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Fibroblast growth factor 21 (FGF21) is an attractive target for treating metabolic disease due to its wide-ranging beneficial effects 
on glucose and lipid metabolism. Circulating FGF21 levels are increased in insulin-resistant states; however, endogenous FGF21 
fails to improve glucose and lipid metabolism in obesity, suggesting that metabolic syndrome is an FGF21-resistant state. There-
fore, transcription factors for FGF21 are potential drug targets that could increase FGF21 expression in obesity and reduce 
FGF21 resistance. Despite many studies on the metabolic effects of FGF21, the transcriptional regulation of FGF21 gene expres-
sion remains controversial and is not fully understood. As the FGF21 transcription factor pathway is one of the most promising 
targets for the treatment of metabolic syndrome, further investigation of FGF21 transcriptional regulation is required.
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INTRODUCTION

The fibroblast growth factor 21 (FGF21) family includes 22 
members that are divided into seven subfamilies based on 
phylogeny and sequence [1,2]. Most FGF family members 
bind to FGF receptors on the cell surface and require heparin 
sulfate to stabilize the binding [3]. While classic FGFs act 
through an autocrine or paracrine mechanism to regulate cell 
growth and differentiation, FGF19 subfamily members includ-
ing FGF15/19, FGF21, and FGF23 lack heparin-binding prop-
erties and can; therefore, be released into the circulation to act 
as endocrine factors [4]. In place of heparin, the transmem-
brane protein Klotho is required for FGF19 subfamily mem-
bers to activate FGF receptors [5]; α-Klotho serves as a core-
ceptor for FGF23, while β-Klotho serves as a coreceptor for 
FGF15/19 and FGF21 [6-9].

  FGF21 is a metabolic regulator that has favorable metabolic 
effects on glucose and lipid metabolism [10-12]. As mentioned 
above, interaction with β-Klotho is an essential step in FGF21-
receptor complex activation. β-Klotho is almost exclusively 
expressed in the liver, adipose tissue, and pancreas [5], which 
may explain why these specific tissues are the predominant 
site of FGF21 action, although almost all tissues express FGF 
receptors [13]. FGF21 has attracted attention since Khari-
tonenkov et al. [10] discovered its potent insulin-sensitizing 
actions through increased glucose uptake in rodents. It is par-
ticularly important to distinguish between the systemic phar-
macological effects of FGF21 during obesity and comorbid 
conditions and the tissue-specific effects of FGF21 that occur 
under more physiological conditions (Fig. 1). The physiologi-
cal actions of FGF21 occur at lower concentrations and in 
more restricted organ systems and tissues than the pharmaco-
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logical actions [14]. In fasting, FGF21 expression is induced 
by peroxisome proliferator-activated receptor α (PPARα) in 
the liver [15,16] and acts through endocrine mechanisms for 
adaptive starvation responses including gluconeogenesis, ke-
togenesis, torpor, and inhibition of somatic growth [12,14,17]. 
In the fed state, FGF21 expression is induced by PPARγ in 
white adipose tissue and acts in an autocrine or paracrine fash-
ion to increase PPARγ activity [14,18-20]. As a consequence, 
during feeding, the induction of FGF21 in white adipose tissue 
fails to increase circulating levels of FGF21 [21]. Pharmaco-
logical administration of FGF21 affects multiple organs and 
tissues including the pancreas, adipose tissue, liver, and the 
central nervous system [14]. Systemic administration of 
FGF21 increases insulin sensitivity and energy expenditure, 
causing a loss of body weight and improvements in glucose 
and lipid metabolism in obese rodents and primates [10,11,22]. 
Furthermore, several reports have also shown that administra-
tion of FGF21 results in a significant decrease in lipid accu-
mulation in the liver of diet-induced obese mice [22], suggest-
ing that FGF21 could be a promising drug candidate for treat-
ment of metabolic syndrome, with benefits for many of the 
symptoms of this disease.

FGF21 AND DIABETES MELLITUS

Serum FGF21 levels and hepatic FGF21 expression increase 
during obesity or type 2 diabetes [23]. However, although en-
dogenous FGF21 fails to improve glucose and lipid metabo-
lism during obesity [24], pharmacological administration of 
FGF21 improves not only insulin sensitivity but also β-cell 
function, which contributes to the beneficial glycemic actions 
of FGF21 [25]. FGF21 treatment increases islet cell number 
and insulin staining in db/db mice, demonstrating the ability 
of FGF21 to preserve β-cell mass and function [25]. Several 
lines of evidence suggest that FGF21 protects pancreatic β- 
cells by reducing β-cell glucolipotoxicity and directly reduc-
ing β-cell apoptosis via the Akt pathway [25-27]. As progres-
sive β-cell loss is important for the pathophysiology of type 2 
diabetes, these data suggest that FGF21 could be used to pre-
vent the progression of type 2 diabetes.

TRANSCRIPTIONAL REGULATION OF 
FGF21 VIA UPREGULATION OF PPARα OR 
PPARγ

In 2007, three groups found that fasting induces hepatic 

FGF21 expression and that PPARα is required for this normal 
starvation response [15,16,28]. PPARα, a nuclear receptor 
highly expressed in liver, binds directly to the FGF21 gene 
promoter to induce its transcription [16]. PPARα activation 
promotes fatty acid oxidation, ketogenesis, and gluconeogene-
sis [12,29]. PPARα knockout mice accumulate hepatic triglyc-
erides and become hypoketonemic and hypoglycemic during 
fasting [30]. Hepatocytes are the primary source of circulating 
FGF21, and its synthesis is driven by the action of PPARα 
[16]. PPARγ is a nuclear receptor that regulates many genes 
involved in adipocyte differentiation, lipid synthesis and stor-
age, insulin signaling, and glucose metabolism [31,32]. Acti-
vation of PPARγ also increases the secretion of adipokines im-
plicated in whole-body insulin sensitization [33]. Recent stud-
ies demonstrated that PPARγ activation increases FGF21 pro-
duction in adipose tissue, the secondary source of FGF21, 
which then acts as an autocrine or endocrine factor to improve 
insulin action [21,34].

REGULATION OF FGF21 EXPRESSION BY 
OTHER TRANSCRIPTION FACTORS

In addition to PPARα and PPARγ, several studies have sug-
gested that other transcription factors are involved in the regu-
lation of hepatic FGF21 expression. Adams et al. [35]. report 
that thyroid hormone receptor β, which mediates the action of 
tri-iodothyronine in the liver, stimulates lipolysis, and hepatic 
fatty acid oxidation via FGF21 induction. The beneficial met-
abolic effects of all-trans retinoic acid (RA), which is mediat-
ed by RA receptor β (RARβ) binding, are similar to those in-
duced by FGF21, including body weight loss and improve-
ments in glucose and lipid metabolism [36,37]. Several re-
searchers have speculated that FGF21 expression might be 
regulated by RARβ. FGF21 was characterized as a novel tar-
get gene of RARβ in hepatocytes, and hepatic RARβ can bind 
to putative RA responsive elements in the FGF21 promoter in 
a fasting-induced manner [38]. RA receptor-related orphan re-
ceptor α (RORα) is a nuclear receptor that plays a critical role 
in lipid metabolism [39], possibly by modulation of FGF21 
secretion [40]. A recent study demonstrated that RORα direct-
ly regulates the expression and secretion of FGF21 [40]. Cy-
clic AMP response element-binding protein H (CREBH), an 
endoplasmic reticulum membrane-bound transcription factor, 
also induces hepatic FGF21 expression [41,42]. CREBH-defi-
cient mice exhibit impaired fasting-induced expression of 
FGF21 [43]. Furthermore, CREBH is induced by fenofibrate, 
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which is a well-known PPARα activator. We reported that 
CREBH mediates fenofibrate-induced suppression of hepatic 
lipogenesis [44]. Nur77, also known as nuclear receptor sub-
family 4 group A member 1 (NR4A1), is a transcription factor 
in the Nur nuclear hormone receptor superfamily [45]. Nur77 
expression is highly induced in adipose tissue, skeletal mus-
cle, and liver by diverse stimuli including β-adrenergic ago-
nists, cold exposure, and fatty acids [46-51]. Hepatic Nur77 

expression is potently induced by glucagon secretion and fast-
ing, and Nur77 is implicated in hepatic gluconeogenesis [52]. 
Recently, we found that during fasting, Nur77 mediates hepat-
ic FGF21 expression and that alpha lipoic acid (ALA) increas-
es hepatic FGF21 expression via upregulation of Nur77 (un-
published data).

Fasted state
▪ Glucagon
▪ Fatty acids

Fed state
▪ Fatty acids
▪ Thiazolidinedione

Pharmacolocgical
   administration

▪ Recombinant FGF21

▪ Lipolysis/Lipogenesis?
▪ Browning 

▪ β-Cell preservation↑

▪ Insulin sensitivity↑
▪ Weight loss ↑
▪ Energy expenditure ↑
▪ Serum triglyceride ↓

Autocrine action

Drugs
▪ Fenofibrate 
▪ Retinoic acid 
▪ α Lipoic acid 

▪ Gluconeogenesis↑
▪ Ketogenesis ↑
▪ Fatty acid oxidation ↑
▪ Torpor ↑
▪ Somatic growth ↓

▪ Insulin sensitivity
▪ Glucose homeostasis
▪ Lipid homeostasis

Endocrine action
(autocrine/paracrine)

PPARα, CREBH, RARβ
RORα, Nur77, TRβ

FGF21

FGF21

rFGF21

PPARγ

Obesity, T2DM

FGF21

Fig. 1. Endocrine, autocrine, and pharmacological actions of fibroblast growth factor 21 (FGF21) and its transcription factors. Fasting in-
duces FGF21 expression in the liver through several transcription factors, and FGF21 acts as an endocrine hormone to induce ketogene-
sis, gluconeogenesis, fatty acid oxidation, and torpor and to inhibit somatic growth. In the fed state, FGF21 expression in white adipose 
tissue is induced by peroxisome proliferator-activated receptor gamma (PPARγ), and FGF21 acts through an autocrine or paracrine mech-
anism to increase PPARγ activity. Pharmacological administration of recombinant FGF21 (rFGF21) affects multiple tissues and has bene-
ficial effects on lipid and glucose metabolism in metabolic disease, including obesity and diabetes mellitus. Recent studies have demon-
strated that several metabolically-active drugs produce hepatic FGF21, suggesting a relationship between their actions in glucose and lip-
id metabolism with the up-regulation of FGF21 production. CREBH, cyclic adenosine monophosphate (AMP) response element-binding 
protein H; RARβ, retinoic acid (RA) receptor β; RORα, RA receptor-related orphan receptor α; Nur77, nerve growth factor IB; TRβ, thy-
roid hormone receptor β; T2DM, type 2 diabetes mellitus.

rFGF21
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REGULATION OF FGF21 TRANSCRIPTION 
BY THERAPEUTIC AGENTS

Increased serum FGF21 concentrations are associated with 
obesity and insulin resistance in rodents that respond poorly to 
endogenous FGF21, indicating that metabolic syndrome could 
be the result of an FGF21-resistant state [22,24]. However, 
pharmacological administration of FGF21 improves glucose 
and lipid metabolism in diabetic rhesus monkeys, which pres-
ent with the same characteristics as diabetic humans [11]. 
Therefore, regulators of FGF21 transcription, especially in 
obesity, may be potential drug targets useful for reducing 
FGF21 resistance. Fenofibrate, a PPARα agonist, is used clini-
cally for the treatment of hypertriglyceridemia [53] and in-
creases FGF21 expression via PPARα activation [54]. As men-
tioned previously, FGF21 is a downstream target of PPARγ, 
and the therapeutic effects of PPARα agonists may be mediat-
ed by stimulation of hepatic FGF21 production [16]. Thiazoli-
dinediones, a class of antidiabetic drugs (insulin sensitizers), 
are well-known PPARγ agonists, and FGF21 expression can 
be regulated by PPARγ agonists in adipose tissue [55]. Co-
treatment with FGF21 and a PPARγ agonist results in syner-
gistic adipocyte differentiation and glucose uptake in adipose 
tissue [19]. Moreover, thiazolidinedione increases FGF21-in-
duced tyrosine phosphorylation of the FGF receptor and in-
duces β-Klotho expression [56,57]. ALA, a naturally occur-
ring thiol antioxidant, is an essential cofactor for mitochondri-
al respiration [58] and is often used to manage diabetic com-
plications [59,60]. ALA mediates a diverse range of activities 
including regulation of glucose and lipid metabolism by mod-
ulation of PPAR-regulated genes and key enzymes [61]. We 
previously demonstrated that ALA activates adenosine mono-
phosphate-activated protein kinase and reduces lipid accumu-
lation in livers of rodents fed a high-fat diet [62]. We also re-
ported that ALA enhances Nur77 expression in vascular cells 
[63] suggesting that ALA treatment may induce nutritionally 
regulated gene expression in the liver through the upregulation 
of fasting-induced transcription factors. Recently, we found 
that ALA increases hepatic FGF21 expression via upregula-
tion of Nur77 and CREBH (unpublished data). Despite many 
studies on FGF21, its mechanism of action remains controver-
sial and is not fully understood. It is now clear that the FGF21 
transcription factor pathway is one of the most promising drug 
targets for the treatment of metabolic syndrome. Therefore, 
further studies focused on the transcriptional regulation of 
FGF21 are necessary.

CONCLUSIONS 

FGF21 has emerged as an important hormonal regulator of 
glucose and lipid metabolism and a promising agent for the 
treatment of obesity and type 2 diabetes. Therefore, it is neces-
sary to understand the mechanisms responsible for FGF21 ex-
pression and identify other transcription factors including nu-
clear receptors which are able to regulate hepatic FGF21 ex-
pression.
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