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The proper organized expression of specific genes in time and space is responsible for the organogenesis of the central nervous sys-
tem including the cerebellum. The epigenetic regulation of gene expression is tightly regulated by an intrinsic intracellular genetic 
program, local stimuli such as synaptic inputs and trophic factors, and peripheral stimuli from outside of the brain including hor-
mones. Some hormone receptors are expressed in the cerebellum. Thyroid hormones (THs), among numerous circulating hormones, 
are well-known major regulators of cerebellar development. In both rodents and human, hypothyroidism during the postnatal devel-
opmental period results in abnormal morphogenesis or altered function. THs bind to the thyroid hormone receptors (TRs) in the nu-
clei and with the help of transcriptional cofactors regulate the transcription of target genes. Gene regulation by TR induces cell pro-
liferation, migration, and differentiation, which are necessary for brain development and plasticity. Thus, the lack of TH action medi-
ators may directly cause aberrant cerebellar development. Various kinds of animal models have been established in a bid to study the 
mechanism of TH action in the cerebellum. Interestingly, the phenotypes differ greatly depending on the models. Herein we summa-
rize the actions of TH and TR particularly in the developing cerebellum.
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INTRODUCTION

The proper organized expression of specific genes in time and 
space is responsible for the organogenesis of central nervous 
system (CNS) [1]. Developmental defects in the brain are in-
duced by abnormal amount, timing, or area of gene expression. 
The epigenetic regulation of gene expression is tightly regulated 
by an intrinsic intracellular genetic program in the neuronal 
cells themselves, and is also regulated by several stimuli; local 
and peripheral, from other types of cells (Fig. 1). Local stimuli 

include synaptic inputs and trophic factors within the brain. Pe-
ripheral stimuli from outside of the brain include sensory inputs 
from the peripheral nervous system and hormonal inputs from 
endocrine cells. These factors all work together contributing to 
brain development and plasticity. In addition, environmental 
factors are important modulators.

The brain consists of complex interneural networks. The cere-
bellum is one of few sites in the brain in which the neural net-
work has been extensively studied. The structure of its cortex is 
well-organized, with a highly specific and uniform arrangement 
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of cells and microcircuitry [2]. Moreover, experimental inter-
ventions on the cerebellum are easier in rodents given its post-
natal organization. Therefore, the cerebellum is an excellent 
system for the study of neural development and neural plasticity.

As peripheral stimuli, hormones produced in the endocrine 
cells and released into the blood stream significantly influence 
the development of the brain including the cerebellum. Some 
hormone receptors are expressed in the cerebellum. However, 
the role of hormones in the development and plasticity of the 
cerebellum is not fully understood.

Among numerous circulating hormones, some small lipophil-
ic hormones including thyroid hormone (TH), gonadal hor-
mones, and glucocorticoids are involved in cerebellar develop-
ment. These hormones are more capable of crossing the blood-
brain barrier (BBB) than peptide hormones because of their 
chemical properties, although there have been studies incrimi-
nating some specific transporters in this process [3]. Receptors 
for these hormones belong to the nuclear receptor (NR) super-
family and regulate the transcription of the target genes in a li-
gand-dependent manner [4]. NRs are widely distributed in the 
CNS with specific expression profiling [5]. Particularly, during 
cerebellar development, NRs exhibit a temporal and spatial ex-
pression pattern [6]. However, the role of NRs during cerebellar 
development is still under investigation.

Among these lipophilic hormones, THs are well-known ma-
jor regulators of cerebellar development. In both rodents [7-9] 
and humans [10], hypothyroidism during the postnatal develop-
mental period results in abnormal morphogenesis or altered 
function. This review focuses on the role of TH in cerebellar de-
velopment. Molecular and cellular actions of TH will be de-
scribed. Furthermore, cerebellar defects in experimental con-
genital hypothyroidism (CH) are also summarized.

MOLECULAR AND CELLULAR ACTIONS 
OF TH

THs are synthesized from tyrosine and iodine in the thyroid 
gland. Thyroid peroxidase and dual oxidase (DUOX) play cen-
tral roles in the iodine incorporation to tyrosine residues in thy-
roglobulin [11]. THs include L-triiodothyronine (T3) and L-tet-
raiodothyronine (thyroxine [T4]). T4 is the main TH produced in 
the thyroid gland. T3 is produced either directly in the thyroid 
gland or by deiodination of T4 in the peripheral tissues. Type 2 
deiodinase (DIO2) is the dominant enzyme responsible for de-
iodination in the brain [12]. THs enter the cells largely via mem-
brane transporters such as monocarboxylate transporter 8 
(MCT8) [13].

THs bind to the thyroid hormone receptor (TR) in the nuclei 
and regulate transcription of the target genes [14]. T3 possesses 
higher affinity to TR and is regarded as active form. As a mem-
ber of the NR superfamily, TR contains a DNA-binding domain 
(DBD) and a ligand-binding domain (LBD). The DBD is highly 
conserved among multiple NRs, whereas the LBD contains the 
ligand-dependent activation domain, which is also responsible 
for dimerization of the NRs. The homology of LBD is relatively 
high among NRs. The highly variable N-terminal region har-
bors autonomous activation function.

TRs are encoded by two genes, THRA and THRB, which are 
located on chromosome 17 and 3 in humans and 11 and 14 in 
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Fig. 1. Schematic diagram of multiple factors involved in brain de-
velopment and plasticity.

Fig. 2. Thyroid hormone receptors and their related proteins gener-
ated from THRA or THRB gene. Numerals indicate the number of 
amino acids. TR, thyroid hormone receptor.
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mice [15]. These genes generate several TR isoforms (Fig. 2). 
Three major isoforms, TRα1, TRβ1, and TRβ2, bind TH and 
serve as ligand-dependent transcriptional factors. These iso-
forms are functionally similar; however, their roles are distin-
guished depending on their distinct expression profiles. TRα2 
lacks the capacity to bind TH and works as an endogenous in-
hibitor of other TRs [16]. In addition, some truncated proteins 
such as TRΔα1 and TRΔα2 are produced. At least in mice, these 
two proteins have been shown to be functional transcriptional 
suppressors in vivo [17]. Furthermore, TRβ3 and its related pro-
tein were also reported, although these are regarded as minor 
isoforms [18].

TR exerts bi-directional functions similarly to retinoic acid 
receptor and vitamin D receptor (Fig. 3) [19]. TR binds to spe-
cific nucleotide sequences known as TH response element 
(TRE) on its target genes as a homodimer, or as a heterodimer 
with retinoid X receptor. Corepressor complexes bind TR and 
suppress transcription in the absence of a ligand. An addition of 
TH induces an exchange of cofactors. Corepressor complexes 
are released from TR and coactivator complexes are recruited, 
which stimulates transcription. Cofactors including corepressors 
or coactivators may alter chromatin structure by modulating 
histone modification or the stability of the basal transcriptional 
machinery [14,20]. Recently, it was reported that the cofactor 
exchange does not follow such a canonical “all-or none” switch 
model in vivo; rather, the expression of TR-target genes is actu-
ally regulated by a shift in the relative binding of corepressors 
and coactivators [21].

The upregulated target genes are responsible for the cellular 
effects of THs. These effects include some basic cellular func-
tions such as cell proliferation, migration, and differentiation, 
which are necessary for brain development and plasticity (Fig. 
1). It is suggested that non-genomic action of TH through mem-
branous integrin αvβ3 [22] is responsible for proliferation of 
cells [23], although TR-target genes responsible for cell prolif-
eration are not yet fully established. TH induces epithelial-mes-
enchymal transition and stimulates migration by upregulating 
the zinc finger E-box binding homeobox 1 (ZEB1) gene in squa-
mous cell carcinoma cells [24]. Furthermore, TH plays impor-
tant roles in the maturation and differentiation of numerous 
types of cells including neurons and glial cells. Neural differen-
tiation by TH contributes to multiple phenomena such as axon 
elongation, synaptogenesis, and dendrite arborization. Some ex-
amples of TR-target genes responsible for cerebellar develop-
ment are Purkinje cell protein-2 and myelin basic protein [25]. 
In addition, the upregulated TR-target genes further induce sec-

ondary or tertiary effects. The whole picture of TH-induced cer-
ebellar development remains to be clarified.

ANIMAL MODEL FOR RESEARCH ON TH 
ACTION IN THE CEREBELLUM

TH deficiency during the postnatal period causes CH in hu-
mans. Untreated CH causes poor neurodevelopmental outcomes 
in the children such as mental retardation, cerebellar ataxia, and 
deafness, together with impaired body growth [26,27]. Thus, the 
cerebellum has been identified as a TH-sensitive brain region 
during the developmental age. Various kinds of mice models 
have been used to assess the effects of TH on the development 
of the cerebellum (Table 1) [28-52]. These are categorized to 
drug-induced hypothyroidism, surgical thyroidectomy, or ge-
netic mutation. These models display extensive abnormalities in 
cerebellar development, resulting in an ataxic phenotype based 
on morphological or neurophysiological impairment.

DEFECT IN THYROID DYSGENESIS AND 
THYROID DYSHORMONOGENESIS

One of the major causes of primary hypothyroidism is the ab-
normalities in thyroid gland development (thyroid dysgenesis). 
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Fig. 3. Schematic figure showing the mechanisms of thyroid hor-
mone receptor (TR)-mediated transcription. RXR, retinoid X recep-
tor; TRE, thyroid hormone response element; TF, transcriptional 
factor.
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Table 1. Representative Phenotype of Animal Models for the Study of the Action of Thyroid Hormone in the Cerebellum

Species Category Gene Histology

Brain function

Reference
Purkinje cell

Maturation of the 
external granule 

cell layer

Locomotor 
function

Anxiety and 
sociability

Mice Thyroid gland 
genesis

Thsr Abnormal [48]

Mice Thyroid gland 
genesis

Pax8 Abnormal [28]

Mice TH genesis Duoxa1/2 Normal Abnormal Abnormal [29]

Rat TH genesis Tg (missense  
mutation, known 
as “rdw rat”)

Abnormal Abnormal Abnormal [49]

Mice Receptor TRα1 Prevention of  
hypothyroid 
phenotype in the 
cerebellum

[32]

Mice Receptor TRα1 (mutant 
knock-in)

Abnormal Abnormal Abnormal Increased anxiety 
behavior

[31,50,51]

Mice Receptor TRβ (mutant 
knock-in)

Decreased  
arborization

Abnormal Abnormal [30,31]

Mice Transporter Mct8 Normal Normal Normal Normal Decreased anxiety 
related behavior

[34,35,36]

Mice Transporter Oatp1c1 Normal [37]

Mice Transporter Mct8/Oatp1c1 Abnormal [37]

Mice Transporter Lat2 Normal Normal Normal Slightly  
impaired

[52]

Mice Transporter and 
deiodinase

Mct8/Dio2 Abnormal [38]

Mice Deiodinase Dio2 Almost normal Almost normal [40]

Mice Deiodinase Dio2 (astrocyte 
specific)

Anxiety- 
depression-like 
behavior

[39]

Mice Deiodinase Dio3 Reduced foliation,  
accelerated  
disappearance  
of the external  
germinal layer, 
and premature 
expansion of the 
molecular layer 
at juvenile ages

Abnormal [33]

Mice Deiodinase Dio3 (adult onset) Increased  
locomotor  
activity

[41]

Mice Coactivator NCoA1 Delayed  
maturation

Impaired motor 
learning in 
mice

Reduced anxiety [43,44]

Mice Coactivator NCoA2 Abnormal in 
female

Reduced anxiety 
in female

[43]

(Continued to the next page)
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The other cause is errors of TH genesis (dyshormonogenesis). 
The most common CH rodent models are the drug-induced 
models with anti-thyroid drugs such as propylthiouracil or 
2-mercapto-1-methylimidazole (MMI) [53,54]. Nicholson and 
Altman reported a reduced cerebellar weight; a prolonged cell 
proliferation in the external granule cell layer (EGL) and retard-
ed EGL disappearance; a retarded cell differentiation in the mo-
lecular and internal granule cell layers, and terminal increases in 
the numbers of granule cells and astrocytes; and a decrease in 
the numbers of basket cells. They equally reported a myelina-
tion delay, and synaptic disconnections among cerebellar neu-
rons and afferent neuronal fibers from other brain regions 
[55,56]. Legrand [53] and Clos et al. [57] demonstrated a de-
creased dendrite arborization of Purkinje cells, two-fold-longer 
primary dendrites, reduction of growth and branching of den-
drites, and shorter parallel fibers with fewer synaptic contacts 
with Purkinje cells. Such impairment of cerebellar Purkinje cell 
growth was confirmed by ex vivo or in vitro human or rodent 
models. Moreover, the drug-induced model can enable the study 
of the effects of mild hypothyroidism on brain development. 
Mice with mild perinatal hypothyroid had an impaired cerebel-
lar development, and its effect will span across generations.

In addition to drug-induced hypothyroid animal models, mu-
tations or gene-modifications of several genes that regulate the 

development of the thyroid gland have been reported as models 
showing CH. For instance, the paired box 8 (PAX8) gene is re-
quired for follicular cells of the thyroid gland for both human 
and mice [58,59]. Pax8−/− mice showed an organization defect 
and a reduction of dendrites elaboration that can be rescued by 
TH treatment [28]. Knockout mice of Duoxa gene (Duoxa−/−), 
which plays the rate-limiting role of TH synthesis, showed simi-
lar morphological changes in the cerebellum at postnatal 2 
weeks with severe hypothyroidism. However, cerebellar dys-
function persisted throughout the life although morphological 
changes had occurred only around the weaning age. Compared 
to other CH model mice, Duoxa−/− mice may be caused by the 
combined effect of CH and the functional disruption of the 
DUOX/DUOXA complex in the brain [29].

DEFECTS IN TH RECEPTOR ACTION AND 
FUNCTION

Resistance to thyroid hormone (RTH) is the most common cate-
gory of impaired sensitivity to TH in humans. RTH is a syn-
drome characterized by reduced intracellular action of T3 and 
was first identified as a syndrome of reduced end-organ respon-
siveness to TH in 1967 [60]. About 85% of families with RTHβ 
harbor mutations in TRβ [61]. Due to the defects in the feed-

Table 1. Continued

Species Category Gene Histology

Brain function

Reference
Purkinje cell

Maturation of the 
external granule 

cell layer

Locomotor 
function

Anxiety and 
sociability

Mice Coactivator NCoA3 Increased anxiety 
in females

[43]

Mice Corepressor NCoR1/2  Increased  
activity,  
enhanced  
locomotor  
coordination

[42]

Mice Corepressor HDAC3  
(nestin-Cre)

 Abnormal  
cytoarchitecture 
of the neocortex 
and cerebellum 
that leads to  
lethality within a 
day after birth

[45]

Mice Corepressor HDAC3 (CaM-
KII-Cre)

Purkinje neuron  
degeneration

Abnormal [45,46]

Mice Corepressor Tbl1xr1 Abnormal [47]

TH, thyroid hormone; Tg, thyroglobulin.
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back regulation of the hypothalamic-pituitary-thyroid axis, pa-
tients with RTHβ show high levels of T4 and T3 and normal or 
high levels of thyroid stimulating hormone (TSH). Patients with 
RTHβ present with various symptoms. Some patients show hy-
perthyroidism, while others exhibit hypothyroidism. The diver-
sity of the symptoms can be explained by the various respon-
siveness to the elevated levels of TH. It was reported that pa-
tients RTHβ present a high prevalence of attention deficit disor-
der and learning disabilities, which are similar to the symptoms 
of hyperthyroidism [62,63]. However, some patients who har-
bor mutant TRβ with severe dysfunction have the symptoms of 
CH. Whereas, RTHα was first discovered in 2012 [64]. Since 
TRα is not involved in the feedback regulation of the hypotha-
lamic-pituitary-thyroid axis, patients with RTHα tend to have 
low serum T4, borderline high T3, and lower rT3. Major clinical 
findings regarding the CNS in patients with RTHα are mental 
retardation and motor impairment, which are similar to the 
symptoms of CH [65]. However, much is yet to be known in or-
der to characterize the RTHα mutation in humans.

RTH model mice, knock-in mice harboring mutant TRs, have 
been generated. Mice harboring the Δ337T mutant TRβ pheno-
copy the hypothyroid symptoms of patients with RTHβ carrying 
the same mutation [30]. In a similar manner to patients with 
RTHα, mutant TRα knock-in mice also exhibit a hypothyroid 
phenotype [31]. The neurological phenotypes of the cerebellum 
of animal models were abnormal cerebellar development, de-
creased arborization of Purkinje cell dendrites, and impaired lo-
comotor activity. The cerebellar phenotype of RTH animal 
models is more severe than that of TR knockout animals de-
scribed below, indicating that the abnormal cerebellar develop-
ment seen in hypothyroid animals may be induced mainly by 
unliganded TRs. Furthermore, the effect may not be a result of 
generalized TH resistance, but may be because of the cerebellar-
cell specific action of TH resistance. This hypothesis is support-
ed by studies using animal models expressing dominant-nega-
tive TRs in cerebellar cells, showing aberrant cerebellar devel-
opment [66,67].

Various TR gene knockout models were also generated; how-
ever, these animal models may not always be suitable for study-
ing the action of TH in the cerebellum because of the bi-direc-
tional actions of transcriptional regulation of target genes of TR 
(Fig. 3). Since TR deletion abolishes the repressive action of 
TR, phenotypes of TR knockout mice are greatly different from 
those of mice harboring low TH levels. However, TR knockout 
mice are essential for the study of the role of TR in organ devel-
opment and function. Another issue that may be considered to 

generate TR knockout mice is that some introns, such as intron 
7 of Thra, have a weak promoter activity. Thus, deleting up-
stream exons may result in the expression of additional TR-re-
lated proteins, which may be limited under normal conditions 
[68]. As discussed above (Fig. 2), at least three additional TR-
related proteins, TRΔα1, TRΔα2, and TRΔβ3, may be generat-
ed. Thus, phenotypes of TR knockout mice may result from the 
combined deletion of a specific TR with overexpression of other 
TR species. There have also been reports of TRα1-deleted mice 
showing a limited alterations in behavior and neural circuit [69]. 
However, except for aberrant maturation of astrocytes, their cer-
ebellar phenotype appeared normal [70]. More strikingly, TRα1 
deletion prevented the structural alteration of the cerebellum in 
hypothyroidism induced by MMI and perchlorate treatment 
[32]. These results indicate that the abnormal cerebellar pheno-
type in animals with thyroid dyshormonogenesis may result 
from the dominant-negative action of unliganded TRα proteins. 
Interestingly, deleting TRα1 also prevented the structural altera-
tion induced by deleting DIO3 [33]. These results indicate that, 
liganded TRα1 plays an important role in cerebellar develop-
ment although the cerebellar phenotype of TRα1 deleted mice is 
limited. Conversely, TRα2 knockout mice show both hyper- and 
hypothyroid phenotypes in an organ-specific manner [71]. This 
may be a result of elevated TRα1 expressions in this mouse. 
TRα1 expression in the brain is also elevated, but the cerebellar 
phenotype was unclear. The deletion of both TRα1 and TRα2 
also shows only a limited phenotype in the cerebellum. Howev-
er, besides the cerebellar phenotype, the existence of TRΔα1 
and/or TRΔα2 shows altered phenotypes in various organs. 
When TRα1 and TRα2 are deleted, but expressions of TRΔα1 
and TRΔα2 are not inhibited (Thra−/−) [72], their phenotype is 
more severe than those of mice in which all TRα proteins are 
deleted (Thra0/0) [17,73]. The decrease in plasma TH levels is 
greater, and there is a more severe impairment of bone and in-
testine development. A more limited brain phenotype is ob-
served in TRβ knockout mice, while TRβ1 is widely expressed 
including in the cerebellum, particularly in Purkinje cells. How-
ever, the abnormal brain phenotype seems to be confined to the 
hypothalamus, and changes in cerebellar phenotype have not 
been reported [74,75]. Because the function of one receptor 
cannot be substituted for the other in the case of TRα and β dou-
ble knockout, their phenotypes are more severe than those of 
single gene knockout [76,77]. However, there has been no de-
tailed study of the altered brain development in these double 
knockout mice.
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DEFECTS IN TH TRANSPORT

TH transporters are required to pass the BBB and reach to neu-
rons in the CNS. Two major transmembrane transporters, MCT8 
and organic anion transporting polypeptide 1C1 (OATP1C1), 
are known to transport T3 and T4 specifically. OATP1C1 has a 
high affinity for T4 and rT3, but a low affinity for T3 [78,79]. 
MCT8 and OATP1C1 are located in neural cells, the endothelial 
cells of microvessels, and the choroid plexus [80-82]. In partic-
ular, MCT8 is essential for transporting TH through the BBB 
[34,83]. Solute carrier family 16 member 2 (SLC16A2) muta-
tions, encoding MCT8, cause X-linked Allan-Herndon-Dudley 
syndrome (AHDS). AHDS is characterized by an altered thy-
roid function (low T4, high T3, and borderline-increased TSH 
levels) and TH metabolism and a severely impaired neurodevel-
opment. Solute carrier organic anion transporter family member 
1C1 (SLCO1C1) mutations, encoding OATP1C1, have recently 
been described to express brain-specific hypothyroidism, severe 
brain hypometabolism, and juvenile neurodegeneration [84].

Mice models have been described to assess the function of 
TH transporters in the CNS. Initially, MCT8 deficient mice 
were proposed as an AHDS model. Although Mct8−/− mice 
showed a thyroid profile similar to that of the patients and rela-
tively low levels of T3 in different brain areas, there were no 
major defects in brain histopathology, nor few behavioral 
changes [35,36,85]. In particular, Mct8−/− mice revealed no ef-
fects on Purkinje cells morphology in the cerebellum [35]. The 
differences between humans and mice suggest that Mct8−/− mice 
may have a compensatory mechanism to supply TH to neurons 
with different factors such as OATP1C1 and DIO2. Interesting-
ly, double knock out of Mct8/Oatp1c1 revealed low uptake of 
both T3 and T4 into the brain, delayed cerebellar development, 
and reduced myelination with reduced locomotor activities [37]. 
Mct8/Dio2 double knockout mice also presented as a model for 
human MCT8 deficiency, with brain hypothyroidism, altera-
tions in histology, and impaired motor skills [38]. Thus, Mct8 
deficiency in mice is compensated by T4 transport through the 
OATP1C1. This hypothesis is supported by the higher expres-
sion of OATP1C1 in rodent BBB compared to that in humans 
[80,81]. The necessity of MCT8 is also confirmed in the devel-
oping chicken cerebellum. The inactivation of MCT8 revealed 
smaller and less complexed dendritic trees of Purkinje cells, 
disruption of granule cell precursor proliferation, and post-mi-
totic granule cell maturation [86]. Recently, the expression pat-
tern of MCT8 appeared to be spatiotemporally changed in the 
brains of humans and mice [87]. During postnatal development, 

MCT8 was expressed stably in the endothelial cells of the BBB, 
choroid plexus epithelial cells, and tanycytes. Conversely, it was 
robustly detectable in specific brain regions including the cere-
bellum of young mice and strongly declined with age [87]. 
These results suggest that spatiotemporal expression patterns of 
MCT8 contribute to the high TH demands in the developing 
brain.

DEFECTS IN LOCAL TH METABOLISM

Iodothyronine deiodinase enzymes play important roles for acti-
vation and deactivation of TH. In the CNS, DIO2 is predomi-
nantly expressed in astrocyte, and converts prohormone T4 to 
the active hormone T3 [39]. In contrast, DIO3 is mainly ex-
pressed in the neuron, and converts T4 to rT3 and T3 to T2 for in-
activating THs [88]. It is suggested that the balance between the 
enzyme activity of DIO2 and DIO3 may determine the local 
concentration of T3. The balance of DIO2 and DIO3 are known 
to be controlled dynamically in the rat developing cerebellum 
[89]. In the second postnatal week, DIO2 activity is upregulat-
ed, whereas DIO3 activity is downregulated [90]. These chang-
es correlate with the THs demands, such as myelination and 
synaptogenesis, in a sensitive period in the mouse cerebellum. 
Several knockout mice were generated to determine the role of 
DIO2 and DIO3 in the brain. The Dio2−/− mice was expected to 
show a similar phenotype to severe global hypothyroid mice. 
However, neurological functions in Dio2−/− mice were only 
slightly changed, although the level of T3 was decreased in the 
cerebellum [40]. Whereas, systemic and astrocyte-specific 
Dio2−/− mice exhibited increased anxiety and fear memory 
[39,91]. These reports suggest that compensatory mechanisms 
protect T3-dependent responses in Dio2−/− mice. This hypothesis 
was supported by the result of a double knockout of Dio2/Mct8. 
Mice lacking both Dio2 and Mct8 demonstrated motor skill im-
pairments [38]. In contrast, Dio3−/− mice displayed increased T3-
dependent gene expression in the brain suggesting increased of 
T3 concentration [41,92,93]. Dio3−/− mice exhibited reduced fo-
liation, accelerated disappearance of the EGL, and premature 
expansion of the molecular layer at juvenile ages [33]. Dio3 
knockout mice also exhibited locomotor behavioral abnormali-
ties and impaired ability in descending a vertical pole. Further-
more, double deletion of Dio3 and Tra1 substantially corrected 
the cerebellar and behavioral phenotypes [33]. Dio3−/− mice also 
exhibit hyperactivity, decreased anxiety-like behavior, and lack 
of maternal behavior in female mice [33,94]. These mice mod-
els help in understanding that an appropriate balance of DIO2/3 



Ishii S, et al.

710  www.e-enm.org Copyright © 2021 Korean Endocrine Society

is required in developing brain.

DEFECTS IN COREGULATORS IN TH ACTION

The action of TH is mediated by TR and several transcriptional 
factors. NR coactivators (NCoAs) and corepressors (NCoRs) 
bind to NRs including TR in a ligand-dependent manner and 
mediate the transcriptional activities. Nuclear cofactors are 
known to be expressed in the CNS; however, little is known 
about their neuronal physiological roles. Recently, reports of 
genetic variants of nuclear cofactors in CNS-related conditions 
in humans have begun to emerge [95]. The p160 steroid recep-
tor coactivator (SRC) family comprises three homologous genes: 
SRC-1 (NCoA1), SRC-2 (NCoA2), and SRC-3 (NCoA3). Het-
erozygous missense NCoA1 variants found in severely obese 
individuals impair leptin-mediated proopiomelanocortin (Pomc) 
reporter activity in humans. Moreover, de novo genetic variants 
in NCoR1, NCoR2, and histone deacetylase 3 (HDAC3) are 
found in pediatric patients with intellectual disabilities or autism 
spectrum disorders (ASD) [42,96-99]. Leptin-induced depolar-
ization of Pomc neurons and Pomc expression were reduced, and 
food intake and body weight were increased in a knock-in mouse 
model of a loss of function human variant (SRC-1L1376P) [100]. In 
the developing rat cerebellum, NCoA1 is predominantly ex-
pressed in Purkinje cells and granule cells in the internal granule 
cell layer. The level of NCoA1 protein in the cerebellum was 
greatest at P15, when the action of TH may be obvious. The dif-
ferential expression of SRC-1 may be crucial in mediating the 
action of TH during cerebellar development [101].

Mutation each NCoA family showed different phenotypes in 
mice. Male NCoA1−/− mice had motor learning impairment, 
while females NCoA2−/− mice had impaired motor coordination. 
However, NCoA3−/− mice showed no changes on motor skills 
[43,44]. NCoA2−/− females also showed decreased anxiety, 
whereas NCoA3−/− female mice had increased anxiety and re-
duced exploratory activity and impairments in prepulse inhibi-
tion [43]. NS-DADm mice, specifically NCoR1/2, abolished 
their ability to activate HDAC3. These mice showed increased 
activity, enhanced locomotor coordination, reduced anxiety, im-
paired social interaction, and impaired spatial learning and rec-
ognition memory [42]. Conditional deletion of HDAC3 in mice 
in generated using nestin-Cre caused abnormal cytoarchitecture 
of the neocortex and cerebellum, leading to lethality within a 
day after birth [45]. Another HDAC3 conditional knockout 
mice using Camk2a-Cre demonstrated a normal organization of 
cerebellar Purkinje neurons at birth. However, these mice dis-

played progressive hindlimb paralysis, ataxia, higher numbers 
of astrocytes, and Purkinje neuron degeneration, which leads to 
lethality at approximately 6 weeks of age [45,46]. Collectively, 
both NCoA and NCoR have unique brain regions and gender 
specific functions.

Transducin beta-like 1 X-linked (TBL1X) and TBL1X recep-
tor 1 (TBL1XR1), which are the members of HDAC-containing 
NCoRs complexes, play essential roles in the development of 
the brain. Targeted sequencing of over 200 genes in more than 
10,000 patients with ASD, intellectual disability, seizure, micro-
cephaly, or macrocephaly identified 13 cases carrying disruptive 
mutations in TBL1XR1 [102]. Moreover, patients with TBL1XR1 
mutations display compromised or delayed motor skills [103]. 
Tbl1xr1−/− mice revealed impaired motor coordination, memory 
skills, and social activity. Such phenotypes were also described 
at different levels in patients harboring this mutation [47,103, 
104]. TBL1X defects are associated with central hypothyroidism 
and hearing loss [105,106]. Genome-wide association studies 
has revealed that TBLX1 is also linked to autism. However, 
neurodevelopmental defects have not yet been reported in these 
patients [107]. Further studies are required to identify the role of 
TBL1XR1 and TBL1X in the developing brain.

In addition to NcoAs and NcoRs, TR may interact with other 
NRs that regulate gene expression such as retinoic acid related 
orphan receptor α (RORα). RORα is strongly expressed in Pur-
kinje cells, and plays a critical role in cerebellar development. 
Cerebellar phenotype and alteration of neurotrophin expression 
of natural mutant mouse (staggerer) harboring an RORα muta-
tion is similar to that in the hypothyroid mouse [108], although 
its thyroid function is normal. This indicates that RORα may be 
involved in TH-regulated gene expression in the developing 
cerebellum. In fact, TH regulates RORα expression during the 
first two postnatal weeks [54,66], indicating that TH may alter 
gene expression critical for cerebellar development through 
RORα regulation. Furthermore, RORα augments TR-mediated 
transcription, whereas staggerer-type mutant RORα does not 
have such action [108]. Another study showed that RORα may 
directly interact with TR without binding to TRE. The DBD of 
RORα may play a role in such an interaction [109]. These re-
sults indicate that RORα is required for full TR function in the 
developing cerebellum. Although there is still little evidence of 
the mechanism by which transcriptional factors contribute to 
TH signaling in brain, each transcriptional factor plays an im-
portant role in the development of the brain.
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CONCLUSIONS

It is established that THs play a pivotal role in cerebellar devel-
opment. In addition, the molecular mechanisms of the action of 
TH have been extensively studied. However, the mechanisms 
through which THs regulate cerebellar development are still un-
der investigation. Further studies including behavioral, neuro-
physiological, morphological, and molecular aspects are neces-
sary to reveal the whole picture of TH-dependent cerebellar de-
velopment.
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