myokines, also called exerkines, that are released from multinu-
clear cells, myofibers, composing skeletal muscle [4,5]. Recent 

studies of potential exerkines or exercise-dependent factors are 
briefly summarized in Table 1 [4-10]. Myofiber itself, including 
the component of myosin heavy chain isoform, extracellular re-
modeling, and the number of nuclei in myofibers are affected 
by exercise [11]. As the amount of circulating exerkines is limit-
ed, for identifying new exerkines, it is critical to know the cellu-
lar network and the direct effects of mechanical cues on skeletal 
muscle loaded by exercise. In addition to myofibers, skeletal 
muscle contains muscle satellite cells (MuSCs), endothelial 
cells, and mesenchymal progenitor cells (also called fibro/adip-
ogenic progenitors [FAPs]) [12]; MuSCs play critical roles in 
muscle hypertrophy induced by mechanical loading. Here, we 
review the behaviors of MuSCs in skeletal muscle loaded by 
exercise or resistance training in mouse models. 
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MUSCLE STEM CELLS 

Markers 
The muscle stem cell is the defined as a mononuclear cell locat-
ed in a unique position. In 1961, Dr. Mauro [13] found mono-
nuclear cells located between the basal lamina and sarcolemma 
(cell membrane of myofiber) in frog muscle and named them 
‘satellite cells.’ As predicted by Dr. Mauro, MuSCs are indis-
pensable for skeletal muscle regeneration [14,15]. Pax7, M-cad-
herin, integrin α7, and Vcam1 are widely used for the identifica-
tion and purification of MuSC [16-20]. We identified calcitonin 
receptor (CalcR) as a quiescent MuSC-specific cell surface 
molecule in both humans and mice [21-23]. 

MuSCs are heterogeneous populations with different cell cy-
cling times [24,25], Pax3 [26], Pax7 [27], Myf5 [28], Mx1 [29], 
or CD34 expression [30]. In addition, MuSC properties are also 
influenced by myofiber type [31] or the muscle region in the 
body [32]. MuSCs in both slow (soleus) and fast-type muscles 
(plantaris) can supply new myonuclei in loading muscles 
[33,34], suggesting that the responsiveness of MuSCs to me-
chanical loading is not dramatically different between slow and 
fast myofibers. However, the correlation between heterogeneity 
in marker expression and behavior of MuSCs in loaded muscles 
has not been demonstrated.

Differentiation 
Initially, it was thought that MuSCs had multi-differentiation 
potential involving mainly mesenchymal lineage: adipocytes, 
osteocytes, and fibroblastic cells. Even when adult MuSCs lose 
both myogenic differentiation 1 (MyoD) and myogenic factor 5 
(Myf5) that are essential myogenic determination factors, the 
MuSC-pool is sustained in uninjured muscle [35]. However, 

proliferating MuSCs lose their myogenic identity; alternatively, 
they differentiate into adipogenic and fibroblastic cells [35]. 
These results indicate that MyoD and Myf5 are essential for the 
myogenic identity of adult proliferating MuSCs. Whereas, 
MuSC is not the main cell source of adipogenic and fibroblastic 
cells even in disease and aged conditions. In skeletal muscle, 
mesenchymal progenitors (also called FAPs) mainly provide 
such types of cells in disease conditions [36-38], and the contri-
butions of MuSCs to non-myogenic lineage cells are rare. It has 
been demonstrated that MuSCs are the only cells that provide 
new myonuclei in skeletal muscles loaded by running exercise 
or resistance training in mouse models [39,40].

Quiescence, activation, and proliferation in loaded muscle
It is of note that MuSCs are directly attached to myofibers that 
randomly contract and relax even in a sedentary condition, 
where MuSCs can maintain quiescence. However, intense con-
tractions induce MuSC activation and proliferation. Given that 
the muscle regeneration process is not involved in MuSCs acti-
vation and proliferation in loaded muscles [41-43], these results 
indicate that MuSCs responses are strongly correlated with 
physical activity and strength of myofiber contraction (Fig. 1). 
Since several signaling pathways actively sustain MuSC quies-
cence even in sedentary mice [44], the reduction in these path-
ways might be the initiation of MuSC activation in loaded mus-
cle. CalcR is a potent candidate because of its role and specific 
expression in quiescent MuSCs [22,45,46]. We have investigat-
ed the role of CalcR in physically active mice. It could also be 
expected that the exercise or resistance training models would 
allow us to find new aspects of maintenance signaling in 
MuSCs.

MyoD suppression is regulated by canonical Notch signaling 

Table 1. List of Exercise or Exercise-Dependent Factor 

Exercise/Exercise-dependent factor Target Function Reference

Apelin Myofiber, MuSCs Anti-sarcopenia [7]

Apelin (maternal) Fetal brown adipose tissue (BAT) Enhance BAT development [8]

GDF15 Adipose tissues Lypolysis [9]

IL-6 NK cells Anti-tumor [5]

Kynurenine aminotransferases Kynurenine in blood Anti-depression [4]

SPARC Colon cancer cells Anti-tumor [6]

Succinate Multiple types of cells in skeletal muscle Muscle remodeling [10]

MuSC, muscle satellite cell; GDF15, growth differentiation factor 15; IL, interleukin; NK, natural killer; SPARC, secreted protein acidic and rich in cys-
teine. 
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which is also fundamentally important for MuSC maintenance 
[47,48]. The hairy and enhancer of split (Hes)-Hey (Hes-related, 
also known as Hesr/Herp/Hrt/Gridlock/Chf) heterodimer is in-
volved in a predicted mechanism as the downstream of Notch 
signaling for suppressing MyoD expression [49,50]. The loss of 
Notch-related genes in adult MuSCs leads to MyoD expression, 
and MuSCs eventually fuse to existing myofibers [49,51-53]. In 
regenerating muscles or in vitro culture conditions, a rapid in-
crease in MyoD protein level is a hallmark of MuSC activation 
before cell cycle entry, and then MuSCs proliferate with MyoD 
expression (Fig. 2) [54]. However, we found that majority of 
proliferating MuSCs do not express MyoD in a mouse resis-
tance training model (Fig. 2) [42]. We also found that HeyL ex-
pression was maintained at a high level in proliferating MuSCs 
in the overloaded model. Although HeyL-deficient mice did not 
show a pronounced phenotype in muscle regeneration models, 
in the overloaded model, they exhibited blunted muscle hyper-
trophy due to the reduced number of new myonuclei. As ob-
served in Notch signaling mutant mice, MyoD expression al-
lows MuSCs to fuse with myofibers, suggesting that the sup-
pression of MyoD expression in proliferating MuSCs is essen-
tial to inhibit their incorporation into myofibers during their 
proliferation on myofibers.

MuSCs behavior in aged muscle
The reduced number and regenerative ability of MuSCs during 
aging are well-documented in mouse models [44]. Blunted 
muscle hypertrophy in aged mice was also reported in a surgical 
resistance training model, although myonuclear accretion had 

occurred [55]. In addition to intrinsic impairments in aged 
MuSCs, the environment for muscle regeneration is disrupted 
by aging [56,57]. In contrast, questions such as whether MuSCs 
are responsive to mechanical loading and whether the environ-
ment inducing MuSC expansion in aged skeletal muscle chang-
es remain to be explored. Of note, the beneficial effects of exer-
cise on muscle regeneration or rejuvenation of aged MuSCs 
have been reported [58,59]. If the behavior of aged MuSCs in 
response to exercise is comparable to that of young MuSCs, it is 
possible that exercise improves the behavior of aged MuSCs in 
loading muscles. Analyses of aged MuSCs behaviors in re-
sponse to exercise/resistance training remain to be conducted. It 
is also interesting to explore the quality of new myonuclei sup-
plied by aged MuSCs compared with those supplied by young 
MuSCs in exercise/resistance training muscles.

CRITICAL ROLES OF MYONUCLEI 
NUMBER FOR SIZE OF MYOFIBERS 

A characteristic feature of muscle hypertrophy induced by me-
chanical loading is an increase in myofiber size, thus requiring 
an increase in protein synthesis. Another feature is an increase 
in the number of myonuclei. Since there is a limit to the cyto-
plasmic area that can be dominated by a single nucleus of a 
myofiber, new myonuclei must be generated to maintain a con-
stant cytoplasmic area; this is known as the myonuclear domain 
theory. It is also considered that the number of myonuclei must 
increase to supply ribosomes that are the rate-limiting factor for 
protein synthesis. Since only MuSCs can supply nuclei to myo-

Fig. 1. Behaviors of muscle stem cells during different physical activities. (A) During sedentary or light physical activity, muscle satellite 
cells (MuSCs) remain in a quiescent state. (B) During intense physical activity, MuSCs start to proliferate.

A B



Fukada S, et al.

740  www.e-enm.org Copyright © 2021 Korean Endocrine Society

fibers, MuSCs are generally considered essential for muscle hy-
pertrophy. However, the debate on whether MuSC was neces-
sary for hypertrophy occurred in 2007 [60]. At that time, meth-
odological issues remained. Ten years later, the same debate re-
curred with two different reports using genetically modified 
MuSC-depleted mice [61,62]. As O’Connor and Pavlath [60] 
stated, short-term hypertrophy may not require an increase in 
the number of myonuclei, but no conclusion can be reached 
without a long-term experiment. To the best of our knowledge, 
all research groups observed blunted muscle hypertrophy at 
least in long-term experiments when myonuclear accretion was 
impaired [42,63]. Accumulating evidence also suggests the crit-
ical role of myonuclear accretion by MuSCs in both exercise 

and resistance training animal models [64-67]. Thus, it can be 
concluded that MuSCs are necessary for muscle hypertrophy 
induced by mechanical loading [41].

A recent study has shown that, in developing myofibers, there 
is some tolerance to the transcriptional capacity of myonuclei. In 
myofibers with approximately half of the nuclei, the transcrip-
tional capacity of total RNA in one nucleus is doubled [68]. 
However, interestingly, the reserve capacity is reduced in myofi-
bers harboring 75% of myonuclei; thus, the myofiber size was 
similarly reduced to that of the myofibers with half the nuclei 
[68]. It has also been demonstrated that the number of myonuclei 
defines the size of myofibers in both humans and mice [69]. 
These studies also indicate the critical roles of myonuclear num-

Fig. 2. Muscle stem cells on myofibers. (A) Freshly isolated myofibers were stained with an anti-Pax7 antibody (green). Arrows indicate Pax7-
positive muscle satellite cells (MuSCs). In this Figure, cartoon shows the expression of Hey and myogenic differentiation (MyoD) in MuSCs 
under each condition. (B) Cultured myofibers were stained with anti-Pax7 (red), MyoD (green), and Ki67 (cyan) antibodies. Three days after 
culturing in vitro, MuSCs expressed MyoD and Ki67. (C) Freshly isolated myofibers from overloaded muscles were stained with anti-Pax7 
(red), MyoD (green), and Ki67 (white) antibodies. MuSCs proliferate without MyoD expression. DAPI, 4′,6-diamidino-2-phenylindole.
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ber and MuSCs, because MuSC is also responsible for the in-
crease in myonuclear number during the developmental stage 
[70].

CONCLUSIONS

In a muscle mechanically loaded by exercise or resistance train-
ing, MuSCs start to proliferate and eventually supply new myo-
nuclei that are critical for efficient muscle hypertrophy. MuSCs 
in loaded muscles proliferate by mechanisms different from 
those in regenerating muscle, one of which is a sustained ex-
pression of HeyL. As myonuclei number, and perhaps also the 
quality, directly influence the myofiber size, MuSC-mediated 
control of these parameters might be an innovative therapeutic 
approach for muscular disorders, including sarcopenia. Elucida-
tion of the molecular mechanisms underlying the MuSC activa-
tion and proliferation and the related cellular network will lead 
to the discovery of new aspects of skeletal muscles as an endo-
crine organ. 
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