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The liver is a vital organ that regulates systemic energy metabolism and many physiological functions. Nonalcoholic fatty liver dis-

ease (NAFLD) is the commonest cause of chronic liver disease and end-stage liver failure. NAFLD is primarily caused by metabolic

disruption of lipid and glucose homeostasis. Serotonin (5-hydroxytryptamine [5-HT]) is a biogenic amine with several functions in

both the central and peripheral systems. 5-HT functions as a neurotransmitter in the brain and a hormone in peripheral tissues to reg-

ulate systemic energy homeostasis. Several recent studies have proposed various roles of 5-HT in hepatic metabolism and inflamma-

tion using tissue-specific knockout mice and 5-HT-receptor agonists/antagonists. This review compiles the most recent research on

the relationship between 5-HT and hepatic metabolism, and the role of 5-HT signaling as a potential therapeutic target in NAFLD.
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INTRODUCTION

The liver is an essential organ that regulates systemic energy
metabolism and several physiological functions, including ma-
jor macronutrient metabolism, immunomodulation, lipid me-
tabolism and cholesterol homeostasis, and detoxification of sev-
eral harmful reactive chemical species [1]. Thus, hepatic dys-
function is associated with systemic diseases such as cardiovas-
cular disease, chronic kidney disease, obesity, and type 2 diabe-
tes mellitus [2].

Nonalcoholic fatty liver disease (NAFLD), the commonest
cause of chronic liver disease and end-stage liver failure [3], is
defined as the accumulation of excess fat in the liver and in-
cludes a wide range conditions from simple fat accumulation in
hepatic cells to nonalcoholic steatohepatitis, liver cirrhosis, and,
finally, liver cancer [2]. Thus, NAFLD is a multisystem disease
that is associated with both cardiovascular and hepatic morbidi-

ty and mortality [2,4]. The development and progression of
NALFD are associated with multiple pathogenic mechanisms,
such as fatty acid accumulation due to high lipid intake, insulin
resistance-related upregulation of lipogenesis, lipid peroxida-
tion-mediated liver injury, and elevated oxidative or endoplas-
mic reticulum stress [5,6], and metabolic disruption of lipid and
glucose homeostasis is a major contributor of NAFLD patho-
genesis [5]. Therefore, the restoration of hepatic metabolic ho-
meostasis is a promising therapeutic approach for the treatment
of NAFLD.

Serotonin (5-hydroxytryptamine [5-HT]) is a biogenic amine
that plays numerous roles, through the regulation of systemic
energy metabolism, in central and peripheral systems [7] as a
neurotransmitter in the brain and as a hormone in peripheral tis-
sues, respectively [8]. This review was conducted with the aim
to compile the findings of recent studies of the relationship be-
tween 5-HT and hepatic metabolism and to discuss the role of
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5-HT signaling as a potential treatment for NAFLD.

5-HT METABOLISM AND SIGNALING

L-tryptophan is an essential amino acid, and more than 90% of
tryptophan is metabolized in the kynurenine pathways, and oth-
ers are used to make 5-HT, melatonin, tryptamine, and indole-
pyruvic acid [9]. 5-HT synthesis, both central and peripheral, is
initiated through tryptophan hydroxylase (TPH)-mediated tryp-
tophan hydroxylation that is closely related to tryptophan avail-
ability, kynurenine synthesis, and TPH, which is the rate-limit-
ing enzyme [8] and occurs in two isoforms: TPH1 is mainly ex-
pressed in peripheral tissues and, centrally, TPH1 is mainly ex-
pressed in the pineal gland and at extremely low levels in the
rest of the central nervous system (CNS) [10]; TPH2 is the pre-
dominant enzyme isoform for neuronal 5-HT synthesis in the
CNS and the enteric nervous system (ENS) [7]. As 5-HT does
not cross the blood-brain barrier, changes in activities of TPH1
and TPHI alters 5-HT levels in peripheral tissues and CNS, re-
spectively.

From tryptophan, TPH generates 5-hydroxytryptophan (5-
HTP), which is then converted to 5-HT by aromatic acid decar-
boxylase (AADC). The 5-HT transporter (serotonin transporter

[SERT]) facilitates 5-HT reuptake, and monoamine oxidase
(MAO)-A catalyzes the oxidative deamination of 5-HT. Both
SERT and MAO-A activities are important factors to determine
5-HT levels in the target organs [11]. Furthermore, 5-HT can be
converted to N-acetyl-serotonin by arylalkylamine N-acetyl-
transferase and, subsequently, to melatonin by hydroxyindole
O-methyltransferase in the pineal gland and retina [12]. More-
over, indoleamine 2,3-dioxygenase (IDO) metabolizes trypto-
phan, thereby allowing it to enter the kynurenine pathway,
which accounts for approximately 95% of dietary tryptophan
degradation [9].

Through receptor signaling pathways, 5-HT modulates various
physiological and pathological processes. Most of the 5-HT-re-
lated biological processes are mediated through more than four-
teen 5-HT receptors that are categorized into seven families [7],
of which six are G-protein-coupled receptors and one is a ligand-
gated cation channel (serotonin receptor 3 [HTR3]) (Table 1,

Fig. 1) [7].

CENTRAL 5-HT AND ENERGY
METABOLISM

Central 5-HT plays a major role in appetite control and systemic

Table 1. 5-HT Receptors, Structure, Transduction System, and Tissue Expression
Receptor subtype Structure Distribution Effects Transduction system
5-HTIA GPCR Raphe nuclei Regulates sleep lcAMP
Hippocampus Feeling and anxiety G-protein coupled- K current
5-HT1B GPCR Substantia nigra, globus pallidus ~ Neuronal inhibition, behavioral changes ~ |cAMP
5-HT1D GPCR Brain Vasoconstriction |cAMP
5-HT1E GPCR Cortex, hippocampus Memory |cAMP
5-HT1F GPCR Globus pallidus, putamen Anxiety |cAMP
5-HT2A GPCR Platelets, cerebral cortex Cellular excitation TGPCR
5-HT2B GPCR Stomach Appetite TGPCR
5-HT2C GPCR Hippocampus, substantia nigra Anxiety TGPCR
5-HT3 LGIC Area postrema, enteric nerves Vomiting Ton conductance (K*, Na*, Ca*")
5-HT4 GPCR Cortex, smooth muscle Gut motility TcAMP
5-HTSA GPCR Brain CNS |cAMP
Brain Sleep Ca’" mobilization
Brain Locomotion K" current
5-HTSB GPCR Brain Sleep Not known
5-HT6 GPCR Brain Cognition, learning TcAMP
5-HT7 GPCR CNS Blood vessel TcAMP
5-HT, 5-hydroxytryptamine; GPCR, G-protein coupled receptor; cAMP, cyclic adenosine monophosphate; LGIC, ligand-gated ion channel; CNS, central
nervous system.
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Fig. 1. 5-Hydroxytryptamine (5-HT) receptors and signaling pathways. The 5-HT1 and 5-HTS receptors are Gi/Go-protein coupled recep-
tors that inhibit adenylate cyclase (AC) and thus suppress the cyclic adenosine monophosphate (cAMP) downstream pathways. 5-HT2 re-
ceptors are Gq/G11-protein coupled receptors that activate phospholipase C, resulting in the activation of the inositol triphosphate (IP3) and
diacylglycerol (DAG) downstream pathways. The only ligand-gated ion channel that can regulate membrane potential is the 5-HT3 recep-

effects on
metabolism

tor. The Gs-protein coupled receptors 5-HT4, 5-HT6, and 5-HT7 activate AC.

energy metabolism [13]. Several studies have elucidated the
roles of 5-HT and its receptors in the CNS, and investigations in
5-HT receptor knockout (KO) mice have provided evidence that
supports the role of central 5-HT in controlling appetite and/or
bodyweight [14]. Via the 5-HT1B receptor, 5-HT stimulates the
release of a-melanocyte-stimulating hormone in the proopi-
omelanocortin (POMC) neuron and suppresses the secretion of
agouti-related protein (AgRP) in the orexigenic neuropeptide Y
(NPY)/AgRP neuron [15], with a resultant decrease in appetite.
The 5-HT2C receptor agonist lorcaserin (Belvig, Eisai Inc., To-
kyo, Japan), which showed significant bodyweight reduction
via appetite suppression, was approved in 2012 for the treat-
ment of obesity by the Food and Drug Administration (FDA)
[16] and saw widespread use as an anti-obesity medication until
the FDA requested its withdrawal in 2020 due to an increased
risk of cancer [17].

Central 5-HT signaling increases energy expenditure via the
induction of thermogenic activity in brown adipose tissue (BAT)
[14]. TPH2-positive neurons are a component of the neural cir-
cuitry between the brain and BAT [18]. The rostral raphé palli-
us, which regulates sympathetically mediated metabolism and
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the thermogenic activity of BAT, contains 5-HT neurons [19].
Microinjections of the 5-HT receptor antagonist, methysergide,
into the intermediolateral cell column of the rat spinal cord sup-
pressed cold-induced thermogenic activity in the BAT [19].
Central 5-HT deficiency resulted in the loss of thermoregulation
and decreased the uncoupling protein 1 (UCP1) content in both
BAT and inguinal white adipose tissue (WAT) [20]. Further-
more, through changes in the autonomic nervous system (ANS)
and hormonal secretions, central 5-HT regulates peripheral glu-
cose and lipid homeostasis [13], and POMC and AgRP neurons
regulate glucose and lipid metabolism [13]. Thus, 5-HT2C re-
ceptor agonists regulate energy and glucose homeostasis and
appetite via POMC neurons [21], and the AgRP neurons regu-
late hepatic glucose production [22].

PERIPHERAL 5-HT AND ENERGY
METABOLISM

The majority (>95%) of 5-HT is synthesized by TPHI in en-
terochromaffin cells of gut and stored in platelets [7]. The major
peripheral organs, such as the heart, adipose tissue, pancreatic
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islets, and skeletal muscle, contain TPH1 and can synthesize
5-HT [23-26]. Furthermore, the ENS can produce 5-HT from
TPH2 [27]. Thus, 5-HT can regulate the metabolic function of
peripheral organs through autocrine/paracrine pathways.

Through 5-HT receptor transduction in the ENS, 5-HT regu-
lates gut motility through the modulation of muscular peristaltic
activity via motor and sensory functions. Submucosal and my-
enteric neurons that are involved in intestinal peristalsis, secre-
tion, and sensation are regulated by 5-HT3 and 5-HT4 [28]. On-
dansetron, a 5-HT3 receptor antagonist that is widely used to
prevent nausea and vomiting, can induce side effects such as
constipation and ileus. The 5-HT4 receptor accelerates propul-
sive motility and reduces visceral pain in the large intestine [29].
In vitro, a 5-HT4 receptor agonist can increase enteric neuronal
development and survival [30].

Recent studies have suggested a possible relationship between
gut microbiota and 5-HT signaling in the gastrointestinal tract.
Compared to WT mice, 7ph/-KO mice had different gut micro-
biota composition, which conferred a protective effect that re-
sulted in a lower susceptibility to colitis [31], and which sug-
gested that 5-HT regulates gut microbiota composition. In con-
trast, gut microbiota alters 5-HT levels in the colon and blood by
directly regulating gastrointestinal tryptophan metabolism [32].

Pancreatic islets are important for glycemic control because
they comprise a- and B-cells that secrete glucagon and insulin,
respectively. During pregnancy, pancreatic -cells synthesize
5-HT, which increases -cell mass and glucose-stimulated insu-
lin secretion via 5-HT2B and 5-HT3 receptor signaling, respec-
tively [26,33]. In addition, 5-HT regulates insulin secretion in a
diet-induced insulin resistance state [34] and controls adult
B-cell mass by stimulating perinatal B-cell proliferation [35].
Furthermore, 5-HT regulates energy metabolism in adipose tis-
sue. During fasting conditions, both lipolysis in adipose tissue
and gluconeogenesis in the liver are increased. Sumara et al.
[36] discovered that fasting increased the level of gut-derived
5-HT (GDS), which promoted lipolysis in WAT via 5-HT2b re-
ceptor signaling.

Tphl and Tph2 double-KO mice, as well as 7ph/-KO mice,
have lower body weight [37,38]. In contrast, the body weights
of gut-specific Tphl-KO mice are comparable to those of WT
control mice [36]. Intriguingly, on a high-fat diet (HFD), adi-
pose tissue-specific 7phl-KO mice had less weight gain than
WT mice [24]. The HFD increased 5-HT levels in WAT with
upregulated 7phl expression, and 5-HT subsequently upregu-
lated lipid accumulation in WAT via 5-HT2A receptor-induced
lipogenesis [24,39]. These findings imply that 5-HT, in addition
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to GDS, possibly plays a role in the regulation of energy ho-
meostasis, especially in WAT.

Furthermore, recent studies suggest possible roles of 5-HT in
BAT. On an HFD, Tphl-KO mice showed increased energy ex-
penditure when a peripheral TPH inhibitor (LP-533401) was
used to confirm the obesogenic actions of peripheral 5-HT
[24,40]. In adipocyte-specific Tphi-KO mice, 5-HT depletion
induced Ucp! and Dio2 expression in the BAT and subcutane-
ous WAT [24]. In brown fat, the 5-HT3 receptor is important for
diet-induced thermogenesis, which significantly increased in
Htr3a-KO (whole-body KO) mice fed an HFD [31]. Therefore,
this lean phenotype could be attributed to either central or pe-
ripheral 5-HT effects. Future research is required to identify the
primary 5-HT receptor that regulates BAT thermogenesis.

5-HT AND LIVER REGENERATION

The hepatocyte is unable to produce 5-HT; however, cholangio-
cytes and hepatic stellate cells (HSC) produce 5-HT in the liver
[41]. Intrahepatic 5-HT-containing neurons and 5-HT receptors
are distributed in the ANS, on branches of the hepatic artery,
portal vein, bile duct, and the connective tissue of the interlobar
septa [42]. Thus, neuronal signals from the ANS as well as cir-
culating 5-HT from the gut regulates hepatic biology and meta-
bolic functions, such as hepatic blood flow and regeneration.

In animal studies, 5-HT increased portal resistance in dogs
[43] whereas the 5-HT2 receptor antagonist ketanserin reduced
portal hypertension in rats [44]. The 5-HT2 receptor antagonist
LY53857 reduced hepatic sinusoidal blood flow by acting on
the HSC, which has both 5-HT2A and 5-HT2B receptors [45].
Furthermore, Kulinskii et al. [46,47] reported a major role of
5-HT in hepatic regeneration and wound healing using a murine
partial hepatectomy (PHx) model. 7p//-KO mice failed to re-
generate the liver after PHx, and 5-HT2 and 5-HT7 antagonists
suppressed liver regeneration in post-PHx rats [48]. In a murine
PHx model, the 5-HT2A receptor mediated liver regeneration
[49]. The fibrogenic HSC have 5-HT2B receptor, and a 5-HT2B
antagonist attenuated hepatic fibrosis and improved hepatic
function in a murine chronic liver inflammation model [50].
Additionally, a recent study in a murine PHx model suggested a
novel role of 5-HT, based on the activation the Hippo signaling
pathway, in promoting hepatic regeneration [51].

Selective serotonin reuptake inhibitors (SSRIs) and serotonin
noradrenaline reuptake inhibitors (SNRIs) reduced the intra-
platelet 5-HT concentration. A recent clinical study reported that
perioperative SSRI/SNRI intake was significantly associated

Copyright © 2021 Korean Endocrine Society
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with the high incidence of morbidity and postoperative hepatic
dysfunction [52].

ROLE OF PERIPHERAL 5-HT IN NAFLD

The liver plays an important role in the regulation of both glu-
cose and lipid homeostasis. To maintain plasma glucose levels
during fasting, the liver increases glycogenolysis and gluconeo-
genesis. Sumara et al. [36] discovered that, via 5-HT2B receptor
signaling during fasting, GDS promotes gluconeogenesis and
inhibits hepatic glucose uptake. Furthermore, GDS inhibits in-
trahepatocyte glucose uptake via a glucose transporter 2-depen-
dent mechanism.

In contrast, several studies found contradictory results. 5-HT
boosted hepatic glucose uptake and increased intrahepatic fat
content in a dog model [53]. In 0b/0b mice, the duodenal 5-HT
content increased, and treatment with a 5-HT3 receptor antago-
nist reduced the elevated 5-HT levels while increasing SERT
activity in the duodenum. Moreover, the 5-HT3 receptor antag-
onist reduced fat content, inflammation, and necrosis in these
mice [54]. Crane et al. [40] discovered an intrahepatic role for
peripheral 5-HT in mice fed an HFD: WT mice became obese
and developed fatty liver disease when fed an HFD, whereas
Tph1-KO mice did not develop fatty liver on an HFD and had
reduced hepatic fat accumulation.

Recently, Choi et al. [55] proposed 5-HT as a therapeutic target
for NAFLD. Gut-specific 7phl-KO and liver-specific Htr2a-KO
mice were both resistant to HFD-induced hepatic steatosis. In
addition, the 5-HT2A antagonist sarpogrelate ameliorated hepat-
ic steatosis in HFD-fed mice. Thus, GDS regulates hepatic lipid
accumulation through 5-HT2A receptor signaling. Gene set en-
richment analysis (GSEA) of the liver transcriptomes of HFD-
fed liver-specific Htr2a-KO mice and WT littermates revealed
that gene sets related to inflammation, fibrosis, and steatohepati-
tis were significantly downregulated in the liver of the former.

HSC are important cellular components of hepatic fibrosis
and wound healing. 5-HT1A, 5-HT1F, 5-HT2A, 5-HT2B, and
5-HT7 receptors are expressed in rat and human HSC [56].
5-HT works in tandem with platelet-derived growth factor to
promote HSC proliferation [56]. In the diseased rat liver,
5-HT2B receptor was strongly associated with fibrotic tissue.
5-HT?2 receptor antagonist treatment of HSC reduced their pro-
liferation and increased their rate of apoptosis [56]. In human
HSC lines, 5-HT2A receptor antagonists inhibited viability and
wound healing [57]. Moreover, 5-HT2B receptor signaling acti-
vated HSC by increasing TGF-1 signaling [50]. Inhibition of the

Copyright © 2021 Korean Endocrine Society

5-HT2B receptor suppressed fibrogenesis and improved liver
function in a murine carbon tetrachloride (CCl4)-induced cir-
rhosis model [50].

HUMAN MOLECULAR BIOLOGY AND
CLINICAL EVIDENCE OF THE
ASSOCIATION BETWEEN 5-HT AND NAFLD

Genetics and molecular research using human samples to iden-
tify underlying mechanisms and novel therapeutic targets for
NAFLD have revealed potential roles for 5-HT signaling in
NAFLD. The mRNA expressions of 5-HT2A and 5-HT2B re-
ceptor in human omental adipose tissue were significantly in-
creased in obese subjects compared to lean subjects, and these
gene expressions were positively correlated with serum aspar-
tate aminotransferase and alanine aminotransferase levels [58].
A recent single-center clinical study found that levels of 5-hy-
droxyindoleacetic acid (5-HIAA; a metabolite of 5-HT) were
significantly associated with hepatic events in NAFLD patients
[59]. Compared to women with morbid obesity with normal liv-
er histology, women with morbid obesity and NAFLD had de-
creased hepatic 5-HT2A and 5-HT2B receptor mRNA expres-
sions [60]. Pantano et al. [61] recently used total RNA sequenc-
ing data to examine the molecular characteristics of histologi-
cally normal and NAFLD human livers, and suggested that the
5-HT2B receptor gene is one of the top 26 candidate genes re-
lated to the severity of liver fibrosis.

In clinical practice, many drugs, such as tricyclic antidepres-
sant (TCAs), SSRIs, SNRIs, and 5-HT receptor agonists/antag-
onists, that regulate 5-HT signaling are widely used (Table 2).
Clinical studies have reported significant associations between
the abovementioned drug classes and liver disease. Patients who
received TCAs (imipramine, tianeptine) [62,63] and SNRIs
(venlafaxine, duloxetine) developed hepatic steatosis [64,65]. A
clinical study showed that fluoxetine, an SSRI, increased serum
triglyceride levels and hepatic lipid accumulation [66,67]. A
clinical trial on the cardiometabolic benefits of lorcaserin, a
5-HT2C receptor agonist, showed that lorcaserin significantly
improved fatty liver in obese adults, and the effect remained
significant even after controlling for fat mass and change in
body weight [68].

CONCLUSIONS

The human body has two separate serotonergic systems: the
central 5-HT and the peripheral 5-HT systems. The majority of

www.e-enm.org
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Table 2. 5-HT Receptor Agonists and Antagonists

Receptor subtype Agonist Antagonist Effect
5-HT1A Buspirone NAN-190 Slower gastric, accommodation, central nervous system depressant
R-137696 Pindobind
SDZ21-009
5-HT1B CGS12066A GR127935 Alters release of serotonin in the brain, mitochondrial function induced endoplasmic
CGS-12066B Methiothepin reticular stress
CP93129 SB216641 Reducing oxidative phosphorylation
SB224289 Reduced cocaine induced locomotion
SDZ21-009 Reduced the mitogenic activity and by preventing the decrease of cyclic AMP
generation elicited
5-HT1D Sumatriptan GR127935 Enhanced gastric emptying
Metergoline
5-HTI1E BRL-54443
5-HT1F Lasmiditan Cardiovascular parameters
5-HT2A DOI Ketanserin Induced vasoconstriction and platelet
Mesulergine Aggregation are inhibition
Metergoline Stimulate lactation
Ritanserin Negative symptoms of schizophrenia
5-HT2B a-ME-HTP LY272015 Anti-hypertensive effects
Metergoline Pulmonary artery banding affects right heart function and structure
SB204741 Antidepressant/anxiolytic effects
SB228357 Skin fibrosis
Terguride
5-HT2C Tegaserod Mesulergine Pulmonary artery banding affects right heart function and structure
Metergoline Antidepressant/anxiolytic effects
Ritanserin Skin fibrosis
SB228357
Terguride
5-HT3 MKC-733 Y25130 Slower emptying of liquids
Faster small bowel transit, stimulation of interdigestive phase3
5-HT4 Cisapride RS-23597-190 Enhanced intestinal secretion
Tegaserod Faster gastric emptying
Renzapride Faster bowel and colon transit
5-HT5A Olanzapine ASP-5736 No significant effect
Valerenic acid AS-203068
5-HT6 E-6801 Increased recognition memory and corrected scopolamine-induced memory
EMDT impairments, short- and long-term memory formation
5-HT7 8-OH-DPAT Methysergide Potently reversed catalepsy

5-HT, 5-hydroxytryptamine; AMP, adenosine monophosphate.

research has concentrated on the mechanism whereby central
5-HT regulates mood and behavior. Increasingly, central 5-HT
signaling has been used therapeutically for appetite suppression
to facilitate weight loss. Central 5-HT regulates glucose and lip-
id metabolism as well as systemic energy metabolism by regu-
lating the thermogenic activities of brown and beige fat
[20,69,70]. Several recent studies have identified the role of pe-
ripheral 5-HT from gut enterochromaffin cells and other periph-
eral organs in the regulation of various biological functions and

'I 'I 56 www.e-enm.org

energy metabolism. Thus, increasing energy expenditure and
improving insulin resistance by regulating peripheral 5-HT sig-
naling have been proposed as a novel target for anti-obesity
treatment [7,71]. 5-HT plays a major role in regulating hepatic
circulation and regeneration, and peripheral 5-HT promotes fat
deposition and lipogenesis. Moreover, 5-HT induces hepatic fi-
brosis and promotes HSC activation (Fig. 2). Inhibition of pe-
ripheral 5-HT signaling impaired the development of NAFLD
in animal models [55,72]. In addition, clinical studies of drugs

Copyright © 2021 Korean Endocrine Society
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Fig. 2. Metabolic functions of 5-hydroxytryptamine (5-HT) in liver. Most peripheral 5-HTs are derived from enterochromaffin cells of the
gut. 5-HT regulates hepatic fibrosis in hepatic stellate cells (HSCs) by activating HSC-produced transforming growth factor (TGF)-signal-
ing. Through the 5-HT2B receptor, 5-HT promotes gluconeogenesis in hepatocytes by increasing the activity of fructose 1,6-bisphosphatase
(FBPase) and glucose 6-phosphatase (G6pase). 5-HT2B receptor signaling also inhibits glucose uptake by promoting the breakdown of glu-
cose transporter 2 (GLUT?2). The activation of the sterol-regulatory-eclement-binding protein 1 (SREBP1) signaling pathway by the 5-HT2A
receptor increases lipogenesis in the liver. ERK1/2, extracellular signal-regulated protein kinase.

that affect 5-HT signaling have provided evidence of the patho-
physiological importance of 5-HT in liver disease. Further mo-
lecular and clinical studies on the relationship between 5-HT
and liver metabolism are needed to better understand the com-
plex biology of 5-HT in the liver and to provide effective 5-HT-
related therapeutic applications.
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